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Biogeographical distribution analysis of
hydrocarbon degrading and biosurfactant
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equatorial biomes have higher abundance
of genes with potential for bioremediation
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Abstract

Background: Bacterial and Archaeal communities have a complex, symbiotic role in crude oil bioremediation. Their
biosurfactants and degradation enzymes have been in the spotlight, mainly due to the awareness of ecosystem
pollution caused by crude oil accidents and their use. Initially, the scientific community studied the role of individual
microbial species by characterizing and optimizing their biosurfactant and oil degradation genes, studying their
individual distribution. However, with the advances in genomics, in particular with the use of New-Generation-
Sequencing and Metagenomics, it is now possible to have a macro view of the complex pathways related to the
symbiotic degradation of hydrocarbons and surfactant production. It is now possible, although more challenging,
to obtain the DNA information of an entire microbial community before automatically characterizing it. By characterizing
and understanding the interconnected role of microorganisms and the role of degradation and biosurfactant genes in
an ecosystem, it becomes possible to develop new biotechnological approaches for bioremediation use. This
paper analyzes 46 different metagenome samples, spanning 20 biomes from different geographies obtained from
different research projects.

Results: A metagenomics bioinformatics pipeline, focused on the biodegradation and biosurfactant-production
pathways, genes and organisms, was applied. Our main results show that: (1) surfactation and degradation are
correlated events, and therefore should be studied together; (2) terrestrial biomes present more degradation
genes, especially cyclic compounds, and less surfactation genes, when compared to water biomes; and (3) latitude has
a significant influence on the diversity of genes involved in biodegradation and biosurfactant production. This suggests
that microbiomes found near the equator are richer in genes that have a role in these processes and thus have a higher
biotechnological potential.
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Conclusion: In this work we have focused on the biogeographical distribution of hydrocarbon degrading and
biosurfactant producing genes. Our principle results can be seen as an important step forward in the application
of bioremediation techniques, by considering the biostimulation, optimization or manipulation of a starting microbial
consortia from the areas with higher degradation and biosurfactant producing genetic diversity.

Keywords: Hydrocarbon degradation, Biosurfactants, Environmental microbiology, Metagenomics, Metagenomics
bioinformatics pipeline, Geographical ecology, Microbiome data analysis

Background
Studies evaluating the biogeographical influence in the di-
versity and/or abundance of alkane degradation and biosur-
factant production genes may guide the creation of new
industrial and biotechnological processes. These include bio-
remediation and biostimulation strategies that are important
for preservation and environment planning [1, 2]. Although
biogeographical studies of hydrocarbon degradation genes
predominate in the literature [2], there is a relative lack of
knowledge about the distribution of bacteria producing bio-
surfactants in the environment [3].
The synergic effects of biosurfactants on solubility,

sorption and biodegradation of hydrophobic organic
contaminants are known as they play an important role
during biodegradation processes [4]. Biosurfactants can
be synthesized by a myriad of microorganisms, which is
influenced by the composition of the medium and envir-
onmental conditions [4]. However, because most studies
of geographic distribution of bacteria oil-degrading
genes in environments rely on the analysis of biomes
that have been contaminated or enriched with crude oil,
the understanding of the origin, abundance and natural
role of degradation and surfactant genes on an ecosys-
tem [3, 5, 6] has been hampered.
International microbial surveys [7–10] are good

examples of large-scale coordinated efforts to explore
soil and water taxonomic and functional diversity. In
general, the generated datasets are available in public
repositories like Sequence Read Archive (SRA). These
datasets, combined with the appropriate computational
pipelines, can reveal correlations between ecology and
geography, based on taxonomic and functional charac-
teristics of the biomes.
Metagenomic analysis software packages, like MG-

RAST [11], MEGAN [12] and KRAKEN [13] include
solutions for taxonomic, functional and comparative
analyses. With these tools, metagenomic datasets are
combined with global databases, which with the con-
stantly growing size of these datasets, produces large
and complex outputs that usually take several days to be
analyzed. Other tools like MetAmos [14] work in a
modular manner, allowing workflow customization and
promise to reduce assembly errors and computational
cost. However, its flexibility and modular construction

makes the computational installation process time and
space consuming.
Moreover, we have reached a state where the massive

size of available data does not allow the use of classic
brute-force bioinformatics approaches. It is thus clear
that the use of domain specific studies and databases is
essential to focus on a specific research scope and
reduce the computational effort. In functional databases
like KEGG, there are examples such as the ontology of
degradation genes grouped with the beta-oxidation in
the lipid metabolism pathway, or the synthesis of biosur-
factants together with antibiotics in the nonribosomal
peptide synthesis pathway, that make research on degrad-
ation, or surfactants individually much more difficult. To
overcome this limitation, domain-specific databases, like
BioSurfDB [15], reorganize the functional ontologies, thus
allowing the focus, on biosurfactants and biodegradation.
This domain-specific database also combines a set of
tailored tools to enable efficient specific metagenomic
analysis. The main goal of this tool is to support the iden-
tification of patterns of taxonomic and functional diversity
of microbial communities and the identification of genes
involved in the degradation of hydrocarbons and biosur-
factants production.
In this research, we analyzed 46 public metagenomes,

from 20 different biomes, water and terrestrial, to
increase our understanding of the biogeographical distri-
bution of biodegradation and biosurfactant-production
genes. Additionally, a metagenomics pipeline that relies
on BioSurfDB, to effectively and efficiently process a
large amount of data, was developed and optimized.

Methods
All the computational processing was performed in a
AMD server running Slackware version 14 in 64bits,
with 64 CPUs and 258GB of RAM.
Metagenome sequences were downloaded from the

SRA at NCBI website, the Metagenomic samples de-
tailed information on SRA project and Run are available
in Suplementary Material (Additional file 1: Table S1).
The Metagenomes Summary table (Additional file 2:
Table S2), summarizes the information regarding both
soil and water metagenomes. Whenever possible, several
samples from each biome were selected. There were a
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total of 71 DNA-seq metagenomes with a heterogeneous
set of possible environmental samples with worldwide rep-
resentation. Sample Geography figure (Additional file 3:
Figure S1) presents a geographic distribution of the meta-
genomes that have been analyzed. The pipeline presented
in Fig. 1 was used to get a macro view of the taxonomic
and functional differences between the metagenomes.

Filtering/Trimming
A filtering/trimming procedure was applied to all the
metagenomes presenting low quality parameters in the
FASTQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc) report. Based on the generated quality
report, the trimming of k-mer contaminated and
heterogeneous GC-content areas was performed using
Fastx toolkit trimmer. Also fastq_quality_filter from the
same toolkit was used to assure a minimum Phred-Score
of 20 for at least 90% of the reads. This procedure revealed
to be an iterative and supervised-dependent process, as it
had to be repeated for some samples until the FASTQC
reports showed acceptable quality. The final number of
sequences was also analyzed and the metagenomes with
less than 100.000 sequences were discarded. It was de-
cided to use a more conservative approach, by using
less samples but with higher quality per sample.

Alignment
After the quality assessment, two parallel alignment steps
were performed: (i) an alignment against BioSurfDB, a
domain-based database, and (ii) an alignment against the
RefSeq, a generic sequence database [16].
At this stage we should stress that the alignment was

carried out using all the reads in the datasets and no
assembling was performed to obtain contigs. This decision
was significant and was based on the following observed
during a preliminary study that had evaluated the impact
of using contigs when abundance analysis is performed:

1. if the goal is to compare gene abundances between
metagenomes, the use of contigs instead of reads
will significantly reduce the abundance of information
leading to inaccurate results;

2. in metagenomics, the organism diversity is so high
that it is very difficult for assemblers to distinguish a
repeated read from a homolog one, thus masking
the real number of organisms present in the datasets;

3. when dealing with a large amount of heterogeneous
sequencing data, average read length, coverage or
quality a consistently high quality assembly step
might not be possible because of the sequencing
technology used.

RefSeq
RefSeq is a non-redundant database integrating sequences
from many sources. The full set of non-redundant protein
sequences (9.5 GBs) was downloaded. The selected
sequence alignment program was LAST [17], an aligner
optimized for repeat-rich datasets that performs much
faster than the traditional BLAST [18]. This algorithm is
very useful in situations where the size of the data ham-
pers the alignment. Each metagenome was aligned to the
RefSeq database using the default parameters for the
LAST aligner. Taxonomic and Functional binning was
performed by MEGAN (version 5) using its respective
RefSeq and KEGG maps databases.

BioSurfDB
BioSurfDB is a curated information system with a focus
on biodegradation and biosurfactant production organ-
isms. It was developed to support research in the bio-
remediation field. This information system includes tools
for the alignment of metagenomes against a number of
genomic or protein sequences. One sample of each group
of metagenomes, in a total of 46 samples, was uploaded to
the BioSurfDB system and the BLASTx tool. Nucleotide
query versus protein database with an E-value of 1e−4 was
used for sequence alignment. Currently, the BioSurfDB
database includes 3956 protein sequences from different
pathways. The list of pathways available in BioSurfDB at
the time of this study is shown in the BioSurfDB Pathways

Fig. 1 Computational pipeline for taxonomic and functional analysis.
The main processing steps are in blue and the software used is
highlighted in green
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table (Additional file 4: Table S3). Following the alignment,
the BioSurfDB system automatically performs taxonomic
and functional binning. However, as BioSurfDB is a do-
main-specific database, its taxonomic prediction might
be biased and therefore, we decided not to use it for
taxonomic classification.

Cluster analysis
Alignment results from all the analyzed metagenomes,
from both BioSurfDB and RefSeq analysis, were uploaded
to MEGAN to compute UPGMA trees and PCoA
(Principal Coordinates Analysis).
The metagenomics computational pipeline used includes

scripts that cross the BLASTx results and the database
tree, creating hit-count tables for taxonomy, proteins and
metabolic pathways. These pathway tables were uploaded
to Genesis [19], where normalization was applied, followed
by the calculation of hierarchical clustering for both meta-
genomes and pathways, using a complete link approach.

Statistics
Results from the BLAST alignment using the BioSurfDB
as database were grouped in a metadata file, according
to the functional clusters obtained in the previous step.
These tables were uploaded to STAMP [20] to perform the
statistical tests between metagenomes and to Graphpad
Prism to test the correlation between the surfactant
production and hydrocarbon degradation.
To calculate the correlation coefficient between the diver-

sity, i.e., the number of different blast alignments mapped,
of biosurfactant and degradation genes in the environment,
a Pearson parametric test was used, with a confidence
interval of 0.95 and a P-value <0.0001.
A preliminary data analysis, automatically performed

by STAMP, decides which is the best statistical test to be
performed. A two-sided Welch’s t-test with a confidence
interval of 0.95 and Benjamini-Hochberg multiple test
correction was performed to identify significant differ-
ences between groups. Two filters were used: a minimal
q-value of 0.05 and a minimum difference of proportions
of 1 (program defaults).

Results
Quality assessment
From the initial dataset of 71 metagenomics samples, 24
samples were discarded by failing the quality assessment,
and 46 samples from the several biomes, shown in Table 1
were used for further analysis. At this stage of the data
analysis, it was not possible to guarantee a uniform
number of samples per biome, because for many of the
projects the samples were not of acceptable quality.

Taxonomy annotation using RefSeq
For the 46 samples, the metagenomes annotations were
obtained by using the alignment program LAST to com-
pare the metagenomic sequences with the RefSeq protein
database. The obtained results were grouped using a hier-
archical clustering algorithm available in MEGAN. Unfor-
tunately, due to the large size of the metagenomes, our
server could not process 8 of these samples in MEGAN.
Therefore, and solely in the hierarchical cluster step, only
39 samples, corresponding to 17 biomes were analyzed.
The results in Fig. 2 show the formation of distinct taxo-
nomic clusters. From the dendrogram analysis we have
considered three different clusters. In cluster 1, it is
possible to see water metagenomes, mainly samples from
the Atlantic and Pacific oceans and grouped into distinct
cluster extensions. The second cluster includes only
terrestrial metagenomes. However, it is possible to verify
the grouping of terrestrial metagenomes by similar
climatic regions. The third cluster is also formed by water
metagenomes, but from tropical regions.
These results validate the samples for consistency, as

the samples from the same metagenomes are in the
same clusters. Based on this clustering result, we de-
cided to use just one sample dataset as a representative
of each metagenome for further analysis. Consequently,
it was possible to optimize the use of computational
resources.
Furthermore, we computed a rarefaction curve in

the MEGAN tool, to assure that the metagenomic
datasets included a significant number of reads to
cover most taxons. As seen in the Rarefaction Curve
figure (Additional file 5: Figure S2), the number of
leaves in taxonomy reaches a plateau in all samples
and this confirms the acceptable sample size of the
data under analysis.

BioSurfDB cluster analysis
Using the 46 samples, a functional clustering was car-
ried out examining the data obtained from a BLAST
compared with the databases included in the BioSurfDB
information system using the Genesis software tool.
Figure 3 shows the resulting hierarchical clusters when
only the degradation genes are considered, see Fig. 3a,
and when considering only the biosurfactants produc-
tion genes, see Fig. 3b. K-means clustering was also
used and revealed clusters like those obtained by the
hierarchical clustering algorithm.
These results highlight two important clusters: (1) a clus-

ter of tropical or near-equatorial terrestrial metagenomes
(represented by the red square in Fig. 3 (a) and (b)) that
show the highest values of reads mapping both for degrad-
ation and biosurfactant genes, showing the similarity of the
microorganism communities; and (2) metagenomes from
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Fig. 2 UPGMA Tree computed by MEGAN with RefSeq data. The distance between the clusters is based on pairwise distance among taxa. The
soil samples are represented with a red dot and the water samples with blue. The red squares show the proposed cluster division

Table 1 Analyzed Biomes, classified by soil or water type, with information about the region, number of reads, average read length,
sequencing technology used and sequencing project SRA code and link

Regions Number of reads Read length (bp) Seq. Tech. SRA Link

Soil

Tundra Siberia & Canada 1.31E + 07 183.5 Illumina SRP047512

Temp. Woodland Australia 1.23E + 07 290 Illumina ERP008551

Arid Grassland Australia 1.92E + 07 299 Illumina ERP008551

Saline Desert India 2.07E + 06 124 Ion SRP041239

Atlantic Forest Brazil 9.62E + 04 380 Illumina SRP004544

Tropical Forest French Guiana 4.04E + 05 384 454 ERP002426

Temp. Coniferous Forest Canada 2.18E + 07 136 Illumina ERP009498

Mangrove Brazil 5.26E + 05 418 454 SRP004544

Caatinga Brazil 2.31E + 05 426 454 SRP004544

Paddy Soil China 2.16E + 06 190 Illumina SRP039858

Temp. Plantation Soil Australia 3.32E + 07 299 Illumina ERP008551

Grassland Soil Oklahoma 9.43E + 06 169 lllumina SRP029969

Terrestrial Subsurface South Africa 1.11E + 07 186 Illumina SRP049336

Water

Sea Water North Pacific 2.67E + 07 187 Illumina ERP003628

Sea Water South Pacific 2.66E + 07 188 Illumina ERP003628

Sea Water Indian Ocean 1.63E + 07 185 Illumina ERP001736

South Atlantic Brazil 2.46E + 07 184 Illumina ERP003708

North Atlantic Iceland 8.39E + 05 460 Illumina ERP009703

North Atlantic Portugal 3.32E + 06 293 Illumina ERP009703

River Plume Amazon 5.23E + 06 286 Illumina SRP039390

Adriatic / Ionian Sea Mediterranean 9.62E + 07 193 Illumina ERP003628

River Estuary Brazil 1.00E + 05 438 454 SRP004544

All data and metadata can be retrieved from the link provided
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cold regions in Russia and Canada (blue square) that
have a low abundance of microorganisms involved in
the degradation of biosurfactant production processes.
A global analysis of the 46 samples resulted in an im-

portant correlation between the diversity of biosurfactant
genes when compared with the existence of degradation
genes in the environment (Fig. 4). The parametric Pearson-
correlation test showed a positive linear correlation, with
an R2 of 0.9, suggesting that both biosurfactant and
biodegradation genetic diversity are related. This and
the observations presented by the BioSurfDB Cluster
Analysis underlined the importance of analyzing both
biosurfactant and biodegradation genes at the same time.

Statistics
According to the results presented in Fig. 5, from the
comparison of the two most distant clusters: Cluster 2,

non-tropical metagenomes and Cluster 1, tropical meta-
genomes, it is possible to identify significant differences
of more than 3% in the abundance of the microorgan-
isms’ genus. The abundance of Mycobacterium is signifi-
cantly higher in Cluster 2, while Streptomyces is more
abundant in Cluster 1.
Regarding the comparison of functional data, see Fig. 5b,

the results demonstrate a significant prevalence of degrad-
ation of aromatic hydrocarbon genes in Cluster 1, composed
of tropical metagenomes. These genes are associated with
xylene and aromatic degradation, the metabolism of xenobi-
otics by cytochrome P450 and alnumycin biosynthesis.
From a different perspective, the soil and water meta-

genomes were also compared (Fig. 6). The Alcanivorax
and Escherichia genera are more abundant in water meta-
genomes, while Streptomyces is more abundant in terres-
trial metagenomes.
Functional comparison of terrestrial and water samples

revealed that some cyclic hydrocarbon degradation path-
ways, namely toluene, chlorocyclohexane, chlorobenzene
and nitrotoluene degradation are significantly more abun-
dant in terrestrial metagenomes, while linear hydrocarbon
degradation pathways, as alkane degradation and cyto-
chrome P450 metabolism are significantly more abundant
in water ecosystems. In addition, streptomycin and polyke-
tides biosynthesis pathways are more representative of the
water biomes, while Alnumycin biosynthesis is more abun-
dant in terrestrial biomes. Methane metabolism is also
significantly higher in terrestrial biomes.

Discussion
In this article we have focused on the biogeographical
distribution of hydrocarbon degrading and biosurfactant
producing genetic diversity, in the environment.

Fig. 3 Hierarchical clusters obtained from the BioSurfDB functional data through Genesis software, for degradation (a) and biosurfactants (b).
Inside the red borders the “equatorial region clusters” can be seen whilst inside the blue borders are the “cold region clusters”. Each column
represents a specific pathway and the colour schema for their relative abundances is green for low and red for a high number of blast hits

Fig. 4 Linear correlation between biosurfactant and degradation
gene diversity
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Taxonomic analysis using RefSeq
Using Refseq databases, the formation of clusters from
water and terrestrial metagenomes are in accordance
with previous studies suggesting that the principle factor
influencing the microbiota is if the substrate is terrestrial
or water [21]. On a second level, metagenomes subjected
to similar abiotic and biotic conditions such as sunlight,
temperature, oxygen supply, osmotic and redox poten-
tial, pH and nutrient supply should have a similar bac-
terial community in their environments [22]. Therefore,
these factors possibly determine the formation of the
clusters observed in this paper.

Functional analysis using BioSurfDB
In the functional analysis performed using BioSurfDB,
we analyzed all the available genes involved with the
hydrocarbon degradation pathways along with the genes
of the biosurfactant synthesis (Cluster 1 in Fig. 3). One
of the main reasons for this analysis was the fact that

biodegradation is favored by the biosurfactant miscibility
effect on hydrophobic material in order to assure its bio-
disponibility for bacteria.
Temperature is another factor that directly affects

hydrocarbon biodegradation [23, 24]. Low temperatures
are an important limitation to hydrocarbon biodegrad-
ation because they generate suboptimal environmental
conditions for biodegradation such as increased viscos-
ity, retarded volatilization of short-chain alkanes that are
<C10, insolubility of long-chain alkanes, limited avail-
ability of water and nutrients; specifically, nitrogen, and
extremes in pH and salinity [25]. In contrast, higher
temperatures increase the rates of hydrocarbon metabol-
ism to a maximum, typically in the range of 30 to 40 °C
[23]. Moreover, in tropical areas there are high inci-
dences of light and high average temperatures that favor
photoautotrophic organisms, such as plants, algae and
cyanobacteria, which can naturally synthesize linear or
aromatic hydrocarbons [26–28]. Therefore, the higher

Fig. 5 Significant taxonomic (above) and functional (below) differences between Cluster 1 (tropical) and Cluster 2 (non-tropical). Computed in STAMP tool

Fig. 6 Significant taxonomic (above) and functional (below) differences between soil and water clusters. Computed in STAMP tool
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occurrence of degrading organisms and producers of
biosurfactants in tropical areas see cluster 1 in Fig. 3) is
probably favored by the documented higher bioavailability
of hydrocarbons in these regions when compared with
cold regions, see cluster 2 in Fig. 3 [4, 29, 30].

Correlation between biosurfactant production and
biodegradation
The strong correlation (0.9) between degradation genes
and genes involved in the biosynthesis of biosurfactants,
observed in this study, reinforces the need for more
research on biogeography distribution of both degrad-
ation and biosurfactants synthesis genes, to increase our
understanding of their integrated action in the environ-
ment. This evidence is an important contribution to this
knowledge, as most of the existing biogeographical studies
on degradation and surfactant gene abundance analyze
those pathways separately [1–3].

Statistical comparisons
Tropical vs. Non-tropical regions
Streptomyces and Mycobacterium are the most repre-
sented genus in tropical areas (Cluster 1 in Fig. 5) and
non-tropical (Cluster 2 in Fig. 5), respectively. Both gen-
era are described as capable of degrading hydrocarbons
and produce biosurfactants [4]. In fact, hydrocarbon-
degrading microorganisms are ubiquitous in several
ecosystems, although they constitute less than 0.1% of
the microbial community. However, in oil-polluted envi-
ronments, they can represent up to 100% of the viable
microorganisms [31]. Therefore, when we analyze the
abundance of these genes in contaminated environments
we are not only observing the natural dynamic or abun-
dance of the bacterial community.
In this study, Mycobacterium, included in the Actinobac-

teria phylum, was the most representative genera in non--
tropical (Cluster 2 in Fig. 5). Similarly, the first
metagenomic analysis of permafrost samples showed Acti-
nobacteria as a dominant phylum in accordance with the
community composition reported from other polar soils
[32]. Biofilm formation has been suggested to optimize
the bioavailability of the substrate necessary for the
growth of Mycobacterium under low concentrations of
anthracene (PAH) [33]. However, biosurfactant produc-
tion was not observed for Mycobacterium [33], which can
explain the low abundance of surfactants in our results.

Soil vs. Water metagenomes
In this study, Escherichia and Alcanivorax genus were
predominant in water metagenomes while Streptomyces
was shown to be abundant in terrestrial metagenomes.
Escherichia belongs to the Enterobacteriaceae family,
which is not expected to show extracorporeal existence.
However, the success of E. coli in the gut ecosystem, an

example of a harsh environment, is thought to reflect
its abilities to occupy different ecological niches. Cor-
roborating this hypothesis, recent studies reporting the
isolation of indigenous E. coli able to degrade hydrocar-
bon from contaminated soils [34, 35] showed the prop-
erty of another bacterium from the Escherichia genus,
the E. fergusonii KLU01, isolated from oil contaminated
soil, as a hydrocarbon degrading, heavy metal tolerant
and a potent producer of biosurfactant using diesel oil
as the sole carbon and energy source [36]. Similarly,
Sarma et al. 2004, isolated an enteric strain Leclercia
adecarboxylata PS4040 from soil samples, collected
from an oily sludge contaminated site that had had a
contamination history of over 100 years, which is geno-
typically different from a clinical strain of L. adecarbox-
ylata and showed that it can degrade other two- and
three-benzene-ring PAH [37].
In water metagenomes, the Alcanivorax hydrocarbono-

clastic genus is predominant when compared to those in
soil. Despite being predominantly marine and described as
almost exclusively linear alkane degrading and being up to
90% present in seawater contaminated with petroleum
[38], it has also been found in some saline terrestrial envi-
ronments contaminated with hydrocarbons [39]. Alkanes
are open-chain hydrocarbons, which may represent up to
50% of the crude oil [40], and may also be synthesized by
cyanobacteria [41], being rapidly degraded in marine envi-
ronments [42]. Furthermore, the functional analysis of this
study shows the predominance of the linear alkanes
degradation pathway (fatty acid degradation) in water
metagenomes and the predominant degradation genes of
P450. This is probably due to the high incidence of the
Alcanivorax genus that has a highly restricted genome of
catabolic enzyme, since this organism uses predominantly
aliphatic hydrocarbons as a source of carbon and
energy and has several well-annotated genes encoding
for AlkB1 and AlkB2 and Cytochrome P450 [43].
Furthermore, Alcanivorax and Streptomyces, are signifi-
cantly abundant in clusters with a prevalence of genes
involved in biosurfactant synthesis and hydrocarbon
degradation which have also already been reported as
biosurfactant producers [43–45].
Moreover, other studies noted the predominance of aro-

matic compound degradation genes in soil [46] when
compared to alkane degradation genes AlkB. We observed
the predominance of aromatic degradation genes in soil
when compared with water metagenomes. This is possibly
justified by the fact that polycyclic aromatic compounds
are released into the atmosphere due to the use of fossil
fuels and are subjected to chemical and physical degrad-
ation. Consequently, soils are the primary repository of
aromatic compounds due to their capacity for retaining
hydrophobic compounds [47]. Streptomyces are also typ-
ical soil bacteria already described as capable of utilizing
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PAH and petroleum as carbon and energy sources
[36, 37]. Our results are in accordance with this, as
they showed significant predominance of Streptomyces
in soil metagenomes.

Computational challenges
One of the main challenges in this research was investi-
gating the possibility of obtaining new knowledge from
the analysis of heterogeneous and publicly available
metagenomics datasets. Advanced analytics, associated
with high-performance computing, has made possible a
more comprehensive analysis of many metagenomes.
However, data integration often revealed deficiencies in
data quality, e.g. inconsistency, redundancy, poor annota-
tions and incompleteness. It was also clear that although
the proposed bioinformatics pipeline could produce very
interesting results, additional types of data should be
considered to improve the knowledge regarding gene
diversity. A more comprehensive analysis of these datasets
should include DNA-Seq and RNA-Seq data to under-
stand the ultimate activity of the identified genes.
One important result of this study is that the metage-

nomics data that is publicly available still needs to be
improved in terms of its quality. Most of the available
datasets are of poor quality, limiting the statistical
significance of further analysis. In this research we have
faced a 34% reduction in the size of the datasets when
compared with the raw data.

Conclusion
From our research It was possible to see that: (1) surfacta-
tion and degradation are correlated events; (2) terrestrial
biomes have more degradation genes, especially cyclic
compounds, and less surfactation genes when compared
to water biomes; and (3) latitude has a significant influ-
ence on the diversity of genes involved in biodegradation
and biosurfactant production, suggesting that micro-
biomes near the equator have richer genes that have a role
in these processes.
This information can be used in the application of bio-

remediation techniques, by taking into considering the
biostimulation, optimization or manipulation of microbial
consortia from these areas.
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