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Abstract

Ross River virus (RRV) is the most common and widespread arbovirus in Australia. Epide-

miological models of RRV increase understanding of RRV transmission and help provide

early warning of outbreaks to reduce incidence. However, RRV predictive models have not

been systematically reviewed, analysed, and compared. The hypothesis of this systematic

review was that summarising the epidemiological models applied to predict RRV disease

and analysing model performance could elucidate drivers of RRV incidence and transmis-

sion patterns. We performed a systematic literature search in PubMed, EMBASE, Web of

Science, Cochrane Library, and Scopus for studies of RRV using population-based data,

incorporating at least one epidemiological model and analysing the association between

exposures and RRV disease. Forty-three articles, all of high or medium quality, were

included. Twenty-two (51.2%) used generalised linear models and 11 (25.6%) used time-

series models. Climate and weather data were used in 27 (62.8%) and mosquito abundance

or related data were used in 14 (32.6%) articles as model covariates. A total of 140 models

were included across the articles. Rainfall (69 models, 49.3%), temperature (66, 47.1%) and

tide height (45, 32.1%) were the three most commonly used exposures. Ten (23.3%) studies

published data related to model performance. This review summarises current knowledge

of RRV modelling and reveals a research gap in comparing predictive methods. To improve

predictive accuracy, new methods for forecasting, such as non-linear mixed models and

machine learning approaches, warrant investigation.

Author summary

As the most common human arbovirus infection in Australia, Ross River virus exerts a

significant public health and economic burden on the population. Because the virus is

transmitted by mosquitoes, incidence is influenced by climate, environment, and socio-

economic factors. Using epidemiological models to predict incidence or outbreaks of

RRV fully utilises these data to inform decision-making. In this systematic review, we
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summarised models and their predictive performance, and highlighted significant expo-

sures in order to increase understanding of transmission.

Introduction

Ross River virus, a mosquito-transmitted Alphavirus, is the most common arboviral infection

of humans in Australia [1, 2] and often results in a characteristic syndrome, including consti-

tutional effects, rash, and rheumatic manifestations [1, 3]. A total of 123,875 cases of RRV

infection were reported from 1993 to 2019 in Australia, of which nearly half (48.8%) were

from Queensland. [4]

Ross River virus transmission is primarily influenced by mosquito abundance, reservoir host

populations, and climatic, environmental (e.g. rainfall, temperature, tides, river flow, vegetation

cover) and socio-economic factors (e.g. urban development, housing infrastructure) [1, 5–9].

Models of RRV using these exposures can improve knowledge of RRV transmission or be used

to give early warning of outbreaks, thus aiding disease prevention and control. However, the

relationships between exposures and RRV incidence are complex. For instance, climate can

influence vector abundance, host populations and the behaviour of vectors and hosts, and cli-

mate and weather are influenced by human behaviour (e.g. global warming, heat island effects,

effects of large dams) and geographical factors like altitude [10, 11]. Therefore, exposures do not

have a simple correlation with disease incidence, which increases the difficulty of forecasting.

Generalised linear regression and time-series models are widely used for infectious disease

prediction [12]. Linear regression models are straightforward, but often inadequate for predic-

tion in complex systems. Time-series models are especially suitable for analysing data contain-

ing autocorrelation and which shows periodic fluctuations [13, 14].

Three reviews on exposures or predictive models of RRV have been published, however all

concentrated on a description of exposures and their relationships with disease, with less atten-

tion to models and their performance, and none were systematic reviews. A review by Tong

et al. (2008) [8] included more than 15 articles on predictors of RRV transmission. Analytical

methods were listed, and the detailed research process and results were described to elucidate

the association between climatic, social and environmental factors and RRV disease. Yu et al.

(2014) [15] identified research on the impact of climate change on RRV disease. All models

applied in these studies were listed, but the characteristics of the models were not discussed.

Another review by Jacups et al. (2008) [9] described the vectors and vertebrate reservoirs of

RRV, the possible impact of climate change on incidence, and summarised the models and the

climatic factors applied in 15 studies. RRV models were discussed in this study, but the focus

was on the influence of covariates and the geographical size of the study areas on the model

accuracies. However, these three reviews neither provide a detailed profile of the models nor

quantification of their performance.

In this review, the research hypothesis is that a detailed summary of all available primary

modelling research for RRV enables an evaluation of the effectiveness of the models in fore-

casting disease and improving knowledge of exposures and transmission cycle. We aim to

describe modelling approaches applied in RRV disease prediction in Australia, the perfor-

mance of these models, the variables used and the models’ performance in prediction.

Methods

This systematic review followed the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) guidelines [16]. The PRISMA Checklist is available in S1 Table. The

proposal for this study was completed before data extraction (S1 Text).
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Literature search strategy

We performed a structured literature search using PubMed, EMBASE, Web of Science,

Cochrane Library, and Scopus for articles published between January 1, 1980 and January 21,

2020 with search terms encompassing pathogen (i.e. “Ross River virus”), methods (i.e. “model”

OR”forecast”), and exposures (i.e. “impact factor” OR “predictor” OR “association”). Articles

not relevant to our aims were excluded (i.e. “gene” OR “protein” OR “transfusion”). These

search terms efficiently excluded irrelevant records. Studies on genes or proteins were mainly

laboratory-based and not relevant for epidemiological risk prediction. Studies on transfusion-

related RRV transmission were excluded because such transmission is infrequent and can be

ignored. In addition, findings could not feasibly be integrated with studies of mosquito-trans-

mitted disease. Search terms are provided in S2 Text.

Inclusion and exclusion criteria

Studies of RRV using population-based data, incorporating at least one epidemiological model

and analysing the association between an exposure or exposures and RRV incidence or out-

breaks, located in Australia, in English and with full-text available were included in this review.

Review articles, meeting abstracts, letters, books, reports and comments were excluded. Studies

on RRV virology, vaccines, and animal models were also excluded. Articles describing models

of RRV vectors or non-human reservoir hosts without human epidemiological data were

excluded, as were studies involving transmission dynamic modelling. The records were first

screened by titles and abstracts, then the full texts were reviewed before a final decision on

inclusion. Study inclusion was conducted by one author (WQ), and in cases of uncertainty, all

four authors reached a decision after discussion.

For included records, title, author, publication year, research area and period, predictors

and format of predicted outcome, modelling method, significant results, prediction perfor-

mance, model evaluation and model validation were extracted.

Methodological quality assessment and data extraction

Included studies were assessed according to recently published criteria for observational stud-

ies [17–20]. Each criterion was scored 2, 1 or 0 if the studies fully, partly or barely met the crite-

rion (S2 Table). The statement of funding and conflict of interest were each scored 1 if they

were stated clearly. The studies were classified into three groups depending on total scores:

high (19–24), medium (13–18), and low quality (<13). Related study registrations were

searched to evaluate publication bias. Data extraction and quality assessment were conducted

by one author (WQ) and discussed by all authors where there were uncertainties.

All the authors participated in the entire review process, discussed the main decisions and

reached agreement on study selection, data extraction and study assessment together.

Study characteristics and model performance were tabulated. Exposures applied in these

models were summarised and their association with RRV listed.

The transmission cycle of RRV and key exposures influencing RRV infection are illustrated

in Fig 1.

Results

After duplicates were removed from 2,227 searched records, we screened 976 papers; after

exclusion criteria were applied, 43 records remained (Fig 2) [21–63]. All studies were pub-

lished in the last 20 years, and 19 (44.2%) during the past decade. Nearly half the studies were

conducted in Queensland (20, 46.5%), while five (11.6%) were in Western Australia.
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The quality scores for the studies are listed in Table 1. Detailed scores are provided in S3

Table. All studies attained high (33, 76.7%) or medium quality scores (10, 23.3%). There were

two articles published without significant results. No systematic review registration related to

RRV modelling was found.

Models were grouped into three categories: generalised linear models (22 studies, 51.2% of

43 studies); time-series models (11, 25.6%); other models including Cumulative Sum based

(CUSUM-based) methods (3, 7.0%), spatial or temporal analysis (5, 11.6%), Classification and

Regression Tree (CART) (2, 4.7%), Maxent model, Hurdle model, Besag, York, and Mollié

(BYM) model and generalised additive model (1 each, 2.3%) (Tables 2–4). In some studies, dif-

ferent types of models, or models with different covariates were compared. A total of 140 mod-

els were built in these 43 studies.

Fourteen articles (32.6% of 43 articles) used mosquito abundance or related data as model

covariates. Climate and weather data were used by 27 of the 43 studies (62.8%). Other expo-

sures such as river flow, distance to surface water sources, historical RRV cases and host popu-

lation were also used (Table 5). Rainfall (applied in 69 models, 49.3% of 140 models),

Fig 1. Key elements of RRV prediction models.

https://doi.org/10.1371/journal.pntd.0008621.g001
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temperature (66, 47.1%) and tide height (45, 32.1%) were the three most commonly used risk

factors for predicting RRV infection. The full list of 65 exposures in 7 categories, their associa-

tions with RRV and time-lags are provided in S4 Table.

Fig 2. Flow chart of study selection process.

https://doi.org/10.1371/journal.pntd.0008621.g002
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Most studies (23, 53.5% of 43 studies) used incidence rates or disease occurrence as depen-

dent variables (Table 2). Twelve studies used outbreaks as dependent variables (Table 3), while

ten used notified cases (Table 4). Two articles used incidence rates and outbreaks in different

models. Linear models were applied for analysing all forms of notified data. Most studies using

time-series and spatial analysis models forecast incidence rather than outbreaks. All studies

using CUSUM-based models predicted outbreaks.

Only ten of the 43 studies published data related to model performance; among them, five

used logistic regression models, one used a Hurdle model, one CUSUM-based methods, one a

CART, one a Polynomial distributed lag model and one a negative binomial regression model

(Table 6). Seven of the studies were applied to predict RRV outbreaks, one predicted incidence

and two predicted cases. Most of the models achieved accuracies or overall agreements of

75.0% or higher.

Discussion

This systematic review provides a complete analysis of predictive models and exposures for

predicting RRV incidence. In contrast to existing reviews which described the climatic, envi-

ronmental and social factors incorporated in models, this review focuses on the modelling

approaches and model performance. Most predictive models used generalised linear models

and time series methods, but few studies presented model performance statistics. Many expo-

sures have been included in these models; most of them are in one or two studies only. Rainfall

and temperature are the most common exposures, and within the ranges studied, the associa-

tion with RRV incidence is positive for both exposures in general. Mosquito abundance has a

positive effect on RRV as expected.

Data quality was assessed in few studies. This is perhaps because data were collected from

government or other public data repositories; consequently, data quality is implicitly consid-

ered to be good or the quality is difficult to assess. Some models (e.g. spatial analyses) are

unable to predict disease frequency and consequently model evaluation or validation

approaches cannot be applied.

Table 1. Score for quality assessment criteria.

Assessment criterion Number (%) of articles

scoring 2�
Number (%) of articles

scoring 1

Number (%) of articles

scoring 0

1. Clarity of aims and objectives 43 (100.0) 0 (0.0) 0 (0.0)

2. Definition of study geographical area 40 (93.0) 3 (7.0) 0 (0.0)

3. Data source of RRV clearly described 42 (97.7) 1 (2.3) 0 (0.0)

4. Data source of covariates clearly described 43 (100.0) 0 (0.0) 0 (0.0)

5. Data quality considered 22 (51.2) 5 (11.6) 16 (37.2)

6. Model structure clearly described and appropriate for the research

question

41 (95.3) 2 (4.7) 0 (0.0)

7. Modelling methods appropriate for the research question 42 (97.7) 1 (2.3) 0 (0.0)

8. Model evaluation 25 (58.1) 3 (7.0) 15 (34.9)

9. Model validation 14 (32.6) 1 (2.3) 28 (65.1)

10. Results clearly and completely presented 36 (83.7) 7 (16.3) 0 (0.0)

11. Results appropriately interpreted and discussed in context 40 (93.0) 3 (7.0) 0 (0.0)

12. Funding statement - 34 (79.1) 9 (20.9)

13. Conflict of interest statement - 17 (39.5) 26 (60.5)

�The assessment of Funding statement and Conflict of interest statement was scored 1 or 0.

https://doi.org/10.1371/journal.pntd.0008621.t001
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This systematic review identified more than 60 exposures. Climate and weather influence

mosquito breeding and behaviour of hosts, and therefore change the prevalence of the disease

in a complex way [64]. The lag periods for climatic exposures differ for different parts of the

transmission system. Weather can accelerate or decelerate mosquito breeding over a period of

several days to weeks [11, 34, 65, 66], while humans may adjust their behaviour immediately in

response to weather changes, and host population structure and consequently seroprevalence

Table 2. Characteristics of the models predicting RRV incidence rates.

Study (first

author, year)

Research area and period Model� Covariates (significant predictors in bold)��

Ryan, 1999 Maroochy Shire, 1991–1996 LIRM Mosq

Muhar, 2000 Brisbane, 1991–1996 LIRM Vegetation types obtained by principal component factor analysis

Tong, 2001 Cairns, 1985–1996 ARIMA Rain, Temp, Humd, Tide

Done, 2002 Queensland, 1991–1997 Second-order auto-regression

model

Stratospheric Quasi-Biennial Oscillation index, the annual, semi-annual and

quasi-biennial cycles (significant predictors not presented)

Tong, 2002(1) Queensland, 1985–1996 ARIMA Rain, Temp, Tide, adjustment for auto-regression, moving average,

seasonality, and year

Tong, 2002(2) Queensland, 1985–1996 PTSRM Rain, Temp, Humd, Tide, adjustment for seasonality, case notification time

and human population (offset variable)

Hu, 2004 Brisbane, 1985–2001 SARIMA Rain, Temp, Humd, Tide, auto-regression, moving average, seasonal auto-

regression, seasonal moving average

Tong, 2004 Townsville, 1985–1996 SARIMA Rain, Temp, Humd, Tide

Gatton, 2004 Queensland, 1991–2001 Spatial analysis Spatial autocorrelation

Tong, 2005 Brisbane, 1998–2001 PTSRM Mosq, Rain, Tide, SOI, adjustment for the autocorrelation and seasonality

Hu, 2006(1) Brisbane, 1998–2001 PTSRM and CART Mosq, adjustment for overdispersion, Max Temp, autocorrelation, and

seasonality

Hu, 2006(2) Brisbane, 1998–2001 PDL and SARIMA Mosq, Rain, Tide, SOI, seasonal auto-regression for SARIMA model,

adjustment for seasonality and autocorrelation

Ryan, 2006 Redland Shire, 1991–2001 Spatial analysis Mosq (significant predictors not presented)

Hu, 2007 Brisbane, 2001 NBRM SOI, human population, overseas visitors, indigenous population, labor

workers, educational level, family income, vegetation, seasonality

Jardine, 2008 Southwestern Australia, 1988–

2006

NBRM and Besag, York, and

Mollié (BYM) model

Land salinity, waterlogging, human population (offset variable)

Bi, 2009 The Riverland region of South

Australia, 1992–2004

Poisson regression model Rain, Temp, Humd, SOI, River Murray flow, historical RRV cases,

adjustment for autocorrelation, seasonality and lagged effect

Hu, 2010 (1) Queensland, 1999–2001 Bayesian spatio-temporal

conditional auto-regressive

model

Rain, Temp, SEIFA, spatial variation, LGA-specific temporal trends, a

seasonally oscillating temporal random effect, human population (offset

variable)

Hu, 2010 (2) Brisbane, 1998–2001 CART Mosq

Pelecanos, 2011 Queensland, 1995–2007 Spatial and temporal analysis Spatial autocorrelation

Vally, 2012 Three regions in Western

Australia, 1995–1996

Poisson linear regression model Distance from the waterway, human population (offset variable)

Yu, 2014 Queensland, 2001–2011 Spatial and temporal analysis Spatial autocorrelation

Koolhof, 2017 Five sites in Western Australia,

1991–2014

LIRM Rain, Temp, Tide

Stratton, 2017 Australia, 1993–2015 Poisson linear regression model Rain, Temp or TSI, trend, seasonality, intra-annual periodicity, inter-annual

periodicity, time-lag

� LIRM = Linear Regression Model; ARIMA = Auto-Regressive Integrated Moving Average model; SARIMA = Seasonal Auto-Regressive Integrated Moving Average

model; PTSRM = Poisson Time Series Regression Model; CART = Classification and Regression Tree; PDL = Polynomial Distributed Lag model; NBRM = Negative

Binomial Regression Model.

��Mosq = Mosquito abundance or Mosquito related data; Rain = Rainfall; Temp = Temperature; Tide = Tide Height or High Tidal level; Humd = Humidity or Relative

Humidity; SOI = Southern Oscillation Index; SEIFA = Socio-Economic Index for Areas; TSI = Temperature Suitability Index.

https://doi.org/10.1371/journal.pntd.0008621.t002
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may be affected by climate after a few years [10, 67, 68]. This phenomenon also explains why

the same exposure can influence RRV incidence both positively and negatively at different lag

times. Interactions between climatic exposures further complicate the analysis [65].

Data on vectors and reservoir host species, abundance and competence are crucial for fore-

casting RRV incidence [60, 69, 70]. The importance of vectors and reservoir hosts differs

between species because of behavioural and ecological variation [71, 72]. The feeding and

breeding of mosquito species are affected by host availability and abundance [73, 74]. Across

urban, inland and coastal regions of Australia, vector and host species driving RRV transmis-

sion are diverse and variable [2]. Because of the wide variety of non-human reservoir hosts, it

is extremely difficult to ascertain the complex relationships among hosts, vectors, and disease

incidence. Epidemiological analyses and host ecology studies including serosurveys are impor-

tant methods of detecting and describing these relationships. However, vector and reservoir

host data with sufficient details and completeness to be useful for prediction are rarely avail-

able, impairing the quality of models.

Surface water sources, river flow, vegetation and remoteness, which were included only in a

few studies, are promising data sources and should be explored further. Surface water and veg-

etation provide a favourable environment for mosquito breeding and are important for model-

ling [75, 76]. These exposures are increasingly incorporated in recent models [53, 61].

Inclusion of incidence terms from past weeks is also widely used in public health surveillance,

Table 3. Characteristics of the models predicting RRV outbreaks.

Study (first

author, year)

Research area and period Model� Covariates (significant predictors in bold)��

Maelzer, 1999 New South Wales and

Victoria, 1928–1998

LORM SOI

Woodruff, 2002 Two regions in southeastern

Australia, 1991–1999

LORM Rain, Temp, Humd, Evap, VP, SOI, SST, adjustment for irrigation method

Gatton, 2004 Queensland, 1991–2001 Temporal analysis Seasonality

Gatton, 2005 Queensland, 1991–2001 LORM Rain, Temp

Woodruff, 2006 Southwest Western Australia,

1991–1999

LORM Mosq, Rain, Temp, Tide, Evap, SOI, SST, VP

Watkins, 2008 Western Australia, 1991–2004 EARS and NBC Historical RRV cases (covariates not quantified)

Pelecanos, 2010 Queensland, 1991–2007 EARS, NBC, HLM, POD

and temporal analysis

Historical RRV cases (covariates not quantified)

Sparks, 2010 New South Wales, 1995–2006 An adaptive CUSUM plan Historical RRV cases, day of the week, school holiday, seasonal and transitional

influences (covariates not quantified)

Jacups, 2011 Northern Territory, 1991–

2007

LORM Rain, Temp, Humd, Tide (only applied for coastal areas)

Koolhof, 2017 Five sites in Western

Australia, 1991–2014

Hurdle model Rain, Temp, Tide

Walsh, 2018 Australia, 1996–2016 Maxent model Rain, Temp, proximity to each surface water type, proximity to controlled water

reservoirs, water-soil balance, hydrological flow accumulation, altitude, MGVF,

human migration, ecological niches of wildlife hosts

Tall, 2019 Inland New South Wales,

1991–2013

GEE Flood events

� LORM = Logistic Regression Model; EARS = Early Aberration Reporting System C1, C2 and C3 algorithms; CUSUM = Cumulative Sum; NBC = Negative Binomial

Cusum method; HLM = Historical Limits Method; POD = Poisson Outbreak Detection method; GEE = Generalised Estimating Equations.

��Mosq = Mosquito abundance or Mosquito related data; Rain = Rainfall; Temp = Temperature; Tide = Tide Height or High Tidal level; Humd = Humidity or Relative

Humidity; Evap = Evaporation; VP = Vapor Pressure; SOI = Southern Oscillation Index; SST = Sea Surface Temperature; MGVF = Maximum Green Vegetation

Fraction.

https://doi.org/10.1371/journal.pntd.0008621.t003
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e.g. the Early Aberration Reporting System, which offers aberration detection methods by ana-

lysing recent surveillance data [77].

The time-lag effects of RRV activity are generated not only by climatic factors but also by

mosquito abundance, host populations and some geographical elements such as river flow and

flooding [9, 15, 52, 56, 63, 78]. The time lags are also influenced by the species diversity and

abundance of mosquitoes in the research area. For instance, the freshwater-breeding Culex
annulirostris is affected by rainfall and riverine flooding at freshwater habitats, while the estua-

rine-breeding Aedes vigilax is associated with estuarine wetlands shaped by tidal flooding and

rainfall [2]. Thus, analysing temporal data is helpful to identify the temporal variation in these

associations with RRV incidence. Moreover, the host population, mosquito breeding and peo-

ple’s lifestyle vary spatially. Data on the geographical difference and temporal trends of related

exposures can be valuable for RRV prediction.

Our systematic analysis showed that linear models and time-series approaches are the two

main analytical methods used to predict RRV disease. Linear regressions are simple to manip-

ulate and explain, while time-series models are appropriate for considering autocorrelation

and seasonal fluctuations. Both approaches have been widely applied in dealing with infectious

diseases [79, 80]. Their pros and cons are described in some articles [81–83]. Models with

good predictive performance perform well at predicting outcomes for out-of-sample data [84].

Usually cross-validation is used to assess model performance in retrospective studies, and 25%

of available data for validation is recommended [84]. Some statistics can be derived, such as

accuracy, specificity, sensitivity, mean-squared error, mean absolute error or root mean-

squared error, for evaluation [85]. Head-to-head comparisons of models using common

Table 4. Characteristics of the models predicting RRV cases.

Study (first

author, year)

Research area and period Model� Covariates (significant predictors in bold)��

Jacups, 2008 Darwin, 1991–2006 Poisson linear

regression model

Mosq, Rain, Temp, Humd, Tide

Barton, 2009 The Gippsland Lakes region of

eastern Victoria, 1991–2001

LIRM Mosq, Rain, Temp

Williams, 2009 The River Murray Valley of South

Australia, 1999–2006

LIRM Mosq, Rain, Temp, river height, human population

Werner, 2012 Southeastern Tasmania, 1993–2009 NBRM Rain, Temp, Tide

Ng, 2014 Four regions in New South Wales,

1991–2004

PDL Mosq, Rain, Temp, Humd, Tide, Evap, SST, NDVI, water sources, distance to coast,

elevation, ARIA, macropod population, human population (offset variable)

Rohart, 2016 Australia, 2009–2013 High-dimensional

LIRM

Google Trends data (covariates not quantified)

Cutcher, 2017 The Mildura Local Government

Area of Victoria, 2000–2015

NBRM Mosq, Rain, Temp, Humd, VP, SOI, La Niña events, SST, sea level, river flow

Flies, 2018 South Australia, 1992–2012 Generalised additive

model

Mosq, Rain, Temp, Humd, distance to coast, distance to Murray River, NDVI,

elevation, IRSD, Caravan parks, global human settlement "urban-ness" score, non-

human reservoirs, expected RRV cases

Walker, 2018 The Peel region of southwest

Western Australia, 2003–2014

NBRM Mosq, presence of RRV isolates, season

Koolhof, 2019 The eleven Local Government

Areas in Victoria, 2005–2018

NBRM Rain, Temp, Humd, Tide, VP, sea level pressure, Evap, SOI, SST, river flow

� LORM = Logistic Regression Model; LIRM = Linear Regression Model; PDL = Polynomial Distributed Lag model; NBRM = Negative Binomial Regression Model.

��Mosq = Mosquito abundance or Mosquito related data; Rain = Rainfall; Temp = Temperature; Tide = Tide Height or High Tidal level; Humd = Humidity or Relative

Humidity; Evap = Evaporation; VP = Vapor Pressure; SST = Sea Surface Temperature; SOI = Southern Oscillation Index; NDVI = Normalized Difference Vegetation

Index; ARIA = Accessibility/Remoteness Index of Australia; IRSD = Index of Relative Socio-economic Disadvantage.

https://doi.org/10.1371/journal.pntd.0008621.t004

PLOS NEGLECTED TROPICAL DISEASES Epidemiological models for predicting Ross River virus in Australia

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008621 September 24, 2020 9 / 17

https://doi.org/10.1371/journal.pntd.0008621.t004
https://doi.org/10.1371/journal.pntd.0008621


datasets are suggested for model assessment [86]. Robustness of the models need to be tested

under various settings [86]. The best modelling approach for RRV prediction is currently

unclear. Therefore, the performances of RRV predictive models are needed in order to com-

pare them and select the best one for a given setting.

This is the first systematic review focusing on modelling approaches for predicting RRV

disease. This is also the first review that lists statistical methods, significant exposures and the

modelling performance of selected studies. Only studies conducted in Australia and published

in English were included. We did not search grey literature. We were unable to evaluate publi-

cation bias, however two of the included studies were published without significant results.

Although we have summarised broad findings in relation to exposures, we have not conducted

meta-analysis. Insufficient data were available to assess performance of most models. There-

fore, we were not able to strictly compare models and establish an appropriate level of confi-

dence in their performance. The descriptions of predictive models included in this review are

based on current publications, so, these data need to be interpreted with caution. The informa-

tion we have presented is dependent on the limitations of the included studies. A particular

issue in RRV research is the non-equivalence between routinely collected surveillance data and

RRV incidence. There are also significant limitations for exposure data, brought about by site

and number of weather stations, incompleteness of macropod data, variability in mosquito

enumeration due to characteristics of particular trap types, and other issues.

Table 5. Top 15 significant exposures applied, and the directions of their associations with RRV.

Exposures� Nsa /

Na
��

Nsm /

Nm
��

Association with RRV (Positive /

Negative) ���

Rainfall 20 / 25 45 / 69 47 / 14

Temperature or Temperature Suitability Index 14 / 23 35 / 66 31 / 15

Tidal height or high tidal level 10 / 15 19 / 45 17 / 6

Mosquitoes, with top three: Culex annulirostris, Aedes
camptorhynchus

and Culex australicus

12 / 14 23 / 42 43 / 2

Humidity or relative humidity 7 / 12 12 / 37 5 / 10

Southern Oscillation Index 4 / 9 6 / 15 5 / 1

Sea Surface Temperature 4 / 5 6 / 22 4 / 6

River flow or river height 5 / 5 5 / 19 5 / 2

Vapor pressure 3 / 4 5 / 18 5 / 0

Distance to each surface water type 3 / 4 3 / 9 0 / 4

Evaporation 2 / 4 7 / 21 8 / 1

Seasonality / Season 2 / 4 7 / 9 7 / 0

Historical RRV cases 1 / 4 2 / 24 Not quantified

Non-human reservoir hosts: Grey kangaroos, birds, or

mammals

3 / 3 7 / 8 7 / 3

Elevation / Altitude 2 / 3 2 / 8 2 / 0

� Variables used as offsets or used for adjustment were not included, interactions of the variables were not included.

�� Nsa is the number of articles that have significant exposures; Na is the number of articles that used the exposures;

Nsm is the number of models that have significant exposures; Nm is the number of models that used the exposures.

Numbers are summarised in categories of mosquitoes and non-human reservoir hosts, which indicates one or more

species are applied in each article or each model.

��� The same exposure can be applied several times with different time periods or time-lags in the same model. The

associations of significant exposures and RRV infections were not quantified in some papers.

https://doi.org/10.1371/journal.pntd.0008621.t005
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Given the complex transmission cycle of the virus, exposures and RRV incidence would not

be expected to have a simple linear relationship. Non-linear models such as generalised addi-

tive mixed models and machine learning approaches are more likely to provide a more sophis-

ticated representation of the transmission system than linear regression [87–89]. Analytical

methods that encompass climate, environmental exposures, socio-economic factors and spa-

tio-temporal aspects for forecasting RRV incidence are also worthy of consideration. For

example, Bayesian spatio-temporal modelling by Hu (2010) [45] considered the spatial effects,

temporal trends, climatic exposures and an interaction term for climate exposures. Region-

specific models are ideal, due to spatial variation in transmission [53]. The complex ecology

and the environmental variation in Australia make it challenging to design models with uni-

versal applicability that are useful for public health programs. However, there is benefit in

assessing the performance of these models, as we have done in this review, to determine useful-

ness, even if this means rejecting some approaches. Our work will continue with the develop-

ment of RRV models for Queensland using innovative modelling approaches and then

assessing their predictive performance.

Our systematic review provides an analysis of epidemiological models for predicting RRV

disease using notification data in Australia. Current modelling approaches are valuable in

improving understanding of RRV transmission and in predicting outbreaks. However, model

performance assessments are notably lacking. Nonetheless, the summary of significant expo-

sures provided in our systematic review offers suggestions for future modelling. Predictive

models are definitely useful tools for understanding transmission and predicting outbreaks of

RRV. Better data availability, combined with new modelling approaches and performance

assessment may improve the accuracy of forecasting. More detailed information, like daily or

weekly data on RRV cases and climatic exposures at a smaller spatial scale will improve model

prediction performance [53]. RRV ecology research that provides data on the abundance or

Table 6. Model performance.

Study (author,

year)

Model� Prediction performance

Maeizer, 1999 LORM Positive predictive value = 88%, negative predictive value = 91%.

Woodruff, 2002 LORM Early warning models: accuracies were 64% - 100%. Late warning

models: accuracies were 63% - 100%.

Gatton, 2005 LORM Across regions, accuracies were 88%-98%, sensitivities were 0.53–

0.83, and specificities were 0.94–1.00.

Hu, 2006(1) CART Overall agreement = 76%, Sens/Spec = 0.61/0.80.

Woodruff, 2006 LORM Early warming model: Sens/Spec = 0.90/0.88. Late warming

model: 0.85/0.98.

Pelecanos, 2010 EARS, NBC, HLM, POD and

temporal analysis

True positives for four regions were 40% - 89%, 13% - 75%, 0% -

100%, 19% - 100%.

Jacups, 2011 LORM Sensitivity/Specificity crossover were 75.8% - 88.5%.

Ng, 2014 PDL Across regions, accuracies were 68.7% - 84.7%.

Koolhof, 2017 Hurdle model Across regions, sensitivities were 0–1, specificities were 0.18–1.

Koolhof, 2019 NBRM Pearson’s correlation coefficients of predicted and observed

notifications � 0.6 in 5 locations (5/11, 45.5%).

� LORM = Logistic Regression Model; CART = Classification and Regression Tree; EARS = Early Aberration

Reporting System C1, C2 and C3 algorithms; NBC = Negative Binomial Cusum method; HLM = Historical Limits

Method; POD = Poisson Outbreak Detection method; PDL = Polynomial Distributed Lag model; NBRM = Negative

Binomial Regression Model.

https://doi.org/10.1371/journal.pntd.0008621.t006
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spatio-temporal distribution of the mosquitoes and non-human reservoir hosts is beneficial

for modelling the transmission cycle and forecasting disease incidence.
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