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Abstract 

Background:  Acute neurological complications are some of the leading causes of death and disability in the U.S. The 
medical professionals that treat patients in this setting are tasked with deciding where (e.g., home or facility), how, 
and when to discharge these patients. It is important to be able to predict potential patient discharge outcomes as 
early as possible during the patient’s hospital stay and to know what factors influence the development of discharge 
planning. This study carried out two parallel experiments: A multi-class outcome (patient discharge targets of ‘home’, 
‘nursing facility’, ‘rehab’, ‘death’) and binary class outcome (‘home’ vs. ‘non-home’). The goal of this study is to develop 
early predictive models for each experiment exploring which patient characteristics and clinical variables signifi-
cantly influence discharge planning of patients based on the data that are available only within 24 h of their hospital 
admission. 

Method:  Our methodology centers around building and training five different machine learning models followed by 
testing and tuning those models to find the best-suited predictor for each experiment with a dataset of 5,245 adult 
patients with neurological conditions taken from the eICU-CRD database.

Results:  The results of this study show XGBoost to be the most effective model for predicting between four common 
discharge outcomes of ‘home’, ‘nursing facility’, ‘rehab’, and ‘death’, with 71% average c-statistic. The XGBoost model 
was also the best-performer in the binary outcome experiment with a c-statistic of 76%. This article also explores the 
accuracy, reliability, and interpretability of the best performing models in each experiment by identifying and analyz-
ing the features that are most impactful to the predictions.

Conclusions:  The acceptable accuracy and interpretability of the predictive models based on early admission data 
suggests that the models can be used in a suggestive context to help guide healthcare providers in efforts of plan-
ning effective and equitable discharge recommendations.

Highlights 

•	 The study focuses on providing early prediction of discharge locations for patients in acute care settings with 
severe neurological conditions based on data that are available within the 24 h of patient’s hospital admission.
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Background
Acute care is typically an inpatient setting in which 
patients receive active care for severe injury and illness. 
Patients stay in the hospital for 4.8  days in the U.S for 
acute care on average [1]. After being discharged from 
the hospital, if a patient does not go to the ideal location 
for their continued recovery, whether it be due to the 
hospital’s incorrect recommendation or of their own voli-
tion, the patient could experience negative health con-
sequences. These consequences may include falling and 
re-injuring themselves, resulting in a possible re-admis-
sion to the hospital [1]. Typically, medical professionals 
must choose from discharging the patient to their home, 
a rehabilitation facility, a nursing home facility, or vari-
ous other potential destinations. While it is commonly 
known that determinants of health can impact patients in 
unique ways when it comes to prescribed healthcare, it 
is not well understood which determinants most impor-
tantly drive or influence the discharge planning from 
acute-care medical centers for patients under what set-
tings. By identifying modifiable risk factors that drive up 
costs through hospital-acquired conditions, increased 
length of stay (LOS), or post-acute care needs can help 
providers prioritize patient care and aid in discharge 
planning [2].

Patients are not the only ones standing to benefit from 
discharge planning. Inpatient overcrowding is a signifi-
cant issue for hospitals as populations increase and has 
been exacerbated by the 2020 pandemic fallout. Patient 
flow and LOS directly impact the access and quality of 
healthcare, as well as a hospitals financial performance 
[3]. In certain cases, implementing automatic dis-
charge predictions driven by data has shown promis-
ing results to support improvements in patient flow for 
hospitals without adding overhead, such as extra staff-
ing or patient capacity [3]. Despite the apparent need 
and benefits of this type of discharge prediction, there 
is a paucity of research and hard evidence of its use and 
effectiveness [4].

The recent proliferation of machine learning (ML) 
approaches has shown promising results in achieving 
superior prediction ability in various settings and patient 

conditions. The modern machine learning approaches 
can discover hidden patterns for non-linear high-order 
interactions between independent variables and yield 
more stable predictions than traditional statistics [5]. 
Currently, few tools exist that are able to automatically 
and accurately aid in predicting patient discharge [6]. 
Of those few, some have been developed with the aim of 
assisting in the early decision making of clinical teams 
rather than replacing those decisions [6]. In this context, 
this article explores whether various patient character-
istics and clinical variables that are available within the 
24 h of a patient’s hospital admission influence discharge 
location and the adherence to latest discharge recom-
mendations for adults 18 years of age and older who are 
admitted to an acute neurological medical unit with cer-
ebrovascular accident (CVA). This study aims to develop 
reliable ML models that can effectively predict discharge 
planning for adults with acute neurological conditions to 
better assist healthcare providers, as well as patients and 
their families, with improved care and information for 
determining and planning discharge recommendations.

This article considers data from 5,245 de-identified 
patients admitted to acute care ICU settings with severe 
neurological conditions and seeks to determine whether 
selected patient characteristics and clinical variables have 
enough information to potentially characterize whether 
the patients will be discharged to their home, a nursing 
facility, a rehab facility, or expire prior to discharge. The 
analysis of the data utilizes several patient and clinical 
variables including basic demographic features such as 
age, gender, and race; clinical features, such as height, 
weight, temperature; and medical risk determinations, 
such as Glasgow Coma Scores (GCS) and Acute Physi-
ology and Chronic Health Evaluation (APACHE) IV [7] 
patient characteristics.

Focusing on the main goal to better assist healthcare 
providers, as well as patients and their families, with early 
discharge recommendations, the study carries out exper-
iments for two different setups. The first experiment ana-
lyzes the above-mentioned dataset and considers all four 
discharge categories (home, a nursing facility, a rehab 
facility, or death) as outcomes and builds and evaluates 

•	 Two separate experiments were considered with separate discharge outcome classes: a binary outcome (home 
vs. non-home) and a multi-class outcome (home, nursing facility, rehab, death).

•	 Five machine learning models were developed to utilize with each experiment and provide detailed accuracy 
reports (confusion matrices, ROC curves, etc.).

•	 The study also investigates the accuracy, reliability, and interpretability of the best-performing models by identi-
fying and analyzing the features that are most impactful to the predictions.

Keywords:  Machine learning, Discharge planning, Interpretability, Neurological
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models based on that. Based on the fact that during the 
early stages of hospital admission, healthcare providers 
and patient family members may also be interested in 
learning the probability of a patient discharging to ‘home’ 
vs. any other facilities (including funeral home arrange-
ments in case of “death”), this study also carries out a 
second experiment of building and evaluating models for 
the binary outcomes of ‘home’ vs. ‘non-home’. This study 
is an extension of a previous study [8], which exclusively 
considered only the multi-class outcomes.

The results of this study show that the best-performing 
machine learning models are able to predict the discharge 
outcome of a patient based on their early admission data 
with respectable accuracies in both experiments. The 
accuracy, reliability, and interpretability of the best-per-
forming model and its prediction in each experiment 
are also explored by using a specialized tool in identify-
ing and analyzing the features that are most impactful to 
the predictions. These models, the predictions that they 
generate, and the interpretability that they offer could 
therefore be used by clinicians both in a suggestive con-
text (prior to the clinicians making their determination 
on patient discharge location) or a confirmative context 
(after the clinicians have made their determinations) to 
aid healthcare providers and families in planning effec-
tive, timely, and equitable discharge recommendations 
for these adults with complex neurological conditions.

The rest of this article is organized as follows: "Related 
research" section surveys and compares the related 
research, "Dataset and preprocessing" section discusses 
the dataset and preprocessing steps, "Methodology" sec-
tion elaborates the detailed methodology, "Results and 
discussion" section discusses the results, and "Conclu-
sion" section concludes the article.

Related research
A number of previous studies have also explored the use 
of ML in predicting patient discharge locations. Table 1 
surveys and compares all previous studies, as well as this 
current study, concerning predictive discharge dispo-
sitions. As noted in Table  1, the focus of the presented 
research is to predict the discharge locations of patients 
in the acute neurological care setting admitted with CVA 
diagnoses using only patient characteristics that would 
be available at admission (within the first 24  h) and to 
analyze the significance and interpretability of the pre-
dictions, which differentiates this study with the other 
related studies. The determined need and motivation for 
this study is based on the changing healthcare needs and 
risk factors associated with discharge planning where 
an earlier prediction of expected discharge location can 
benefit healthcare providers as well as patients and their 
families.

Dataset and preprocessing
The dataset utilized in this study was extracted from 
MIT’s eICU-Collaborative Research Database (eICU-
CRD). The database was derived from the Philips Health-
care eICU telehealth system to be used in applications 
such as ML algorithms, decision support tools, and 
clinical research [17]. The e-ICU-CRD is populated with 
patient data from a combination of many critical care 
units throughout the continental U.S. who were treated 
as part of the Philips eICU program from 2014–2015. The 
database is a collection of 31 different tables concerning 
patient data, centered around all types of critical care 
patients. This dataset was selected over other relevant 
databases, such as MIMIC-III [18], due to the fact that 
it contained multi-center data rather than single-center, 
contained more recent data, and had an overall higher 
quantity of available data which is typically desirable for 
ML. Patients in the database are connected by a unique 
identifier, uniquepid, used as a foreign key between the 
tables. The datafiles of these tables were browsed to dis-
cover and select the most appropriate patient and clinical 
features for the topic of predicting discharge disposition 
in acute neurological care based on data that are available 
within 24 h of hospital admission. For instance, discharge 
weight, ICU and hospital length of stay, days on venti-
lator, etc. were all promising features that we elected to 
drop since they would be unavailable at or shortly after 
admission.

The final dataset for this study was created by selecting 
and merging 5 such tables (titled apacheApsVar, apache-
PatientResult, apachePredVar, patient, and admis-
siondx [17]) based on the unique patient ID. These five 
tables were selected after combing through the database 
and determining that they contained the relevant early 
admission variables that the study required. To select 
the patients who only underwent treatment for acute 
neurological care, we dropped all records except those 
admitted with a stroke/CVA diagnosis. In the original 
dataset, there were several discharge categories such 
as ‘home’, ‘other’, ‘other external’, ‘other hospital’, ‘skilled 
nursing’, ‘rehab’, ‘death’, and ‘nursing home’. As the goal 
is to use the predictions as an early alert for healthcare 
providers, this study focuses on predicting the four typi-
cal discharge dispositions. For this purpose, the patients 
with discharge categories such as ‘other’, ‘other external’, 
and ‘other hospital’ were discarded from the analysis. 
‘Skilled nursing’ and ‘nursing home’ were merged under 
the ‘nursing facility’ discharge category. As a result, the 
final four discharge classes were ‘home’, ‘nursing facility’, 
‘rehab’, and ‘death’.

As part of the data cleaning, rows with missing dis-
charge outcomes were dropped. Columns missing a rel-
atively small amount of data had their data imputed by 
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taking the median and modes of the data where appli-
cable. For example, missing values in ‘Ethnicity’ column 
were replaced with the mode whereas missing values in 
‘Height’ and ‘Weight’ columns were replaced with the 
median. A new data column was created extracting the 
admission hour from the unit admission time. The target 
outcome discharge locations were extracted and encoded 
via Python Scikit Learn’s LabelEncoder [19], and all cat-
egorical feature columns were encoded using OneHotEn-
coder [20]. The final dataset contained information from 
34 selected feature descriptions of 5,245 acute neurologi-
cal patients along with their discharge locations.

To perform the binary class (‘home’ vs. ‘non-home’) 
experiment that this study additionally carries out, the 
above dataset is further preprocessed to have two dis-
charge outcomes such as ‘home’ vs. ‘non-home’ by 
combining all patients with ‘nursing facility’, ‘rehab’, and 
‘death’ categories to a single ‘non-home’ category.

Table  2 shows a detailed breakdown of these features 
and their distributions based on the four target discharge 
outcomes (in case of multi-class outcome experiment) 
and two target discharge locations (in case of binary-class 
outcome experiment) along with their statistical signifi-
cances represented as p-values. Table 2 shows that while 
the binary outcome data is mostly balanced with ‘home’ 
and ‘non-home’ having roughly equal amount of obser-
vations, the multi-class outcome data breakdowns on 
the other hand exhibits imbalance with ‘home’ being the 
discharge locations for majority observations. The p-val-
ues in Table  2 for the discrete categorical features were 
generated with the chi-squared test, and the p-values for 
the continuous features were generated via the one-way 
ANOVA test. There are several abbreviations used in 
Table 2 and they are defined below:

•	 GCS – Glasgow Coma Score
•	 MI – Myocardia Infarction
•	 ICU – Intensive Care Unit
•	 SICU – Surgical ICU
•	 MICU – Medical ICU
•	 CTICU – Cardio-Thoracic ICU
•	 CSICU – Cardio-Surgical ICU
•	 CCU – Critical Care Unit
•	 LOS – Length of Stay

Methodology
Jupyter Notebooks [21] and Google Cloud Platform [22] 
were the primary development environments. Python 3 
[23] was used as the development language with Scikit 
Learn [24] as the primary library for the ML aspects. 
For both experiments, a range of classification algo-
rithms were utilized and compared to build the models 

and identify the best performer. The five algorithms [25] 
selected were Random Forest (RF), XGBoost (XGBC), 
Support Vector Machine (SVM), K-Nearest Neighbor 
(KNN), and Logistic Regression (LR). These models were 
primarily chosen based upon the occurrence frequency 
and performance observed from the background litera-
ture. For instance, [16] uses KNN, [8, 13, 16] employed 
RF and LR, [8, 10, 12, 16] employed XGB, and [10, 12] 
utilized SVM.

For this article, the performance of the classifiers is 
evaluated using various standard evaluation metrics, 
namely precision, recall, specificity, F1 score, and area 
under the receiver operating characteristic (ROC) curve. 
The curated dataset was divided into training (75%) and 
testing (25%) sets, and those sets were utilized during 
model training and prediction evaluation respectively. 
During the data split, stratified sampling was enforced to 
ensure that a reasonable number of instances were sam-
pled from each discharge category to guarantee that the 
test set was representative of the overall population. The 
five algorithms were optimized via hyperparameter tun-
ing to find the best-performing parameter distribution. 
The optimization approach was the same for both experi-
ments, using a combination of RandomizedSearchCV 
[25], GridSearchCV [25], as well as other iterative 
approaches for determining the best parameter distribu-
tion depending on the algorithm being optimized. Ran-
domizedSearchCV takes a dictionary of parameter 
distributions and tries out a number of cross-validated 
parameter settings that are sampled from those specified 
parameter distributions, while GridSearchCV exhausts 
all possible parameter combinations. While the grid 
search can return a higher-quality solution, the runtime 
can grow exponentially with a large number of param-
eters to test i.e. in the cases of the tree-based algorithms.

For the tree-based algorithms with a high number 
of parameters i.e. RF and XGBoost, the randomized 
search with 1,000 sampled parameter combinations and 
fivefold cross validation was used totaling 5,000 fits to 
sample a range of specified parameters. For the SVM, 
the fivefold cross-validated grid search was used due to 
SVM having a much lower number of possible param-
eters, totaling 500 fits. For KNN, a range of K from 1 to 
50 to find the optimal K-value was sampled. With LR, 
an iterative approach trying each solver over a range of 
values for the regularization parameter was taken. All 
optimization was targeted to improve the F1 score met-
ric accuracy.

For exploring interpretability of the best-perform-
ing model, an explainable AI framework known as 
SHAP (Shapley Additive exPlanations) was utilized. 
SHAP is an approach to explaining output from ML 
models using game theory, or specifically Shapley 
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Table 2  Breakdown of data per binary-class and multi-class discharge outcomes

Feature Missing Binary-Outcome data breakdown Multi-outcome data breakdown

Home Non-Home P-value Home Nursing Rehab Death P-Value

N (%) - 2612 (49.8%) 2633 (50.2%) - 2612 (49.8%) 1125 (21.5%) 890 (16.7%) 618 (11.8%) -

Patient Demographics - - - - - - - - -

  Gender 0 - - 0.009 - - - -  < 0.001

    Female - 1213 (46.4%) 1328 (50.44%) - 1213 (46.4%) 647 (57.5%) 376 (42.3%) 305 (49.4%) -

    Male - 1398 (53.5%) 1305 (49.56%) - 1398 (53.5%) 478 (42.5%) 514 (57.7%) 313 (50.6%) -

    Age (median) [Q1,Q3] 0 65 [54, 76] 73 [63, 83]  < 0.001 65 [54, 76] 76 [66, 85] 68.5 [58, 77] 75 [64, 83]  < 0.001

  Ethnicity 33 - -  < 0.001 - - - -  < 0.001

    Caucasian - 1923 (73.6%) 2111 (80.17%) - 1923 (73.6%) 903 (80.3%) 721 (81%) 487 (78.8%) -

    African American - 302 (11.6%) 248 (9.42%) - 302 (11.6%) 113 (10%) 79 (8.9%) 56 (9%) -

    Hispanic - 180 (6.89%) 72 (2.73%) - 180 (6.89%) 18 (1.6%) 19 (2.13%) 35 (5.66%) -

    Native American - 15 (0.57%) 11 (0.42%) - 15 (0.57%) 5 (0.44%) 12 (1.35%) 0 (0%)

    Asian - 52 (1.99%) 46 (1.75%) - 52 (1.99%) 25 (2.22%) 6 (0.67%) 9 (1.46%) -

    Other/Unknown - 140 (5.36%) 145 (5.51%) - 140 (5.36%) 61 (5.42%) 53 (5.96%) 31 (5.02%) -

Admission Variables - - - - - - - - -

  Unit Type 0 - -  < 0.001 - - - -  < 0.001

    Med-Surg ICU - 1213 (46.4%) 1216 (46.2%) - 1213 (46.4%) 529 (47%) 398 (44.7%) 289 (46.8%) -

    Neuro ICU - 895 (34.3%) 871 (33.08%) - 895 (34.3%) 390 (34.7%) 279 (31.3%) 202 (32.7%) -

    MICU - 133 (5.09%) 168 (6.38%) - 133 (5.09%) 70 (6.22%) 67 (7.53%) 31 (5.02%) -

    SICU - 131 (5.02%) 207 (7.86%) - 131 (5.02%) 69 (6.13% 92 (10.3%) 46 (7.44%) -

    Cardiac ICU - 118 (4.52%) 92 (3.49%) - 118 (4.52%) 34 (3.02%) 35 (3.93%) 23 (3.72%) -

    CCU-CTICU - 69 (2.64%) 52 (1.97%) - 69 (2.64%) 22 (1.96%) 14 (1.57%) 16 (2.59%) -

    CTICU - 44 (1.69%) 15 (0.57%) - 44 (1.69%) 5 (0.44%) 1 (0.11%) 9 (1.46%) -

    CSICU - 9 (0.35%) 12 (0.46%) - 9 (0.35%) 6 (0.53%) 4 (0.45%) 2 (0.32%) -

  Unit Stay Type 0 - - 0.163 - - - - 0.031

    Admit - 2434 (93.2%) 2436 (92.52%) - 2434 (93.2%) 1051 (93.4%) 818 (91.9%) 567 (91.7%) -

    Transfer - 110 (4.21%) 105 (3.99% - 110 (4.21%) 30 (2.67%) 42 (4.72%) 33 (5.34%) -

    Readmit - 68 (2.60%) 92 (3.49%) - 68 (2.60%) 44 (3.91%) 30 (3.37%) 18 (2.91%) -

    Admission Hour (mean)[SD] 0 11.27 [8.08] 11.27 [8.08] 0.443 11.27 [8.08] 11.15 [8.15] 11.76 [8.15] 11.51 [7.64] 0.324

  Comorbidities - - - - - - - - -

    Leukemia 0 10 (0.38%) 13 (0.49%) 0.69 10 (0.38%) 5 (0.44%) 4 (0.45%) 4 (0.65%) 0.848

    AIDS 0 1 (0.04%) 0 (0%) 0.997 1 (0.04%) 0 (0%) 0 (0%) 0 (0%) 0.799

    Hepatic Failure 0 11 (0.42%) 12 (0.46%) 0.985 11 (0.42%) 3 (0.27%) 4 (0.45%) 5 (0.81%) 0.436

    Cirrhosis 0 11 (0.42%) 15 (0.57%) 0.569 11 (0.42%) 6 (0.53%) 3 (0.34%) 6 (0.97%) 0.307

    Immunosuppression 0 30 (1.14%) 28 (1.06%) 0.871 30 (1.14%) 9 (0.80%) 10 (1.12%) 9 (1.46%) 0.636

    Lymphoma 0 9 (0.35%) 10 (0.38%) 0.986 9 (0.35%) 2 (0.18%) 6 (0.67%) 2 (0.32%) 0.32

    Metastatic Cancer 0 22 (0.84%) 26 (0.99%) 0.684 22 (0.84%) 9 (0.80%) 7 (0.79%) 10 (1.62%) 0.278

    Diabetes 0 527 (20.2%) 556 (21.12%) 0.42 527 (20.2%) 251 (22.3%) 180 (20.2%) 125 (20.2%) 0.49

    MI (Last 6 months) 0 11 (0.42%) 14 (0.53%) 0.703 11 (0.42%) 6 (0.53%) 4 (0.45%) 4 (0.65%) 0.887

Clinical Information - - - - - - - - -

  Height (median) [Q1,Q3] 124 169.4 [162,178] 167.94 [160, 178]  < 0.001 169.4 [162,178] 166.36 [160,175] 169.85 [163,178] 168.08 [160,178]  < 0.001

  Weight (median,kg) [Q1,Q3] 213 87.44 [69.4, 99] 84.66 [66, 97]  < 0.001 87.44 [69.4, 99] 81.70 [63,93] 88.58 [71,101] 84.4 [67,95.6]  < 0.001

  Temperature (mean, C) [SD] 0 36.49 [0.54] 36.50 [0.71] 0.292 36.49 [0.54] 36.50 [0.54] 36.53 [0.62] 36.47 [1.01] 0.197

  Respiratory Rate (mean) [SD] 0 23.67 [15.1] 26.34 [14.98]  < 0.001 23.67 [15.1] 26.1 [14.49] 26.05 [15.35] 27.23 [15.30]  < 0.001

  Intubated 0 162 (6.20%) 611 (23.21%)  < 0.001 162 (6.20%) 160 (14.2%) 104 (11.7%) 347 (56.1%)  < 0.001

  Ventilator 0 184 (7.04%) 651 (24.72%)  < 0.001 184 (7.04%) 181 (16.1%) 113 (12.7%) 357 (57.8%)  < 0.001

  Mean BP (mean) [SD] 0 104.70 [38.56] 111.22 [41.92]  < 0.001 104.70 [38.56] 111.68 [41.12] 114.5
[39.36]

105.66
[46.24]

 < 0.001

  Heartrate (mean) [SD] 0 83.99 [29.21] 95.39 [31.06]  < 0.001 83.99 [29.21] 93.79 [29.85] 91.02 [28.99] 104.58 [34.13]  < 0.001

  Dialysis 0 26 (0.99%) 50 (1.90%) 0.008 26 (0.99%) 25 (2.22%) 10 (1.12%) 15 (2.43%) 0.004

  Glucose (mean) [SD] 0 129.23 [63.53] 146.67 [74,84]  < 0.001 129.23 [63.53] 138.11 [67.30] 142.82 [74.96] 167.77 [83.31]  < 0.001
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values [26]. In this case, a feature value is assumed to 
be a ‘player’ in a game where the ‘payout’ of that game 
is the prediction [27]. Shapley values is a method 
from coalitional game theory that tells us how to 
fairly distribute that ‘payout’, i.e. importance, among 
the features used [27]. We used the SHAP sum-
mary_plot method on the best-performing model. 
Summary_plot combines the feature importance and 
feature effects, with each point on the plot being a 
Shapley value for a feature and an instance with the 
features being ordered by importance. The posi-
tion on the y-axis is determined by the feature and 
the position on the x-axis determined by the Shapley 
value [27]. Features on the plot are ordered by their 
importance with the color representing the feature 
value from low to high providing an indication of the 
relationship between a feature’s value and its impact 
on the prediction [27].

Results and discussion
In this section, first the results achieved from the multi-
class model are presented and discussed followed by the 
results gained from the binary-class model.

Multi‑class experiment results
The results for the best-performing hyperparameter opti-
mization of the multi-class outcome models as achieved 
by the methodology outlined in "Methodology" section 
are as follows:

•	 LR – solver = L-BFGS, C = 0.01, penalty = l2
•	 SVM – C = 0.001, gamma = 0.001, kernel = linear
•	 KNN – K = 8, metric = Minkowski Distance
•	 XG – max_depth = 8, n_estimators = 747

•	 RF – max_depth = 10, min_samples_split = 10, n_
estimators – 700

Table 3 below gives the results of the multi-class mod-
els on the test dataset with the four outcome classes as 
rows and the metrics and models as columns and sub-
columns respectively. The most important observation 
is that the top-performing models (XGBC and RF) per-
formed relatively well across all four metrics in distin-
guishing the correct outcome classes. KNN proves to be 
the least effective model due to its relatively poor scoring 
across the board of evaluation metrics.

Confusion matrices are a great tool in gaining further 
insight into these types of multi-classification problems 
and are shown in Fig. 1(a-e). Based on the test dataset, the 
KNN model (Fig. 1.a) predicts the class ‘death’ with a 54% 
recall (i.e., 54% of the time ‘death’ observations are classified 
correctly as ‘death’ by the model), with the remaining three 
classes all having similar recall percentages in the range of 
32%-38%. Figure 1(a) also depicts that the primary errors in 
the KNN model come from the classes of ‘home’, ‘nursing 
facility’, and ‘rehab’. Actual ‘home’ classes are being incor-
rectly predicted as ‘nursing facility’ and ‘rehab’ 22% and 
32% of the time respectively. Similarly, ‘nursing facility’ is 
incorrectly predicted as ‘rehab’ 31% of the time, and ‘rehab’ 
incorrectly as ‘nursing facility’ 27% of the time which signif-
icantly impacts the overall accuracy. These results suggest 
that the KNN is not effective enough in characterizing and 
distinguishing these three discharge classes.

Figure 1.b and c show the confusion matrices for SVM 
and LR, which are somewhat similar to the KNN matrix. 
For SVM, the ‘home’ class is the most accurately pre-
dicted one with a 63% recall, while for the LR model the 
‘death’ class is at the top with 57% recall. The SVM model 

Table 2  (continued)

Feature Missing Binary-Outcome data breakdown Multi-outcome data breakdown

Home Non-Home P-value Home Nursing Rehab Death P-Value

  GCSEyes (mean) [SD] 0 3.71 [0.66] 3.13 [1.11]  < 0.001 3.71 [0.66] 3.3 [0.97] 3.48 [0.83] 2.32 [1.31]  < 0.001

  GCSVerbal (mean) [SD] 0 4.32 [1.25] 3.26 [1.69]  < 0.001 4.32 [1.25] 3.4 [1.60] 3.81 [1.52] 2.21 [1.62]  < 0.001

  GCSMotor (mean) [SD] 0 5.77 [0.78] 5.15 [1.46]  < 0.001 5.77 [0.78] 5.42 [1.09] 5.61 [0.96] 3.99 [1.95]  < 0.001

Apache Variables - - - - - - - - -

  Apache Score (mean) [SD] 727 42.11 [15.5] 55.76 [21.92]  < 0.001 42.11 [15.5] 53.68 [17.87] 46.97 [17.23] 72.19 [25.51]  < 0.001

  Acute Physiology Score(mean)[SD] 727 30.13 [12.87] 40.79 [20.88]  < 0.001 30.13 [12.87] 37.61 [16.52] 33.86 [15.55] 56.56 [26.01]  < 0.001

  Predicted ICU Mortality
(mean) [SD]

727 0.05 [0.06] 0.11 [0.15]  < 0.001 0.05 [0.06] 0.09 [0.11] 0.06 [0.09] 0.23 [0.20]  < 0.001

  Predicted Hospital Mortality
(mean) [SD]

727 0.11 [0.10] 0.21 [0.19]  < 0.001 0.11 [0.10] 0.19 [0.15] 0.14 [0.13] 0.36 [0.24]  < 0.001

  Predicted ICU LOS
(mean) [SD]

727 2.64 [1.02] 3.44[1.70]  < 0.001 2.64 [1.02] 3.14 [1.45] 2.97 [1.32] 4.66 [2.01]  < 0.001

  Predicted Hospital LOS (mean) [SD] 727 8.13 [2.20] 9.19 [2.90]  < 0.001 8.13 [2.20] 8.96 [2.91] 8.63 [2.53] 10.44 [3.01]  < 0.001
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tends to erroneously predict ‘death’ as ‘nursing facility’ 
25% of the time, similar to the LR model. Figure 1.d and 
e give the matrices for the tree-based models, XGBC and 
RF. These models have very similar prediction distribu-
tions with both ‘home’ and ‘death’ classes being predicted 
with relatively better accuracies. However, they both tend 
to heavily predict the actual labels of ‘nursing facility’ and 
‘rehab’ incorrectly as ‘home’ between 41–52% of the time. 
This could be an indicator that these models are overfit-
ting the training data with the majority ‘home’ class.

Furthermore, as evidenced by these confusion matri-
ces, nearly all models struggled with predicting accurately 
between ‘home’, ‘nursing facility’, and ‘rehab’. This could 
likely be remedied by having more insightful patient fea-
tures, such as information regarding their physical ther-
apy sessions while in the care unit or the patient’s Activity 
Measure for Post-Acute Care (AM-PAC) [28] scores that 
are commonly used in this kind of medical setting to give 
the models the necessary ability to distinguish between 
these three relatively similar discharge outcomes. Addi-
tionally, features relating to the patient’s insurance infor-
mation, the patient’s home/family situation and expected 
assistance would also assist the models in distinguishing 
between these three outcomes. However, there were no 
such features available in the utilized dataset.

ROC curves were created by binarizing the output on 
a per-class basis resulting in a curve for each class, per 
model, for the best-performing models (XGBC and RF) 
as represented by Fig. 2 (a, b). The ROC curves indicate 
that the ‘home’ class has a much larger accuracy (AUC 
value or c-statistic), showing that both models had an 
easier time correctly distinguishing the ‘home’ class 
from other classes. Also, both models seemed to have a 
respectable AUC values when considering the number 
of outcome classes. With this graph format, the micro 
and macro averages are also given, where the micro 
average is a weighted average of the curves based on 

class balance and the macro average is the true average 
of the four curves. There is an occurring trend where 
the ‘home’ curve performs well above the averages, the 
death curve performs in between or slightly above the 
averages, and ‘rehab’ and ‘nursing facility’ performing 
under the averages. This reinforces that the models lack 
the information and ability to consistently distinguish 
the ‘nursing facility’ and ‘rehab’ classes.

Figures  3 and 4 below show the feature importance 
for the best-performing RF and XGBC models respec-
tively. Figure  3 uses the permutation_importance [24] 
method of Scikit-Learn to calculate the importance of 
each feature in the RF model’s decision. This method 
uses an algorithm to randomly shuffle features values 
and check its effect on the model accuracy score, while 
the XGBoost method plot_importance [24] using the 
‘weight’ importance type, plots the number of times the 
model splits its decision tree on a feature as depicted in 
Fig.  4. The important features that are common to the 
both graphs are age and glucose. The RF model found 
hospital, ICU mortality predictions, and the GCS 
scores (i.e. eye, verbal, motor) as the significant fea-
tures in predicting the discharge locations, whereas the 
XGBC model preferred mean blood pressure, heartrate, 
and other admission features such as age, height, and 
weight.

Figure 5 shows the SHAP summary plot for the multi-
class experiment with the best-performing XGBC model. 
This gives us additional insights and provides a breakdown 
of feature importance based around the feature’s impact 
on each target class as indicated by the different colors of 
the bar. The results of this graph somewhat coincide with 
the graph of feature importance of the XGBC model in 
Fig. 4, as age, glucose, and heartrate are all in the top five 
most important features in both graphs. The patient’s age 
has the highest impact on the ‘home’ and ‘death’ outcome 
categories and the patient’s glucose readings also have 

Table 3  Evaluation of the multi-class model with test data

Precision Recall
LR SVM KNN XG RF LR SVM KNN XG RF

Home 71% 55% 71% 64% 66% 53% 63% 36% 61% 68%

Death 44% 45% 52% 48% 49% 57% 55% 54% 56% 54%

rehab 23% 27% 42% 27% 36% 30% 27% 38% 31% 46%

Nursng 36% 38% 40% 36% 33% 44% 42% 32% 43% 22%

F1 AUC​
LR SVM KNN XG RF LR SVM KNN XG RF

Home 58% 60% 44% 69% 70% 85% 78% 81% 85% 86%

Death 47% 27% 44% 44% 47% 74% 63% 71% 73% 77%

rehab 29% 20% 27% 21% 23% 61% 57% 56% 60% 61%

Nursng 35% 27% 34% 35% 37% 66% 61% 61% 66% 68%
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a large impact on the ‘death’ class. Another interesting 
observation is that the patient’s day one GCS motor score 
and whether they were intubated have an extremely high 

impact correlation to the ‘death’ category. Furthermore, 
the GCS verbal scores indicate they have a high impact 
on the ‘home’ category. Similarly, average blood pressure 

Fig. 1  Confusion Matrices of All 5 Models Based on Multi-class Test Dataset

Fig. 2  ROC Curves of the XGBC and RF Model Based on Multi-class Test Dataset
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(meanBP) seems to drive ‘rehab’ and admission weight 
seems to impact ‘nursing facility’ categories.

Binary‑class experiment results
The results for the best-performing hyperparameter opti-
mization of the binary outcome models as achieved by 
the methodolody outlined in "Methodology" section are 
as follows:

•	 LR – solver = L-BFGS, C = 0.1, penalty = l2
•	 SVM – C = 0.1, gamma = 0.001, kernel = linear
•	 KNN – K = 9, metric = Minkowski Distance
•	 XG – max_depth = 5, n_estimators = 285

•	 RF – max_depth = 100, min_samples_split = 10, n_
estimators = 100

The results of the binary experiment on the test data-
set is shown below in Table 4. As expected, all models 
exhibited considerable improvements in accuracy while 
predicting ‘home’ vs. ‘non-home’ classes compared to 
accuracies that were achieved during multi-class pre-
diction. The binary class model performs similarly to 
the multi-class model at 70% F1 value when predict-
ing ‘home’ class using XGBC. However, unlike the 
multi-class, the binary model’s performance improved 
significantly when the prediction was made for the 

Fig. 3  Multi-class Feature Importance Graph of the RF Model

Fig. 4  Multi-class Feature Importance Graph of the XGBoost Model
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‘non-home’ class at 70% F1 score. Like the multi-class 
experiment, the top-performing models are once again 
XGBC and RF considering both ‘home’ and ‘non-home’ 
accuracies. Contrary to the multi-class however, the 
KNN model had a more solid performance with an 
AUC of 72% indicating less confusion between the two 
outcome classes as compared to the four classes.

Since in the binary experiment there are only two 
classes, the ROC curve (Fig. 6) is able to be constructed 
as it normally would. The top four models all performed 
very similarly in the ROC analysis, all being within a 
percentage point of one another. The KNN model being 
the exception, with an AUC of 71.5% compared to the 
best-performing XGBC at 75.6%.

The feature importance graphs for RF and XGBC 
(Figs.  7 and 8) for the binary experiment are noticably 
similar to the two from the multi-class experiment. For 
RF, the top features are shuffled a bit, and the intubation 
day 1 and GCS motor score are replaced by heartrate and 
mean blood pressure. For XGBC, temperature is replaced 
by predicted ICU LOS, with the order shuffled to have 
admission weight at the top slightly edging out glucose 
and age.

Figure 9 displays a SHAP summary plot for the features 
of the XGBC model. This graph indicates the top fea-
tures ranked by importance and shows how feature val-
ues impact the model’s output with the colors indicating 
higher feature values for red, and lower values for blue, 
with overlapping values jittered on the y-axis. The x-axis 
is the SHAP value which indicates the impact on the 
model’s output, in this case with positive values trend-
ing toward the ‘non-home’ class, and negative trending 
toward the ‘home’ class.

Some takeaways from this graph are that when a 
patient scores higher values on the GCS for eye and ver-
bal response, the more likely they are to be discharged 
to ‘home’, according to the model. This conclusion is 
reflected in the plot by having most higher (red) GCS eye 
and verbal features values concentrating on the ‘home’ 
side of the classification. Another distinctive conclusion 
is that the higher the patient’s age, the more likely it is for 
a ‘non-home’ discharge. Similarly, lower values for glu-
cose, meanBP, and heartrates indicate a ‘home’ discharge. 
However, it should be noted that these effects simply 
describe the model’s behavior and are not necessarily 
indicative of a causal relationship in the real world [27].

Fig. 5  SHAP Summary Plot Showing Feature Value Impact on XGBoost Multi-class Model Outputs
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Translating Study Results to a Clinical Care Setting
This section aims to clarify the results of this article and 
discuss its practical implications regarding how these 
models and results could be used in a clinical context. 
Figure 10 shows the overall process within the context of 
a healthcare clinic. In most cases, one of the immediate 
concerns of clinicians is to know whether a patient will 
likely be discharged to their home, or other locations 
which typically require advanced planning and arrange-
ments with entities such as insurers, hospitals, and the 
patients/patient families. For this context, this study 
developed a simple binary-class (‘home’, vs. ‘non-home’) 
model that predicts the most likely discharge destination 
for CVA patients using variables and patient character-
istics obtained within the first 24 h of hospital stay. The 

study further developed another model that is able to 
generate early predictions while distinguishing between 
four discharge outcomes (‘home’, ‘death’, ‘rehab’, ‘nursing 
facility’) in cases where more insight is needed for the 
potential discharge destinations. Our study results show 
that, once trained with substantial amount of labeled 
discharge disposition and patient data, both models 
are able to generate predictions after 24  h of a patient’s 
hospital stay with acceptable accuracies. These mod-
els and the predictions could therefore be used by clini-
cians both in a suggestive context (prior to the clinicians 
making their determination on patient discharge loca-
tion) or a confirmative context (after the clinicians have 
made their determinations) to aid healthcare provid-
ers in planning effective, timely, and equitable discharge 

Table 4  Evaluation of the binary class model with binary test data

Precision Recall
LR SVM KNN XG RF LR SVM KNN XG RF

Home 68% 67% 64% 70% 69% 75% 76% 78% 71% 72%

Non-Home 72% 72% 72% 71% 71% 65% 63% 56% 70% 69%

F1 AUC​
LR SVM KNN XG RF LR SVM KNN XG RF

Home 71% 71% 70% 70% 70% 76% 76% 72% 77% 76%

Non-Home 68% 67% 63% 70% 70%

Fig. 6  ROC Curve of the Binary Experiment
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recommendations. There is further advantage of having 
two parallel models generating predictions simultane-
ously based on the same input features. For example, if 
there is any disagreement between the models (i.e., the 
binary model disagreeing with the multi-class outcome 
models, or the model predictions agreeing with each 
other, yet disagreeing with the clinician’s determination), 
then clinicians could consider the patient’s case to be 
reevaluated more closely.

This study also shows that instead of having a black 
box model generating predictions, it is possible to aug-
ment the predictions with visual and interpretable rep-
resentations of patient characteristics driving these 

predictions which will likely to make the results more 
trustworthy and explainable to the clinicians. Feature 
importance plots (Figs. 3, 4, 7, and 8) and SHAP sum-
mary plots (Figs.  5 and 9) can be integrated as part of 
the prediction application tool and potentially can pro-
vide important and interpretable insights about the 
predictions. Additionally, clinicians can further inves-
tigate a particular patient’s data and the correspond-
ing prediction more closely by utilizing SHAP’s force 
plots [27, 28] as shown in Figs.  11 and 12. These plots 
allow for a visualization of the most impactful fea-
tures on a single patient record instance from the data, 
allowing for more transparency and interpretability on 

Fig. 7  Binary Feature Importance Graph of the RF Model 

Fig. 8  Binary Feature Importance Graph of the XGBoost Model
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a case-by-case basis. Force plots show the prediction 
value (bolded number) yielded by the SHAP values of 
each particular instance, which is then transformed to 
either 0 or 1, depending on the model’s prediction based 
on the data. The red force values are the value pushing 

that prediction value closer to 1(non-home), whereas 
the blue force values are the values pushing the predic-
tion toward 0 (home). The instance where the model 
correctly predicts ‘home’ (Fig.  11) indicates that the 
lower values (represented by negative numbers after 

Fig. 9  SHAP Summary Plot for XGBoost Binary-class Model

Fig. 10  Overall process within the context of a clinic
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normalizing the data) of age, predicted hospital mortal-
ity, and the meanBP of the patient were among the top 
3 features used by the model that resulted in the ‘home’ 
prediction for this particular patient. In Fig. 12, we see 
that the higher values of the age, respiratory rate, and 
the mean blood pressure are the primary features driv-
ing the model to correctly predict the discharge out-
come of ‘non-home’.

At such a point, clinicians could look at which vari-
ables and patient characteristics are driving the model’s 
prediction to investigate further should they so choose. 
With this, clinicians achieve a higher level of confidence 
in their ultimate determination backed by the model’s 
data-driven predictions and the ultimate goal of provid-
ing the highest-quality level of care for the patient could 
be achieved. By providing this optimal level of care and 
prediction, common negative consequences such as hos-
pital readmittance/reinjury due to improper discharge 
location and hospital-acquired infections due to patient 
overstay, could potentially be avoided.

Limitations of this study
There are several limitations present in this study that 
should be noted. As stated previously, the predications 
of the models are based upon the first 24 h of available 
data intended to provide a prompt expeditious predic-
tion. Due to the premise of the research focusing on 
patients who were admitted with CVAs, and the fact that 
the study focuses only on patient variables that can be 
acquired within the first day of admission so that phy-
sicians may be informed as early as possible, the total 
amount usable records acquired from the eICU-CRD 
was not very large. Many of the noticed error patterns 

with our model predictions could plausibly be remedied 
simply by having access to more data to feed into them 
belonging to those underrepresented classes.

Additionally, the models only account for past practice 
of the hospitals and healthcare providers for the given 
dates of the dataset which does not necessarily indicate 
current or optimal practice in discharge decision-mak-
ing. On top of that, additional factors such as insurance 
provider input, bed space availability in local facilities, as 
well as preferences of the patients’ families all can play a 
big role in the ultimate destinations of the patients. None 
of these factors are explicitly considered by these models 
or provided by the database used. Therefore as these fac-
tors change, potentially so too would the ultimate patient 
discharge outcomes.

Conclusion
In this study, two parallel experiments were conducted 
that compared the performance of five different ML 
algorithmic approaches for predicting discharge dis-
positions based on patient data available within 24 h of 
hospital admission. Our first experiment built and evalu-
ated models in order to predict four discharge locations 
such as ‘home’, ‘nursing facility’, ‘rehab’, and ‘death’ and 
achieved acceptable accuracies when predicting the 
‘home’ discharge class while exhibiting difficulty in dis-
tinguishing ‘nursing facility’ and ‘rehab’ discharge classes 
from other outcomes. The results show that the model 
could be improved by having additional features such 
as ‘patient mobility’ or ‘past history of physical therapy 
needs’ added to the dataset that could potentially pro-
vide additional insight to firmly characterize patients 
with ‘nursing facility’ and ‘rehab’ discharge needs. The 

Fig. 11  SHAP force plot showing the values and directions of features causing a singular instance correctly predicted as ‘Home’

Fig. 12  SHAP force plot showing the values and directions of features causing a singular instance correctly predicted as ‘Non-Home’
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second experiment focuses on predicting ‘home’ vs. 
‘non-home’ discharge locations. It is observed that 
during the early stage of hospital admission, knowing 
whether a patient could be discharged to ‘home’ rather 
than any other destinations may be of significant inter-
est for both the patient and the facility. The results of 
the second experiment suggest that the best perform-
ing model was able to distinguish between ‘home’ vs. 
‘non-home’ discharge locations with respectable accu-
racy. This study used various hyperparameter tuning 
methods to optimize the models and was able to achieve 
the best results with the RF and XGBC model in both 
experiments. The accuracy results achieved from the 
best model show promising results in predicting acute 
neurological patient discharge destinations based on a 
patient’s basic demographic, clinical, and medical risk 
assessment information acquired within the first 24  h. 
This study concludes that such models could potentially 
be used to better inform medical professionals, as well 
as patient families, to allow them to deliver higher-qual-
ity patient care as well as more appropriate discharge 
planning.

Future Work
In the future, this research will focus on externally vali-
dating these results, as well as implementing deep learn-
ing algorithms to create predictive models with the hope 
of discovering greater accuracies and complex hidden 
patterns which were not yet explored by the traditional 
ML algorithms utilized in this study. To be able to effec-
tively implement deep learning, a much larger dataset 
will be required as the performance and benefits of deep 
learning generally increase relative to the amount of data 
available as input.

Furthermore, additional research on how these mod-
els perform with the exclusion of the ‘death’ outcome will 
be undertaken. While expiry is a common outcome with 
these types of severe neurological diagnoses that also 
often requires its own advanced planning, there may be 
some significance in results obtained by excluding it that 
may allow for clearer interpretation of the ‘non-home’ 
category for clinicians.
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