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Producing ‘designer cells’ with specific functions is potentially feasible in the near future. Re-
cent developments, including whole-cell models, genome design algorithms and gene edit-
ing tools, have advanced the possibility of combining biological research and mathematical
modelling to further understand and better design cellular processes. In this review, we will
explore computational and experimental approaches used for metabolic and genome de-
sign. We will highlight the relevance of modelling in this process, and challenges associated
with the generation of quantitative predictions about cell behaviour as a whole: although
many cellular processes are well understood at the subsystem level, it has proved a hugely
complex task to integrate separate components together to model and study an entire cell.
We explore these developments, highlighting where computational design algorithms com-
pensate for missing cellular information and underlining where computational models can
complement and reduce lab experimentation. We will examine issues and illuminate the next
steps for genome engineering.

Introduction
Synthetic biology is the rational design and engineering of cells and cellular systems using genetic manipu-
lations [1,2]. It is divided into three fields [3]: DNA-based device construction (production of functioning
biological components to be inserted into cells), synthetic protocell development (construction of rudi-
mentary representations of living cells), and genome-driven cell engineering. For more about DNA-based
device construction principles see Brophy and Voigt [4], and for an introduction to protocell development
see Dzieciol and Mann [5]. In this review, we will focus on genome-driven cell engineering (see Box 1 for
key terms).

Genome-driven cell engineering encompasses both metabolic engineering (control of cellular produc-
tion processes) and genome engineering (production of minimal genomes, recoded genomes, and cellular
chassis/factories). It encompasses diverse types and scales of genetic modifications and underscores the
genome as the major driver of cellular events [3].

Metabolic engineering attempts to improve titre, accumulation rate, and yield of a specific metabolite,
often from microorganisms in an industrial setting [6]. Genome engineering attempts to: understand
(comprehending biological systems by trying to engineer them [7], e.g. minimal genomes), reduce risks
(restricting bacteria to specific media [8], e.g. recoded genomes), and improve metabolite production (e.g.
‘optimal’ chassis cell development for metabolite production [9]).

Here, we review metabolic engineering and genome engineering from both biological and computa-
tional perspectives. Metabolic engineering, with established in silico design and simulation (hundreds
of models, tens of algorithms) [10,11] and in vivo construction methodologies (hundreds of strains of
several bacterial species) [12], could inform the future of genome engineering, given the development of
whole-cell mathematical models [13], genome design algorithms [14,15], and CRISPR-cas9 gene editing
techniques [16–18]. Finally, we examine issues and the next steps for genome engineering.
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Box 1 Key terms

Genome engineering: Extensive and intentional genetic modification of a replicating system for a
specific purpose [19].

Minimal genomes: Reduced genomes containing only the genetic material essential for survival, with
an appropriately rich medium and no external stresses. No single gene can be removed without loss
of viability [20].

Recoded genomes: Genomes with codon/s that have been freed, substituting codons for synony-
mous codons that encode the same amino acid, so that they can be assigned to new functions
[21,22].

Platform cell/cell factory/chassis (interchangeable): A bacterial species that can efficiently convert
raw materials into a product of interest, through genome engineering or hosting genetic components
[6,23–26].

Multiplex gene editing: Simultaneous introduction of multiple distinct modifications to a genome [27].
Algorithm: Series of steps or rules to attempt to solve a problem, often implemented in a computer.
Model: Mathematical description of a system.
Metabolic flux: Metabolic reaction rate (i.e. turnover of molecules through a metabolic reaction).
Flux vector: A vector where each element corresponds to the metabolic flux of a reaction in the model.
Genome-scale biological models: Category of models containing: metabolic models, transcription

regulatory networks, protein–protein interaction networks, integrated cellular models, and whole-cell
models [11].

Genome-scale metabolic models: Models representing all active reactions in a cell/organism as a
matrix of stoichiometric coefficients of each reaction, and linking reactions with gene products that
catalyse them. Abbreviated to GSMMs or GEMs [28,29].

Whole-cell models: Describe the life cycle of a single cell, modelling individual molecules and inter-
actions, and includes the function of every known gene product [13].

Metabolic engineering in vivo
Metabolic engineering enhances the production of native or introduced metabolites, often in a microbial strain [6].
Genetic edits are used to introduce or modify the required pathway and take control of core metabolism, cellular regu-
lation, and stress responses [6,12]. Applications are wide ranging, including fuels, feed additives, and pharmaceuticals
[12,30], and determine the most appropriate microorganism for production (see Table 1).

Only a small number of microorganisms are ‘industry ready’, such as: Escherichia coli (E. coli), Bacillus subtilis (B.
subtilis), Streptomyces sp., Pseudomonas putida, Corynebacterium glutamicum [6], Saccharomyces cerevisiae
and Aspergillus niger [12]. Requirements for industrial microorganisms are simple nutritional needs, fast and effi-
cient growth, high resistance to extreme physical and chemical conditions, and efficient secretion systems [6]. Also
required are sufficient genetic and metabolic knowledge and a range of genetic tools (e.g. promoters and terminators
with varying expression levels, and well-characterised plasmids for precise manipulations). Due to the development
of CRISPR-cas9 gene editing tools [31,32], a number of novel bacterial species are now usable, including Vibrio na-
triegens (has the shortest known doubling time, at 15 min), and Roseobacter and Halomonas (marine species with
salt tolerance) [6]. Metabolic engineering has recently been reviewed for E. coli [33] and B. subtilis [34].

The metabolic production pathway is constructed, reconstructed, or tweaked in the strain, and can then be iterated
upon to produce improvements in titre, rate, and yield. There are six strategies [34] for improving these: (i) modular
pathway engineering, which divides up the production pathway to produce and combine modules with different ex-
pression levels [35]; (ii) cofactor engineering, in which metabolic flux to the desired products is enhanced through
gene edits that alter non-protein cofactor levels [36]; (iii) scaffold-guided protein engineering, where the spatial lo-
cations of proteins in the cell are modified to increase local concentrations of intermediates [37]; (iv) transporter
engineering, which improves the import of substrates [38] and export of products [39]; (v) dynamic pathway anal-
ysis, which identifies unknown network interactions and promotes or suppresses them to increase levels of product
[40]; and (vi) evolutionary engineering, which mimics natural evolutionary approaches to produce greater amounts
of product [41–43].

The development of an ‘industry ready’ strain takes several years and is costly. Strains for Artemisinin and
1,3-propanediol production took 10 years and $50 million, and 15 years and $130 million, to develop respectively
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Table 1 A selection of microorganisms used for metabolite production

Microorganism Primary feature Applications Product examples Strain examples

Escherichia coli Variety of tools/knowledge Exploratory production,
established industrial strain

1-3-Propanediol,
1-4-Butanediol, butanol, insulin,
limonene, L-threonine, L-serine,
PHAs, propane, succinate

Based on K-12 and B ancestor
strains. Derivatives of MG1655,
W3110, BW25113.
Specific strains: BL21 Rosetta,
DH1, ATCC 31884, DH10B

Bacillus subtilis Efficient secretion systems Protein production Amylases, bacitracin, biotin,
cellulosome, chiral
stereoisomers, cobalamin,
glucanases, guanosine, laccases
monophosphate, riboflavin,
subtilisin, vitamin B6

Protease-defective mutants:
WB600, WB800.
Specific strains: 168, RH33,
BSUL08, 1A1, E8, KU303

Pseudomonas putida Chemical resistance Harsh conditions and toxic
product production

3-methyl-catechol, anthranilate,
cinnamic acid, PHAs, phenol,
o-cresol, styrene, terpenoids,
vanillate

Specific strains: KT2440, EM42,
Gpo1, S12

Cyanobacteria Photosynthetic Light-driven production 1-butanol, 1,3-propanediol,
bisabolene, ethanol, farnesene,
isoprene, isopropanol, PHAs

Specific strains: PCC- 6803,
PCC-7942. PCC-7002

Information collated from Nielsen and Keasling [12] Calero and Nikel [6], Gu et al. [34], and Pontrelli et al. [33].

[12], though sales of metabolic products are expected to reach $6.2 billion by 2020 [44]. The time and cost is due to
complex interactions and regulation in metabolism. Metabolite intermediates and products can cause toxicity and act
as inhibitors of other reactions, or be misrouted or modified by unrelated enzyme reactions, leading to decreasing
titre, rate, and yield [6].

Recently, the availability of accurate, genome scale metabolic models, refined with data captured using omics tech-
nologies, has begun to overcome these limitations and support rounds of in silico design and in vivo construction.
[6,34].

Metabolic engineering in silico
Constraint-based metabolic models
Recent advances have allowed the reconstruction of genome-scale metabolic networks, and subsequently in silico
models which can predict cellular phenotypes. Metabolic models are based on biological knowledge and experimental
data; metabolic kinetic models describe how metabolites vary in time using differential equations, while metabolic
constraint-based models formalise behaviour at steady-state (i.e. metabolite production is equal to metabolite loss)
[45]. There are currently very few genome-scale kinetic models, due to the lack of experimental data for enzyme rate
parameters, but the static nature of constraint-based models means they require significantly fewer parameters to
construct, and so are more widely used. For this reason, we will mainly review constraint-based models.

Genome-scale metabolic models (GSMMs/GEMs) aim to form a solution space of flux values for each reaction in
a metabolic model (see Orth et al. [46] for more details), or can give insight into the behaviour of the system through
network analysis. These models consist of a stoichiometric matrix and a set of biologically feasible constraints for
reactions (Figure 1).

There are currently 113 bacteria, 57 eukaryote and 8 archaea curated GEMs available at UCSD Systems Biology
[47], see Figure 2. Tools for automatically generating GEMs have been developed, first modelSEED [48] and the most
recently CarveMe [49]. CarveMe begins with a universal model consisting of 2383 metabolites and 4383 reactions,
formulated from the BiGG database [50,51]. This can be stripped down to become a metabolic model for any specific
organism, using its annotated genome. There are multiple other automation tools available: AuReMe [52], Merlin
[53], MetaDraft [54], Pathway Tools [55], and Raven [56], which have been recently reviewed [57].

Exploring and analysing the steady-state solution space
There are numerous ways to simulate and analyse metabolic models, depending on the desired information. Elemen-
tary flux modes (EFMs) can be found, based on the stoichiometric matrix—these are the set of non-decomposable
reactions that trace input metabolites to output metabolites which can be used to break a metabolic network into
its component pathways [58]. In the context of metabolic engineering, these can be analysed to choose reactions to
disrupt in order to direct cell resources towards specific metabolites. Alternatively, the fluxes through each reaction
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Figure 1. A toy metabolic network

Si are the substrates and ri are the reaction rates. The network can be represented as a stoichiometric matrix (whose columns and

rows correspond to reactions and metabolites, respectively), and a system of equations.

Figure 2. Creation and timeline of bacterial GEMs over the past two decades

More complex genome-scale computational models (such as metabolic and macromolecular expression (ME) models and the first

whole-cell model), modelling automation tools (ModelSEED and CarveMe) and the ME software frameworks COBRAMe are also

included. 2001 did not see any models created.
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Figure 3. A schematic of the feasible region found through constraint-based modelling

Where vi are fluxes of the system and form a flux polyhedron. The flux values that optimise the objective function can be found by

looking at the extreme edges of the polyhedron, and selecting the point that fits the optimisation criteria.

when the system is at steady state can be found, either through Monte Carlo sampling [59] or, more commonly, by flux
balance analysis (FBA). The solution space of the system at steady-state can be found by combining the constraints
on the system to form a region which can be analysed, as shown in Figure 3.

To perform FBA, first an objective function is defined that can maximise or minimise the flux through any reaction
in the system. When simulating a wild-type unicellular organism in the exponential growth phase, the rate of biomass
production is maximised as a proxy for cellular fitness [60], and used as the objective function. This is formulated
as a ‘pseudoreaction’, meant as the sum of the different biomass components (e.g. amino acids, fatty acids, vitamins,
and cofactors); the flux through which is maximised. Other objective functions can be used for different purposes:
for example, minimisation of ATP production [61], or optimisation of several reactions in parallel.

FBA optimisation generates flux vectors that are used to optimise a defined objective function. The flux vectors
give insight into the dynamics of the system when equilibrium is reached, indicate which pathways the metabolites
are involved in, and can also predict the behaviour of the simulated cell when grown in different culture conditions.

FBA is available in the COBRA (constraint-based reconstruction and analysis) toolbox for Python or MATLAB
numerical computing environments. For an overview of the COBRA ecosystem see Lewis et al. [62].

Alternative methods to optimise the solution space
GEMs can be used for metabolite optimisation by analysing the effects of adding or removing genes. FBA can be
used to directly calculate fluxes in cells with gene knockouts, or FBA wild-type fluxes can be used as input for other
methods to calculate fluxes after gene knockouts: MOMA (minimisation of metabolic adjustment [63]) and ROOM
(regulatory on/off minimisation of metabolic flux [64]). While FBA picks a solution that optimises a given objective
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function, MOMA and ROOM output a solution which minimises the distance between the wild-type and the altered
metabolism fluxes, or the number of changes in flux respectively. Given that a strain after a knockout is not a result
of evolution, the assumption of the FBA objective function mimicking evolution may no longer be relevant and so
both MOMA and ROOM account for the cell behaviour immediately after in vivo knockouts, which can be different
from cell behaviour over a longer time scale [65].

Predicting gene essentiality using GEMs and algorithms
Metabolic models can be used also to predict gene essentiality—gene knockouts can be simulated and then cell sur-
vival assessed based on the end production of biomass (i.e., if the simulation results in zero biomass production, the
cell is presumed to be dead and therefore the knocked-out gene is essential). This has successfully been shown for
E. coli strains such as MG1655, where gene deletions simulated in silico correctly predicted the essentiality of 86%
of single gene deletions [66]. Similar gene essentiality testing has been performed with FBA models of other organ-
isms, including Helicobacter pylori [67], Saccharomyces cerevisiae [68], B. subtilis [69], and C. glutamicum [70],
showing the accuracy of these models.

Further Development of GEMs
GEMs can also act as a springboard for more detailed cellular models that take into account transcription processes.
These extended models, still in early stages of development, have not yet improved the accuracy of standard FBA
models [49]. More recently, macromolecular expression (ME) has been incorporated (ME-models) to integrate tRNA
charging, transcription, and translation reactions with metabolic reactions. The metabolic reactions are coupled with
the macromolecular synthesis reactions of the enzymes that catalyse them, and the synthesis reactions for transcrip-
tion and translation components (e.g. mRNA and proteins) are formed from the metabolic biomass production. The
COBRAMe framework [71] aids generation of ME models, for example an E. coli model (iJL1678b-ME) that is more
efficient than the first E. coli ME model (iOL1650-ME [72]), containing 1/6 variables and solving in 1/36 of the time.

The main limitation to this approach is the lack of well-curated databases: while genome and gene product infor-
mation can be retrieved (e.g. using KEGG [73] and Genbank [74]), no single database contains rate parameters for
transcription and translation, necessary for ME model parameterisation [75].

Metabolic engineering applications: constraint-based modelling and
metabolic network analysis
As discussed above, GEMs can be used to study wild-type cell behaviour, as well as investigate the effects of gene
knockouts. Another application is for metabolic engineering, where algorithms can use GEMs to predict genes within
the model to knockout, amplify or inhibit, in order to produce a pre-defined goal of overproduction of some metabo-
lite.

Metabolic engineering using Elementary Flux Modes (EFMs)
As well as providing scope for analysis of metabolic networks, EFMs can be used to isolate pathways that can be dis-
rupted to force a cell to overproduce a metabolite. As EFMs find minimal pathways through the metabolic network,
the paths from an input substrate to a chosen metabolite and its efficiency (i.e. the stoichiometry and length of the
chain of reactions) can be found. Competing reaction pathways can then be found and removed, thereby producing a
streamlined strain with minimal functionality. Although this process involves significant computational power, espe-
cially for genome-scale models, it has been shown to have success in improving lysine production in C. glutamicum
[76].

Metabolic engineering using nested linear programming-based methods
Whereas FBA, MOMA and ROOM take gene modifications as their input and output a corresponding flux distribu-
tion, other algorithms designed specifically for metabolic engineering take a metabolite (other than biomass) as their
input, and output a set of gene modifications that optimise its production.

For example, OptKnock maximises the production of a specified metabolite and biomass by deleting genes to
re-route metabolites through certain reaction pathways [77]. Genome designs for the overproduction of succinate
and lactate in silico using OptKnock were consistent with laboratory results [77].

Several algorithms for metabolite optimisation use linear programming and couple cell growth and biochemical
production using bilevel mixed-integer linear program (MILP), a nested framework where an outer optimisation
problem (e.g. maximise metabolite) is constrained by another inner optimisation problem (e.g. maximise biomass),
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Figure 4. Bilevel linear programming

The nested structure of the bilevel linear programming algorithms, where the inner problem optimises for a cellular objective function

and the outer problem optimises for some metabolic engineering objective.

Table 2 Metaheuristic algorithms for analysis of metabolic models and metabolic engineering

OptGene (Patil et al., 2005) [86] Uses a genetic algorithm (the outer problem) to iteratively run FBA (the inner problem) with different knockout
combinations to maximise metabolite production

RegKnock (Xu, 2018) [87] Uses a genetic algorithm and a regulatory FBA model [88] for the inner problem, where extra constraints are
placed on the system to model gene regulation events to maximise chosen metabolite production

FOCuS (Mutturi, 2017) [89] Divides the total reactions into smaller groups, which are individually evaluated, as a pre-processing step,
followed by a combination of flower-pollination algorithm [90] and clonal selection algorithm [91] to maximise
metabolite production

GACOFBA (Salleh et al., 2015) [92] Uses a combination of ant colony optimisation and a genetic algorithm as the outer problem to maximise
metabolite production

as shown in Figure 4. This two-stage optimisation problem can be intractable; therefore, OptKnock [77], OptORF
[78], and RobustKnock [79] reduce the bilevel problem to a single level problem using duality theory (i.e. an approach
that enables optimal solutions of two problems to be found by setting their objectives equal to one another).

Alternatively, ReacKnock [80] uses Lagrangian multipliers (a process for non-linear optimisation) to allow specif-
ically equality constraints, which can then reformulate the bilevel problem into a single level problem [81].

EMILiO [82] also uses linear programming, but iteratively: it begins by pruning the metabolic network to select a
subset of the flux constraints that will maximise the metabolite production rate, then it prunes the subsets to minimise
the number of reaction modifications. It will then output knockout, activation or inhibition modifications to produce
the desired metabolite overproduction.

Optimising metabolism using reaction flux regulation
OptReg [83] and OptForce [84] output reactions to be up-regulated or down-regulated to create a desired flux distri-
bution. They first calculate upper and lower bounds for every reaction flux in the system by iteratively changing the
objective function to maximise and minimise each reaction, then compare these ranges to the flux distribution of a
metabolism that overproduces a targeted metabolite. It is possible to identify the reactions that require regulation to
transform their behaviour into that of the system that overproduces the targeted metabolite. OptForce has the addi-
tion of predicting knockouts as well as regulation changes, and also minimises the amount of interventions needed
to achieve metabolite overproduction.

Optimising metabolism using metaheuristic algorithms
Other approaches are based on metaheuristic algorithms [85] (Table 2), which are high-level methods used to search
a solution space. They are particularly powerful when sampling a large solution space using incomplete informa-
tion, and often use optimisation methods that contain a degree of stochasticity. Multiple E. coli strain GEMs contain
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Figure 5. Comparison of metabolic engineering algorithms/frameworks features

Black rectangles indicate feature presence, white rectangles indicate absence.

over 2000 reactions, but the possible combinations for only five gene knockouts is 1015, making the solution space
huge. However, metaheuristic algorithms do not guarantee a globally optimal solution and they require significant
computational power.

Optimising metabolism using non-native reactions and neighbourhood
searching
Additional approaches for algorithmic metabolite optimisation include OptStrain [93], which searches through the
KEGG database to find non-native reactions to add to a GEM to optimise metabolite production.

Genetic Design through Local Search (GDLS) [94] iteratively searches through possible solutions (e.g. knockout
sets) that differ from the starting conditions using a neighbourhood search (a metaheuristic method for searching over
the solution space by exploring solutions in the ‘neighbourhood’ of the current solution), and stores the best solutions
in each iteration. Whereas bilevel linear programming approaches scale exponentially, the runtime for GDLS scales
linearly with the number of knockouts, making it more efficient.

Metabolic models and algorithms summary
Choosing an algorithm to use (Figure 5) has to take into account the experimental methodologies available (i.e.
the number of knockouts which can be performed), and the available computational power (significantly higher for
metaheuristic algorithms). Also, the validity of results has to be critically considered given the accuracy of reaction
databases used by some algorithms (e.g. OptStrain), and possible unrealistic results in simulated flux distributions
when using entirely stoichiometric representations of metabolic pathways.

Genome engineering in vivo
Genome engineering is the production of modified genomes using either a prescriptive genome design or a clear
laboratory-based algorithm to design gene edits, and accurate genetic tools that can be used repeatedly.

Genome engineering builds on historical gene essentiality research (see Figure 6). The sequencing of small bacterial
genomes [95,96] led to comparative genomics, initially between pairs of bacteria [97], then including greater numbers
of bacteria as genome sequencing increased, which led to the development of minimal gene sets [97–99]. However,
as the number of microorganisms increased, the number of shared genes decreased: by the thousandth genome se-
quenced only four genes were shared across all sequenced bacteria [100]. This trend is true even among closely re-
lated species, 20 Mycoplasma strains were found to share only 196 genes [101]. This is due to non-orthologous gene
displacements (NOGDs), independently evolved or diverged proteins that perform the same function but are not
recognisably related [20,97]. This comparative work continues to be built on computationally, analysing the growing
number of genomic datasets for key features that could match NOGDs (see persistent gene concept [102]); neverthe-
less, genome engineering has moved to a species-specific focus.

Single gene knockout studies (implemented by systematic removal, inactivation, transposon mutagenesis, and an-
tisense RNA [103]) are still used to provide an initial assessment of gene essentiality, but further work is required, as
gene essentiality has been shown to depend both on the environmental context (i.e. how cells are grown) [104] and
genomic context (i.e. what other genes present) [105].
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Figure 6. An incomplete history of genome engineering in microorganisms

Consequently, non-essential and essential classifications have been expanded to no essentiality, low essentiality,
high essentiality, and complete essentiality [105], with other important classifications for genome engineering in-
cluding quasi-essential (removal reduces growth rate substantially [106]), synthetic lethal (removal can kill the cell
depending on the presence/absence of related genes [107,108]), and synthetic rescue (multiple genes that are essential
individually, that can be removed together [109,110]). This redefinition of essentiality has underlined the existence
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Table 3 Genome-driven cell engineering examples

Genome Reductions
Microbe Reduction Benefits

JCVI-Syn3.0 (Hutchison et al., 2016) [106] 50% Smallest genome of any autonomously replicating cell. Has a doubling time of ∼180
min, four to five times faster than M. genitalium (12–15 h [20])

E. coli �33a (Iwadate et al., 2011) [113] 39% -

E. coli DGF-298 (Hirokawa et al., 2013) [9] 35% Better growth fitness and cell yield, in a rich medium, than the wild-type strain, and has
a more stable genome

B. subtilis PG10 and PS38 (Reuß et al., 2017) [112] 36% Subsequently used for production purposes, as has traits that are favourable for
producing ‘difficult-to-produce proteins’, overcoming several bottlenecks (secretion
process and unstable product) [122]

E. coli �16 (Hashimoto et al., 2005) [123] 30% -

B. subtilis MGIM (Ara et al., 2007) [124] 24% Little reduction in growth rate and comparable enzyme productivity

E. coli MGF-01 (Mizoguchi et al., 2008) [114] 22% Better growth rate resulting in 1.5-fold cell density and 2.4-fold greater threonine
production compared with the wild-type strain

B. subtilis MBG874 (Morimoto et al., 2008) [125] 20% Extracellular cellulase and protease production were 1.7- and 2.5-fold higher.
Production period was elongated and carbon utilisation improved

E. coli MS56 (Park et al., 2014) [126] 23% Insertion sequence free, making it more genomically stable, predicted to increase
production of recombinant proteins

E. coli MDS43 (Posfai et al., 2006) [127] 15% Showed genome stabilisation and increased electroporation efficiency, comparable
with E. coli DH10B. Subsequently used for production purposes: 83% increase in
L-threonine production, compared with E. coli MG1655 with the same metabolic
engineering [116]

Genome Recoding

Microbe Modifications

32 E. coli strains (Isaacs et al., 2011) [8] Replaced 314 TAG (stop) codons with TAA

E. coli MG1655 (Lajoie et al., 2013) [22] Replaced 321 UAG (stop) codons with UAA

rE. coli-57 (Ostrov et al., 2016) [119] Replaced 62214 instances of seven codons (UAG (stop), AGG and AGA (Arg), AGC and AGU (Ser),
UUG and UUA (Leu))

E. coli C123 (Napolitano et al., 2016) [128] Replaced 123 rare AGA and AGG (Arg) codons from essential genes with 110 CGU conversions and
13 optimised codon substitutions

E. coli MDS42 (Wang et al., 2016) [129] Tested 1468 codon changes using REXER technology and GENESIS method

S. cerevisiae Sc2.0 (Richardson et al., 2017) [130] Replaced TAG (stop) codons with TAA

E. coli Syn61 (Fredens et al., 2019) [131] Replaced 18214 codons, TCG with AGC, TCA with AGT, TAG with TAA, using REXER technology and
GENESIS method

of multiple minimal genomes for individual bacterial species, depending on environmental conditions [26,105], and
the selection of redundant genetic pathways in the cell [14].

Research for understanding (minimal genomes) and production (chassis development) (see Table 3) both involve
large numbers of gene/base pair deletions and use similar genetic tools. However, they differ in intent: no single gene
can be removed without loss of viability in minimal genomes [20], whereas the cellular growth rate is maintained or
promoted in chassis development. Additionally, minimal genome research focuses on protein-coding genes ignoring:
essential promoter regions, tRNAs, small non-coding RNAs [26], regulatory non-coding sequences [103], and the
physical layout of the genome [103,111], which are of interest to chassis development. Finally, bacterial species that do
not have a use industrially are of use in minimal genome research. Mycoplasma genitalium only synthesises DNA,
RNA, and proteins from imported precursors, in order to replicate itself [20], which it does slowly in a stress-free
laboratory environment [106]; useful for understanding but not for industry.

Of the largest scale reductions to date (see Table 3): JCVI-Syn3.0 [106], and B. subtilis PG10 and PS38 [112] were
produced for the purposes of understanding, and E. coli � 33a [113] and E. coli DGF-298 [9] were produced as
chassis cells for production. Regardless of original intent, minimal genome reduction strains can have emergent ben-
eficial properties [114,115] (see Table 3) in addition to the lower metabolic burden and increased metabolic efficiency
produced by reducing gene numbers [116]. Additionally, the reduced internal biochemistry may interfere less with
introduced external pathways [117], making for improved chassis cells. Two minimal genome reduction strains have
been subsequently used for production purposes (see Table 3).

Research for reducing risks (genome recoding) substitutes synonymous codons (encoding the same amino acid)
across an entire genome resulting in: virus resistance (viral replication relies on all 64 codons [21]), prevention of gene
transfer [118], and increased translation efficiency [8]. It also produces a blank codon that can be repurposed for a
novel function not commonly found in nature [8,21,119]. This incorporation of non-standard amino acid (NSAA) is
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Table 4 Features of an optimal chassis for a wide range of applications

Feature Description

Genetically stable Removal of mobile DNA elements (e.g. insertion elements, transposases, phages, integrases, site-specific
recombinases) [132]

Genomically recoded Substitute codons to create blank codons for inclusion of new, non-natural amino acids [8], decreased
likelihood of viral infection [21], and horizontal gene transfer [118]

Genome minimised Removal of competing and unwanted metabolic pathways that divert the resources of the cell away from
desired end products [19], resulting in increased capacity for and reduced impact of cellular burden [133,134],
and greater robustness and energy efficiency [135]. Also reducing transcriptional regulatory interactions
resulting in lower resistance to engineering efforts [132]. Additionally, allows exploitation of larger and optimal
precursor pools [136]

Production efficiency Simple nutritional needs, fast and efficient growth, and efficient secretion systems [6]

Robustness Tolerance for extreme conditions [6] i.e. strength of cell membrane or wall and appropriate coping
mechanisms [26]

Well understood Sufficient knowledge of the organism’s genome and metabolism to produce accurate mathematical models
and modularisation of metabolic pathways [26].

Developed tools A range of established genetic tools for manipulation, including promoters and terminators with varying
expression levels, and well-characterised plasmids, to enable titre, rate, and yield improvements and rapid and
efficient tuning of genetic components [19]

a form of biocontainment, further reducing risk, as the organism is engineered to be dependent upon the presence of
the synthetic NSAA to survive.

Genome recoding is possible due to the development of MAGE (multiplex automated genome engineering) [120]
and CAGE (conjugative assembly genome engineering) [8,121], and subsequently REXER [129]. MAGE cyclically
targets many genetic locations to conduct mismatches, insertions, deletions in a single cell or across a population of
cells, maintaining high efficiency of up to ten targets at a time [120]. This leads to rapid and continuous generation
of genetic diversity for strain and pathway engineering. CAGE is a complementary method, assembling modified
genomic modules from individual cells into a single genome through cell to cell transfer, and has been used in com-
bination with MAGE to systematically recode codons [8,121].

Combining genome engineering research together can give insights into what an ‘optimal’ cellular chassis could
look like (see Table 4) and suggest research pathways going forward.

Genome engineering in silico
Whole-cell models
The first whole-cell model [137] has been produced recently and is an important development for in silico cellular
research, as the first integration of mathematical models to simulate an entire cell’s components. The recency is due
to the immense complexity of individual cells. There are many well-characterised cellular subsystem models, such
as ordinary differential equation (ODE) or network models for protein interactions [138], but combining different
subsystems together has only been feasible in the last decade.

The Mycoplasma genitalium whole-cell model [13] consists of 28 linked submodels that simulate different cellular
processes e.g. metabolism using FBA and cell division using ODEs. The model is implemented in MATLAB and
produces large amounts of output data. Genes can be knocked out of the model, and environmental variables altered,
so the cellular behaviour can be examined in various different situations.

A recent application of the M. genitalium whole-cell model is in silico genome reduction [14]. This is due to the
ease and low cost of simulations (with the appropriate computational infrastructure) compared with in vivo experi-
ments. Although modelling is never 100% accurate, it can help to shed light on unexplained phenomena and guide
the design of lab experiments, producing research more efficiently [139]. However, even with a genome as small as
M. genitalium (525 genes), the number of possible gene knockout combinations at genome-scale is of the order of
ten [127], making simulating every knockout set unattainable due to time and computational constraints.

Algorithms to reduce the solution space can be used. Minesweeper and GAMA (Guess Add Mate Algorithm) [14]
identified up to 165 genes that can be removed from the M. genitalium genome while still producing a dividing in
silico cell. Minesweeper approximates a divide-and-conquer algorithm by knocking out gene sets of varying sizes,
then combining sets that produced a dividing cell, generating knockout sets of greater size (thus a smaller genome).
GAMA begins similarly, knocking out gene sets of varying sizes, followed by a genetic algorithm to combine these
sets iteratively over multiple generations, to make the genome smaller.
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These approaches are similar to the metaheuristic algorithms used for metabolic engineering, they are purely in-
put/output dependent. These algorithms could potentially be applied to any model, regardless of its formulation, so
theoretically scalable from the GEM level to the whole-cell model level. OptGene and GAMA both use a genetic algo-
rithm to achieve their results, except with a different objective function. It is plausible that GAMA could be modified
to maximise a metabolite at the whole-cell level, and equally possible that FOCuS and GACOFBA could be applied
to whole-cell models for similar purposes or for genome minimisation.

Whole-cell models are a vital new approach for genome design. Combined with flexible algorithms (e.g. genetic
algorithms [140] and ant colony optimisation [141]) they can suggest genetic modifications to produce organisms
designed for specific purposes, while producing greater understanding of cellular processes and genetic interactions.

Issues
There is a clear need for greater species-specific understanding of the metabolism and the genome. Even well-studied
organisms (B. subtilis and E. coli) have genes with unknown functions and essentiality; bacterial genomes have on an
average 33% genes of unknown function [142]. Of the genes with known functions, in most cases we only understand
essentiality at the single or double knockout level [143,144]. Current genome reductions have had to identify synthetic
lethal interactions as part of their reduction efforts, rather than being able to design around them. If we had a greater
grasp of gene product interactions, enabling them to be accurately modelled, this could be avoided. We would also
be taking steps towards a proposed end goal of genome design, combining modular components of different bacteria
in a novel cell [24,145].

Another approach for genome-driven cell engineering, constructing bacterial genomes from scratch and insert-
ing them into a host cell, is not currently possible in the majority of bacteria due to economic and technological
constraints. Economically, bacterial genome production is too expensive for most institutes. Producing JCVI-Syn1.0
was estimated to cost ∼$40,000,000 [146]. Technologically, megabase-sized genomes can be constructed in yeast
[147,148], however successful genome transplantation has only been demonstrated in a few Mycoplasmas [149–151].

Development of whole-cell models for genome engineering is time and cost intensive. The M. genitalium
whole-cell model took 10-person years to build [152], resulting in the Karr Lab at Mount Sinai developing automation
tools (Datanator and WC-Lang [153]) along the lines of automated tools for producing GSMMs.

Currently, genome engineering has not combined computational and biological research, due to how recently the
required tools were developed [13–16] and the difficulty of working with M. genitalium in the lab [106]. This is set
to change with the upcoming publication of an E. coli whole-cell model, as well as other whole-cell models [154]. In
combination with compatible genome design algorithms [14] this might allow integrated in silico and in vivo genome
engineering for the first time.

Conclusions
Combining in silico and in vivo research will soon be possible in genome engineering. With the release of increasingly
refined whole-cell models, genome engineers will have an appropriate model, computational design algorithms, and
scalable genetic editing technologies. Following the path of metabolic engineering, better design, and construction
processes in silico and in vivo could be applied to a larger scale problem, replacing large quantities of lab work.

The next steps for genome engineering are: (i) the production and publication of new whole-cell models [154];
(ii) the implementation of computational standards to keep the field cohesive and prevent fragmentation [155]; (iii)
the testing of in silico designs in vivo [14]; (iv) and the establishment of routine procedures for in vivo genome
reductions for species that will soon have whole-cell models.

Summary
• Metabolic engineering has an established process of in silico design and in vivo construction.

• In silico design informing in vivo construction is the future of genome engineering.

• Whole-cell models and algorithms for genome design will widen the field of genome engineering.

• Testing current in silico predictions in vivo, and uniting in silico and in vivo research in E. coli, are
the next steps in genome engineering.
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