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Abstract 

Background Diabetes mellitus, a global health concern with severe complications, demands early detection 
and precise staging for effective management. Machine learning approaches, combined with bioinformatics, offer 
promising avenues for enhancing diagnostic accuracy and identifying key biomarkers.

Methods This study employed a multi‑class classification framework to classify patients across four health states: 
healthy, prediabetes, type 2 Diabetes Mellitus (T2DM) without complications, and T2DM with complications. Three 
models were developed using molecular markers, biochemical markers, and a combined model of both. Five machine 
learning classifiers were applied: Random Forest (RF), Extra Tree Classifier, Quadratic Discriminant Analysis, Naïve Bayes, 
and Light Gradient Boosting Machine. To improve the robustness and precision of the classification, Recursive Feature 
Elimination with Cross‑Validation (RFECV) and a fivefold cross‑validation were used. The multi‑class classification 
approach enabled effective discrimination between the four diabetes stages.

Results The top contributing features identified for the combined model through RFECV included three molecular 
markers—miR342, NFKB1, and miR636—and two biochemical markers the albumin‑to‑creatinine ratio and HDLc, 
indicating their strong association with diabetes progression. The Extra Trees Classifier achieved the highest per‑
formance across all models, with an AUC value of 0.9985 (95% CI: [0.994–1.000]). This classifier outperformed other 
models, demonstrating its robustness and applicability for precise diabetes staging.

Conclusion These findings underscore the value of integrating machine learning with molecular and biochemi‑
cal markers for the accurate classification of diabetes stages, supporting a potential shift toward more personalized 
diabetes management.
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Introduction
Diabetes mellitus has always been a major worldwild 
concern, especially in low-income countries like Egypt, 
with continuously rising prevalence trends affecting the 
state’s healthcare and economy [1–3]. According to the 
“International Diabetes Federation” (IDF) latest version 
of the Diabetes Atlas, Egypt occupied the tenth position 
worldwide in 2021 in the number of adults that suffer 
from diabetes, with 10.9 million patients. It is also pro-
jected, according to the IDF Atlas, that Egypt will have 20 
million patients in 2045, occupying ninth rank worldwide 
[4]. Long-standing diabetes can lead to several health 
problems like stroke, retinopathy, diabetic kidney disease 
and peripheral neuropathy [5]. Despite the huge burden 
of these disease-associated complications,early detec-
tion of prediabetics and diabetic patients can ameliorate 
these complications [6]. Highlighting the urgent need to 
find markers to diagnose prediabetics and diabetes in the 
early stages before complications occurs [7].

Recently, a huge number of molecular pathways have 
beenimplicated in the pathogenesis of diabetes mellitus 
type 2 (T2DM) & transition to a prediabetic state, among 
these pathways are insulin resistance, mammalian tar-
get of rapamycin (mTOR) [8] and autophagy [9]. Many 
papers have investigated the role of Insulin-Like Growth 
Factor 1 Receptor (IGF-1R) and the mTOR genes in insu-
lin resistance and mTOR pathway in T2DM [10–12]. 
Also, mTOR [13], nuclear factor NF-kappa-B (NFKB1) 
[14] and RB1-inducible coiled-coil 1 (RB1CC1) [15] are 
autophagy-related genes that affect diabetes pathogen-
esis. Epigenetic modifiers such as miRNAs engage in dis-
eases pathogenesis [16, 17]

Due to highly complicated interactions in disease 
pathogenesis, environmental factors, and endless myster-
ies of the genetic code, there has always been an emerg-
ing need for more advanced technologies to predict 
disease occurrence due to these factors [18]. Machine 
learning (ML) represented one of the best candidates 
in this field of study, as it learns from the natural code 
itself [19]. ML algorithms process big data acquired from 
previous cases, leading to prediction of future diabetic 
patients’ outcomes.

Recent ML models for T2DM stratification prioritize 
clinical parameters or single biomarkers, neglecting the 
interplay between molecular dysregulation (e.g., miR-342, 
NFKB1) and systemic metabolic dysfunction (e.g., albu-
min creatine ratio, HDLc) or focusing narrowly on single 
omics layers (genomic or proteomic) without integrating 
multi-dimensional biological data. This limits their ability 
to capture the heterogeneous pathophysiology underly-
ing diabetes progression and complications. This limits 
their utility in identifying high-risk prediabetes or early 
T2DM subgroups [20, 21]. By integrating molecular and 

biochemical markers, our framework bridges this gap, 
leveraging miRNAs’ early predictive power [22]and bio-
chemical indicators’ systemic relevance [23, 24] to enable 
precision staging. While longitudinal prediction remains 
a future goal, our cross-sectional stratification aligns with 
American Diabetic Association (ADA) recommenda-
tions for biomarker-based risk assessment [25]. Moreo-
ver, ML offers a better understanding of the complex 
genetic pathways leading to improvements in diagnosis, 
risk stratification, monitoring, personalized treatment 
and cost efficiency improvement [26, 27]. Recent stud-
ies have demonstrated the utility of machine learning for 
enhancing diabetes risk prediction through integration 
of genetic profiles and dynamic physiological data [28], 
as well as for predicting diabetes-related complications 
using ML frameworks [29].

We aim to use integrated biochemical, molecular, and 
ML to identify potential biomarker panel for discriminat-
ing prediabetic, non-complicated T2DM, and compli-
cated T2DM patients.

Material and method
Bioinformatic tool to retrieve the marker panel of the study
The biomarkers (mRNAs and miRNAs) were selected 
through a structured, multi-step integrated bioinformat-
ics pipeline and previous literature validation studies 
designed to prioritize relevance to T2DM pathogenesis, 
functional annotations, and prior evidence of differential 
expression (supplementary Table S1).

The Gene Expression Omnibus (GEO) database was 
used to retrieve mRNAs related to T2DM using specific 
keywords like “Type 2 Diabetes Mellitus”, and “Insu-
lin Resistance” (https:// www. ncbi. nlm. nih. gov/ gds/, 
accessed in July 2024). The selection criteria included 
expression profiling tested by array, samples collected 
from both diabetic patients and normal samples, and 
datasets used for analysis consisting of more than five 
samples. Based on these criteria, we selected two data-
sets that contained differentially expressed genes (DEGs) 
(Supplementary Tables S2). The GeneCards data-
base was used for gene ontology as we selected genes 
related to insulin signaling pathways, inflammation and 
immune response, and autophagy that are highly corre-
lated with T2DM pathogenesis (https:// www. genec ards. 
org/, accessed in July 2024) (Fig. S1). The STRING data-
base was used to explore protein-protein Interaction of 
the retrieved genes (https:// string- db. org/, accessed in 
July 2024) (Fig. S2). So HSPA1B, RB1CC1, NFKB1, RET, 
MTOR, IGF1R and DDX58 mRNAs were chosen due to 
their previous differential expression in T2DM [30–33]. 
To identify the epigenetic regulators of these DEGs, we 
first choose miRNAs interacting with the selected DEGs 
using the mirWalk database (http:// mirwa lk. umm. 

https://www.ncbi.nlm.nih.gov/gds/
https://www.genecards.org/
https://www.genecards.org/
https://string-db.org/
http://mirwalk.umm.uni-heidelberg.de/
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uni- heide lberg. de/) (Fig S3). miR-15b-5p, miR-342-5p, 
miR-636, and miR-611 interact with retrieved DEG 
and are represented in Furthermore, A pairwise local 
sequence alignment between miRNA and mRNA was 
performed using the EMBOSS Water online tool (https:// 
www. ebi. ac. uk/ jdisp atcher/ psa/ emboss_ water) [34]. 
The miRNA sequence was retrieved from the miRDB 
database (https:// mirdb. org/). Whereas for the mRNA 
sequence, it was retrieved from the Nucleotide database 
from NCBI (https:// www. ncbi. nlm. nih. gov/ nucco re/). 
As in supplementary table  S3-Identity and similarity 
score for alignment between mRNA and miRNAs. Lastly, 
we chose to focus on the chosen molecular parameters, 
excluding the following: a) Genes/miRNAs with incon-
sistent expression across datasets. b) Biomarkers lacking 
functional annotations in T2DM pathways (e.g., non-
inflammatory genes). Figure 1 demonstrates blue print of 
this research

Subject of study and clinical parameters
This study included four groups with a total 260 sub-
jects. The healthy group included 82 subjects, the 
prediabetic group had 41 subjects, then the with-
out complications group had 87 patients, and finally, 
50 patients were in the “T2DM with complications” 
group. Healthy group data were collected from regu-
lar checkups at hospitals of “Ain Shams University”. 
Healthy controls were selected to be without prior 
diabetic history, with normal glucose levels. For the 
other 3 groups classification, the “American Diabe-
tes Association” classification was adopted. Glucose 
levels were examined for fasting and postprandial, 
along with glycated hemoglobin A1C. [35]. Then the 

diabetic group was subdivided into diabetic with com-
plications and diabetic without complications groups. 
The Faculty of Medicine Research Ethical Commit-
tee FWA000017585/FAMSU P28/2022 at “Ain Shams 
University” approved this study. All participants in this 
study submitted written informed consent before par-
ticipation and sample collection.

Clinicopathological info of the study population 
regarding sex, age, family history, smoking, and BMI 
was reported. Moreover, fasting glucose, postprandial, 
HbA1c, insulin, Homeostasis Model Assessment of Beta-
cell function (HOMA-B) as an indicator of beta cell func-
tion was calculated as “20 × insulin in mIU/ml)/(glucose 
in mmol/L – 3.5” [36], Homeostasis Model Assessment 
of Insulin Resistance (HOMA-IR) as an indicator of insu-
lin resistance was calculated as “Fasting insulin (μU/L) 
x fasting glucose (nmol/L)/22.5” [37], total cholesterol, 
LDLc, HDLc, TGs, Alb/Create/Ratio, creatinine and 
eGFR were examined using a multifunctional biochem-
istry analyzer (AU680, Beckman Coulter Inc., Kraemer 
Blvd., Brea, CA 92821,USA). Collected blood samples 
were processed for sera collection, then sera was kept at 
−80C for further processing.

The “miRNEasy extraction kit” that is produced by 
(Qiagen, Hilden, Germany) was used for purification of 
RNA from samples. Then validation of the quality and 
the purity of purified RNA was done using the “Qubit 
3.0 Fluorimeter” (Invitrogen, Life Technologies, Malay-
sia) and “Qubit TM ds DNA HS and RNA HS Assay Kits” 
(Cat. no. Q32851, Q32852). Finally, purified RNA was 
reverse transcripted by the “miScript II RT kit” by Qia-
gen, and the process was performed in the “Rotor-Gene 
Thermal Cycler” (Thermo Electron Waltham, MA).

Fig. 1 Blueprint of the study design

http://mirwalk.umm.uni-heidelberg.de/
https://www.ebi.ac.uk/jdispatcher/psa/emboss_water
https://www.ebi.ac.uk/jdispatcher/psa/emboss_water
https://mirdb.org/
https://www.ncbi.nlm.nih.gov/nuccore/
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Differential expression assessments for RET, IGF1R, 
mTOR, HSPA1B, DDX, NFKB1, and RB1CC1 mRNAs 
were done using “Quanti-tect SYBR Green Master Mix, 
Cat No. 204143” by Qiagen and Quanti-Tect Primer 
Assays as in Supplementary Table S4 using GAPDH as an 
endogenous control as per the manufacturer’s directions. 
On the other hand, differential expression assessments of 
miR 342, miR636, miR 15b, and miR611 were done using 
the “miScript SYBR Green PCR Kit” GeneGlobeID as in 
Supplementary Table S4 Cat. No. 339306, by Qiagen and 
miScript LNA primer assays, while using SNORD72 as 
an endogenous control as per the manufacturer’s direc-
tions. Each test was done twice. The Leviak method 
where RQ = 2 −∆∆Ct. was adopted for RNA signature rela-
tive expression calculation. This research used “Applied 
Biosystems 7500 v2.3” software to analyze results and to 
calculate samples’CT values. We used suitable standardi-
zation strategies according to MIQE guidelines to figure 
out any error at any stage along experimental processes.

Statistical analysis
We used SPSS version 25 (IBM, Chicago, USA) for statis-
tical analysis. For categorical data expression, the study 
utilized number and precent, while for quantitative medi-
ans and interquartile range were used. The chi-square test 
was used for assessment of the categorical clinicodemo-
graphic. For analysis of continuous data Mann–Whitney 
and Kruskal–Wallis tests were used for comparing two 
or more groups, respectively. The Shapiro–Wilk test was 
employed for variables’ normality. Dunn’s multiple com-
parison tests after Kruskal–Wallis test were employed 
for study group comparison. Ap-value of 0.05 or less was 
used for statistical significance reporting.

Machine learning models
One of the primary objectives of this study was to 
develop a predictive model that can accurately classify 
individuals into four distinct health categories: healthy, 
prediabetes, T2DM without complications, and T2DM 
with complications, using both molecular and biochemi-
cal markers (Table 1). By analyzing and comparing these 
data types, the study aimed to identify key biomarkers 
that can discriminate between these disease stages and 
offer clues about the progression of Type 2 Diabetes Mel-
litus (T2DM) and to enhance the predictive accuracy, 
enabling earlier and more precise categorization of indi-
viduals along the diabetes spectrum. This project sought 
to develop models capable of supporting clinical deci-
sion-making, potentially facilitating more personalized 
monitoring and intervention strategies for individuals at 
different stages of T2DM.

Our dataset included 260 human samples, divided 
into four distinct groups based on health status: healthy 

(82 samples), prediabetes (41 samples), T2DM without 
complications (87 samples), and T2DM with compli-
cations (50 samples). The target variable in this study, 
representing the four distinct stages of diabetes, was 
encoded to allow effective multi-class classification in 
the machine learning framework. Specifically, each 
category was assigned a numerical label: healthy (0), 
prediabetes (1), T2DM without complications (2), and 
T2DM with complications (3). This labeling approach 
did not impose any ordinal relationship between classes 
but rather treated each state as a distinct, categori-
cal class. This encoding allowed the machine learning 
models to distinguish between discrete health condi-
tions, enabling accurate multi-class predictions that 
capture the progression of T2DM across different 
stages.

The dataset was divided into a 70/30 split for training 
and testing, ensuring that a representative sample of 
each category was included in both sets. During model 
development, we created three distinct models to 
assess feature contributions (Table 2): one model using 
only molecular features, a second model using only bio-
chemical features, and a final combined model integrat-
ing all features. We tested five classifiers: Naive Bayes, 
Random Forest (RF) Classifier, Quadratic Discriminant 

Table 1 Molecular, and biochemical features used in ML models

Molecular (11 features) Biochemical (14 features)

1. miR 342
2. miR636
3. miR 15b
4. miR611
5. RET
6. IGF1R
7. mTOR
8. HSPA1B
9. DDX
10. NFKB1
11. RB1CC1

1. Fasting blood Glucose
2. Postprandial blood Glucose
3. HbA1c
4. Insulin
5. HOMA IR
6. Total Cholesterol
7. Systolic blood pressure
8. Diastolic blood pressure
9. LDLc
10. HDLc
11. TGs
12. Albumin Creatinine Ratio
13. Creatinine
14. eGFR

Table 2 The three predictive models were applied to the five 
classifiers

Model Data type

1 Molecular

2 Biochemical

3 Molecular + Biochemi‑
cal
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Analysis, Extra Trees Classifier, and LightGBM. Fig-
ure 2 summarizes the machine learning workflow.

Dataset preprocessing (remove null/outliers)
Data preprocessing is a vital phase, especially for health-
care-related datasets, where missing values and other 
imperfections can compromise data quality [38]. Improv-
ing the dataset’s usability and reliability after collection 
is essential, and data preprocessing fulfills this need. It is 
key to applying machine learning techniques successfully, 
as it ensures accurate outcomes and reliable predictions. 
A core part of preprocessing involves addressing missing 
values, such as excluding entries where values are zero, 
as these are typically unrealistic in healthcare scenarios. 
Removing irrelevant features or instances allows us to 
form a streamlined feature subset, known as feature sub-
set selection, which minimizes data dimensionality and 
boosts computational efficiency. Thus, we analyzed the 
dataset to assess for any missing data; however, upon 
examination, we found that no missing data was present.

Outliers represent unusual patterns in data that fall 
outside the typical range of behavior. Identifying these 
anomalous patterns, or error outliers, is important for 
managing them effectively to improve prediction accu-
racy, particularly in machine learning models. If an out-
lier is deemed an error, it can simply be removed from 
the dataset [39, 40]. A commonly used method to detect 
outliers in a dataset is the interquartile range (IQR). 
The interquartile range (IQR) was calculated for each 

numeric attribute in the dataset, filtering out instances 
that fell outside a defined range to aid in identifying and 
removing outliers. This process helped improve the data-
set’s integrity, reducing the potential influence of outliers 
on subsequent analysis or modeling results.

Correlation analysis
To explore the relationships among different features, we 
performed a correlation analysis. The resulting correla-
tion matrix illustrates the correlation coefficients for each 
variable pair, with values ranging from −1 to 1. Positive 
coefficients signify a direct relationship, while negative 
coefficients reflect an inverse relationship. The strength 
of the relationship is indicated by the magnitude of the 
correlation coefficient, where values near 1 or −1 indicate 
stronger correlations. This analysis provided valuable 
insights into the interactions between biomarkers, guid-
ing our feature selection for subsequent modeling [41].

Normalization
Data normalization is essential for enhancing the per-
formance of machine learning algorithms. It helps miti-
gate bias from features with larger numerical values, 
allowing for fair weighting of each variable during train-
ing. Normalization also improves numerical stability, 
reduces training duration, and enables meaningful com-
parisons among features. Since some continuous attrib-
utes in the dataset span a broad range of values, they can 

Fig. 2 Summary of the machine learning Workflow
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significantly affect classifier performance. To scale con-
tinuous features to a [0,1] range, min–max normalization 
is applied [42].

Synthetic minority over‑sampling technique (SMOTE)
The combined dataset used in this research consists of 
87 samples for T2DM without complications, 82 for 
healthy individuals, 50 for T2DM with complications, 
and 41 for prediabetes, reflecting an imbalance across 
class distributions, which may have led to reduced pre-
dictive performance for the minority class in the model 
[43]. To address this imbalance during training, the Syn-
thetic Minority Oversampling Technique (SMOTE) was 
applied for the training data set, while the testing data 
set remained unaltered [44]. Each class was up sampled 
to 87 samples to ensure balanced representation during 
training. SMOTE was applied within the cross-validation 
folds, ensuring no data leakage and preserving the valid-
ity of model evaluation.

SMOTE was used in two separate phases, each imple-
mented with proper isolation. First, during feature selec-
tion with RFECV using RandomForestClassifier, SMOTE 
was applied within a scikit-learn pipeline inside each 
cross-validation fold, oversampling only the training 
partition in each fold. After selecting the top features, 
we used PyCaret for final prediction and evaluation. 
PyCaret’s internal pipeline applied SMOTE again (via 
fix_imbalance = True) within each cross-validation fold, 
independently and freshly from the previous phase, again 
limited to the training subsets. At no point was SMOTE 
applied before the train/test split, and synthetic sam-
ples never leaked into the testing data. This two-step 
approach ensured unbiased feature selection and model 
evaluation while maintaining class balance throughout.

Feature selection
Feature selection was applied to streamline the data, 
reducing both its complexity and size, which improved 
the model’s learning efficiency. By choosing only the most 
relevant features, this approach accelerated the model 
and enhanced its precision, ultimately boosting predic-
tive performance by minimizing noise.

Recursive feature elimination with cross‑validation (RFECV)
RFECV is a feature selection method that employs a 
machine learning algorithm to identify the most relevant 
features for the detection task. To enhance robustness, 
RFECV integrates recursive feature elimination with 
cross-validation, allowing it to determine the optimal set 
of features that maximizes model performance [45].

RFECV employs a classification model to evaluate each 
feature’s significance, iteratively removing those that 
do not improve classification accuracy. This backward 

selection process begins with the full set of features, 
gradually eliminating less impactful ones, and ultimately 
identifies the most effective subset for classification. In 
this study, RFECV was implemented using a Random-
ForestClassifier model as the estimator, with cross-val-
idation set to fivefold StratifiedKFold. This approach 
enabled us to systematically remove less significant fea-
tures, producing a streamlined and efficient model with 
an optimal balance between simplicity and predictive 
accuracy.

Throughout the recursive elimination process, the 
accuracy metric is assessed at each iteration to evaluate 
the effect of feature removal on model performance. By 
monitoring the changes in accuracy metrics with each 
iteration, we can gain insights into the significance and 
contribution of each feature to the model’s effectiveness. 
The optimal set of features was identified based on the 
classifier that achieved the highest overall accuracy.

Feature importance
Feature importance analysis is critical for identifying the 
most influential factors in diabetes prediction. In this 
study, we employ comprehensive feature importance 
techniques to gain valuable insights. Using the RFalgo-
rithm, we rank features based on their contribution to 
prediction accuracy, providing a clear hierarchy of sig-
nificance. To enhance interpretability, we incorporate 
visualizations such as bar plots, which display the relative 
importance of each feature and facilitate the identifica-
tion of key predictors. These methods collectively allow 
us to better understand the dominant variables impacting 
the model’s performance.

Cross‑validation
K-fold Cross-Validation (k-CV) is a statistical method 
employed to assess and compare the performance of clas-
sifiers in machine learning algorithms. It divides the data-
set into two segments: one for training the model and the 
other for validation or testing. In k-CV, the data is parti-
tioned into k equal (or nearly equal) segments or folds. 
Subsequently, k iterations of training and validation are 
conducted, with each iteration utilizing a different fold 
for validation while the remaining k-1 folds are used for 
training [46, 47].

In our research, we employed fivefold cross-validation 
to assess the effectiveness of our machine learning mod-
els. We utilized stratified Kfold cross-validation to ensure 
that each fold preserved the same class distribution as 
the entire dataset, thereby reducing potential biases and 
increasing the reliability of our findings. The dataset was 
divided into five subsets, each reflecting a representa-
tive distribution of the target variable classes. For every 
fold, we trained the model using four of the subsets and 
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validated it on the remaining one. This procedure was 
repeated five times, ensuring that each subset was uti-
lized for validation once. By implementing stratified 
K-fold cross-validation, we aimed to rigorously evaluate 
our model on unseen data during each fold, thus enhanc-
ing the accuracy and reproducibility of our results.

Measures to mitigate overfitting
To minimize the risk of overfitting and ensure the robust-
ness of our model, we implemented several deliber-
ate strategies throughout the analysis pipeline. These 
included rigorous data cleaning and confirm the absence 
of missing values, also using the MinMax scaler for nor-
malization to harmonize feature scales and prevent any 
single variable from disproportionately influencing the 
model. During feature selection, we employed Recursive 
Feature Elimination with Cross-Validation (RFECV), a 
method that iteratively removes less informative features 
based on cross-validation performance, thereby reducing 
noise and model complexity. SMOTE was applied strictly 
within the training folds during both the feature selection 
and classification phases to address class imbalance with-
out introducing data leakage. Furthermore, we utilized 
repeated cross-validation to evaluate model generaliza-
tion across multiple data splits. Together, these measures 
were systematically applied to enhance the generalizabil-
ity and reliability of our machine learning models.

Machine learning algorithms for classification
Extra tree classifier
The Extra Trees classifier, also known as the"Extremely 
Randomized Trees"classifier, is a bagging-based machine 
learning algorithm that builds multiple decorrelated deci-
sion trees (DT) using random samples from the training 
dataset. In machine learning, both Extra Trees classifiers 
and regressors contribute to constructing a collection of 
trees aimed at reducing overfitting and enhancing clas-
sification accuracy [48].

Random forest
Random Forest (RF) is a classification technique that 
utilizes multiple decision trees, originally proposed by 
Breiman [49]. RF is a versatile machine learning method, 
capable of performing both classification and regres-
sion tasks. It is based on bagging and plays a key role in 
ensemble machine learning approaches [50]. RF has been 
widely applied in biomedical research.

Unlike a single DT algorithm, RF constructs a large 
ensemble of trees. When predicting the class of a new 
sample, each tree in the RF provides its classification 

result, effectively"voting,"and the overall prediction is 
determined by the majority vote across all trees. For 
regression tasks, the RF output is the mean of the predic-
tions from each individual tree [51].

Naïve bayes
Naive Bayes is a machine learning algorithm commonly 
used for classification tasks. It is based on Bayes’theorem 
and assumes that features are conditionally independ-
ent once the class label is known. This assumption allows 
the algorithm to be fast and scalable to high-dimensional 
datasets. For classification applications, especially in text 
categorization and spam filtering, Naive Bayes is a simple 
yet effective method. It is resilient to irrelevant features 
and capable of handling missing data efficiently [52].

Light gradient boosting machine
LightGBM (LGBM) is regarded as a high-performance 
gradient boosting (GB) framework built upon the DT 
algorithm [53]. It is commonly applied in tasks such as 
classification and ranking, utilizing a leaf-wise splitting 
approach for optimal fit. Data improvement techniques 
can evaluate its performance, specifically by calculating 
the variance after partitioning [54].

Quadratic discriminant analysis
Quadratic Discriminant Analysis (QDA) is a more 
advanced version of Linear Discriminant Analysis (LDA) 
that enables non-linear separation of data by accounting 
for class-specific covariances. While both QDA and LDA 
function as classifiers and dimensionality reduction tech-
niques, QDA provides greater flexibility in handling data 
with complex boundaries by allowing each class to have 
its own covariance structure, unlike the linear assump-
tion in LDA [55].

Evaluation
In the evaluation phase of our machine learning project, 
we employed a comprehensive set of metrics to thor-
oughly assess model performance, including accuracy, 
recall, precision, F1-score, Matthew’s correlation coeffi-
cient (MCC), and area under the curve (AUC).

Accuracy measurement serves as a key metric for 
assessing the performance of a classification model. It 
calculates the ratio of correctly classified instances to the 
total instances. This metric is determined by dividing the 
count of accurate predictions by the total number of pre-
dictions generated [56]

Recall, also referred to as sensitivity or the true positive 
rate, indicates the proportion of actual positive instances 
that are accurately identified as positive. It is calculated 
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as the ratio of true positives to the total of true positives 
and false negatives. Recall emphasizes reducing the num-
ber of false negatives.

Precision indicates the proportion of predicted posi-
tive instances that are truly positive. It is determined by 
the ratio of true positives to the total of true positives and 
false positives. Precision aims to reduce the incidence of 
false positives.

The F1-score is a metric that integrates precision and 
recall into a unified score, offering a balanced assessment 
of both. It is especially valuable for imbalanced datasets, 
as it weighs both precision—focused on reducing false 
positives—and recall—focused on reducing false nega-
tives. Together, these metrics provide a comprehensive 
evaluation, enhancing the effectiveness of machine learn-
ing models across different applications [57].

The Matthews correlation coefficient (MCC) is a metric 
commonly applied to evaluate the quality of both binary 
and multiclass classification models. It is frequently used 
in machine learning and bioinformatics, particularly for 
assessing models on imbalanced datasets or when class 
sizes vary significantly. The MCC score ranges from −1 
to + 1, where + 1 signifies a perfect prediction, 0 reflects a 
random prediction, and −1 represents an entirely incor-
rect prediction [58].

the receiver operating characteristic (ROC) curve 
and area under the curve (AUC) metric to evaluate the 
model’s discrimination ability between classes. The AUC, 
along with the ROC curve, helped visualize the trade-
offs between true positive and false positive rates at vari-
ous thresholds, adding depth to our evaluation of model 
performance.

Model Reproducibility and Hyperparameter Settings.
To ensure reproducibility, we consistently used ses-

sion_id = 123 in PyCaret library and random_state = 44 
parameters across all models. This guarantees consistent 
results across multiple runs.

The final combined model was built using 
ExtraTreesClassifier, the best-performing classifier iden-
tified by PyCaret. We used the following default hyperpa-
rameters provided by PyCaret:

• n_estimators = 100
• max_depth = None
• max_features =’sqrt’
• min_samples_split = 2
• min_samples_leaf = 1

Packages
This study’s data processing was conducted in Python 3.7, 
leveraging several Python-based libraries to streamline 
the processing pipeline. The ‘pandas’ package (version 

1.3.5) and ‘NumPy’ (version 1.20.3) were used for effi-
cient data manipulation and analysis. For data visualiza-
tion, ‘Seaborn’ (version 0.13.2) was employed to enhance 
graphical capabilities, while ‘Matplotlib.pyplot’ (ver-
sion 3.5.0) provided a flexible toolkit for creating static, 
interactive, and animated visualizations. Machine learn-
ing tasks were primarily handled by Pycaret and scikit-
learn (version 1.0.2), with ‘MinMaxScaler’ from ‘sklearn.
preprocessing’ used for normalizing data, and ‘SMOTE’ 
from ‘imblearn.over_sampling’ applied to address class 
imbalance.

Results
Demographic and clinical data of four studied groups
This study was conducted among 260 study subjects, 
divided into 137 patients with T2DM, which was subdi-
vided into 87 without complications and 50 with com-
plications, 41 were prediabetics and 82 were healthy 
volunteers. Statistical analysis showed no significant 
differences regarding sex or age among the four studied 
groups (p > 0.05). However, there were significant differ-
ences when comparing smoking.

Family history, postprandial blood glucose, HbA1c, 
insulin, HOMA-IR, BMI, total cholesterol, TGs, and 
eGFR as we go from healthy control to prediabetic to 
complicated T2DM reach the largest levels in compli-
cated T2DM patients (p < 0.05). Also, there were signifi-
cant differences regarding systolic blood pressure, HDLc, 
and creatinine when the transition from prediabetic to 
non-complicated T2DM reached the highest level in 
complicated T2DM. Also, there were significant differ-
ences regarding diastolic Blood pressure and albumin/
creatinine ratio when comparing healthy controls versus 
prediabetics and diabetics versus complicated diabet-
ics. Finally, regarding fasting blood Glucose, HOMA_B, 
and LDLc, there was statistically significant difference 
when comparing healthy controls versus prediabetic and 
prediabetic versus T2DM patients. As for disease dura-
tion, there was a significant statistical difference between 
complicated and non-complicated T2DM groups, as in 
Table 3. (p < 0.05).

The RNAs’ differential expression among the four studied 
groups
The expression levels of the RNA signature (miR-15b-5p/
miR-342-5p/miR-636/miR-611/NFKB1/MTOR/IGF1R/
RET/RB1CC1/HSPA1B/DDX58 mRNAs) were assessed 
in serum samples of the four study groups.

On analysis of the results, during comparing pre-
diabetic versus healthy control there was a significant 
increase in miR-15b-5p/miR-342-5p/miR-611/NFKB1/
MTOR/IGF1R/RET/HSPA1B mRNAs levels. Also when 
prediabetic versus non complicated T2DM miR-15b-5p/
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miR-342-5p,/miR611/miR636/NFKB1/IGF1R/RET/
HSPA1B and DDX mRNA levels were significantly 
increased however RB1CC1 mRNA was significantly 
decreased. Also, when comparing complicated ver-
sus non-complicated T2DM groups miR-15b-5p/miR-
342-5p/miR 611, miRNA 636/NFKB1/RET/HSPA1B and 
DDX mRNA levels were significantly increased; however, 
RB1CC1 mRNA was significantly declined, as in Fig.  3 
and Table 4.

Correlation matrix analysis
The correlation matrix shown in Fig.  4 illustrates the 
degree of correlation between pairs of features through-
out the dataset, providing valuable insights into their 
interrelationships. Each cell within the matrix represents 
the calculated correlation coefficient for the respective 
feature pairs.

Feature selection using RFECV‑based random forest 
for T2DM prediction
One of the aims of this study is to utilize advanced 
machine learning methodologies to effectively predict 
the stages of T2DM. By examining biochemical and 

Table 3 Demographic and clinical data of four studied groups

HbA1c: “Hemoglobin A1c”, HOMA-IR: “Homeostatic Model Assessment for Insulin Resistance”, HOMA-B: “Homeostatic Model Assessment for Beta-cell Function”, BMI: 
“Body Mass Index”, HDLc: “High-Density Lipoprotein Cholesterol”, LDLc: “Low-Density Lipoprotein Cholesterol”, TGs: “triglycerides”, Alb/Creat/Ratio: “Albumin-creatinine 
ratio”, eGFR: “Estimated glomerular filtration rate”, Continuous data are presented as medians and interquartile range while categorical data are expressed as number 
& percentages. The Kruskal–Wallis test was used, when it was significated, it followed by Dunn’s test for multiple comparison with reported significance (a, b, c, d, e, 
& f ), where each letter denotes following comparisons a: Healthy versus prediabetes, b: Healthy versus T2DM without complications, c: Healthy versus T2DM with 
complications, d: prediabetes versus T2DM without complications, e: prediabetes versus T2DM with complications, f: T2DM without complications versus T2DM with 
complications. ҂Mann Whitney U test used for compering two groups only. The chi-square test is used to examine categorical variables

Healthy n = 82 Prediabetes n = 41 T2DM without 
complications n = 87

T2DM with 
complications n = 50

p‑value

Age 54 (48–60) 52 (49–58) 53 (48–60) 53 (50–57) 0.732

Sex 0.732

 Male 35 (42.7%) 18 (43.9%) 34 (39.1%) 17 (34%)

 Female 47 (57.3%) 23 (56.1%) 53 (60.9%) 33 (66%)

Smoking  < 0.001

 X smoker 1 (1.2%) 4 (9.8%) 6 (6.9%) 0 (0%)

 Negative 27 (32.9%) 9 (22%) 39 (44.8%) 50 (100%)

 Positive 54 (65.9%) 28 (68.3%) 42 (48.3%) 0 (0%)

Family history  < 0.001

 Positive 37 (45.1%) 33(80.5%) 67 (77%) 30 (60%)

 Negative 45 (54.9%) 8(19.5%) 20 (23%) 20 (40%)

Duration of diabetes 8 (5–14) 96 (80.5–119)  < 0.001҂
Fasting blood glucose 77 (70–84.3) 120 (110–126)a 161 (130–206)b,d 191 (128–244)c,e  < 0.001

Postprandial
blood glucose

120 (100–133) 150 (127–169)a 240 (181–320)b,d 371 (261–409)c,e,f  < 0.001

HbA1c 5.1 (5–5.6) 6.3 (6–6.4)a 9 (8–11)b,d 10.8 (9–12)c,e,f  < 0.001

Insulin 6 (4–7) 9.4 (8–10)a 16 (13–18)b,d 18 (15–21)c,e,f  < 0.001

HOMA_IR 0.601 (0.355–0.906) 2.56 (1.52–3.44)a 6.83 (5.2–8.61)b,d 10.6 (6.96–12.6)c,e,f  < 0.001

HOMA_B 140 (120–160) 100 (92–102)a 52 (45.5–66)b,d 52 (44–60)c,e  < 0.001

Systolic blood pressure 130 (120–140) 130 (120–140) 166 (120–188)b,d 177 (166–190)c,e,f  < 0.001

Diastolic blood pressure 80 (70–80) 110 (90–120)a 109 (99.5–118)b 128 (115–140)c,e,f  < 0.001

BMI 25 (23–29.8) 30 (29–33.5)a 35 (30–39)b,d 38 (33.4–40)c,e,f  < 0.001

Total Cholesterol 110 (90–132) 234 (226–270)a 315 (270–343)b,d 366 (320–400)c,e,f  < 0.001

LDLc 75 (66–90) 180 (166–190)a 230 (210–266)b,d 217 (190–266)c,e  < 0.001

HDLc 65 (60–69.8) 44 (39–49)a 29 (25–33.5)b,d 22 (19–25.8)c,e,f  < 0.001

TGs 109 (99–142) 75 (65–200) 200 (114–265)b,d 290 (210–324)c,e,f  < 0.001

Alb/Creat/Ratio 14 (11–20) 22 (20–28)a 25 (21.5–28)b 266 (233–289)c,e,f  < 0.001

Creatinine 0.8 (0.75–0.86) 0.8 (0.75–0.8) 1.1 (0.8–1.96)b,d 2 (1.7–2.58)c,e,f  < 0.001

eGFR 100 (95–107) 94 (90–97)a 44 (37.5–56)b,d 37.5 (32.3–40)c,e,f  < 0.001
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Fig. 3 RNA panel differential expression across the four studied groups
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molecular markers, we strive to uncover significant bio-
markers related to the disease.

In our analysis, we applied Recursive Feature Elimina-
tion with Cross-Validation (RFECV) to identify the most 
influential predictors for diabetes classification. The out-
comes of the RFECV analysis and the accuracy metrics 
on the test set for each feature group are illustrated in 
Fig. 5.

RFECV successfully selected 5 out of 11 features for the 
molecular model, all 14 features from the biochemical 
model, and 7 out of 25 features for the combined model, 
while maintaining comparable levels of prediction accu-
racy. The selected and unselected features, are shown in.

(Table 5). These results highlight the importance of bio-
markers chosen in predicting the progression of T2DM.

Feature importance using RFECV‑based random forest 
for T2DM prediction
To evaluate how individual features contribute to the 
model’s performance, the.

significance of each feature was determined by examin-
ing its influence on the model’s decision-making. Figure 6 
showcases the top important features for the combined 
model, as identified by the classifier. This analysis is cru-
cial for pinpointing the most impactful features, assist-
ing in informed feature selection, and further model 
enhancement.

The feature importance for the combined model identi-
fied the 5 most contributing features for predicting diabe-
tes stages, comprising three molecular markers—miR342, 

NFKB1, and miR636—and two biochemical markers, the 
albumin-to-creatinine ratio and HDLc.

Model prediction
The initial prediction results with cross-validation on 
the training set highlighted the top-performing classifi-
ers for each feature group. Table 6 presents the accuracy 
achieved by each classifier across these groups. Remark-
ably, the Extra Trees Classifier emerged as the leading 
performer for all models, followed closely by the RFClas-
sifier, which yielded comparable results.

Subsequently, the chosen classifiers were applied on 
the testing set to assess their predictive performance on 
unseen data. This approach allowed us to apply only the 
most effective classifiers for each feature group, thereby 
improving the robustness and reliability of our predictive 
models. Table  7 provides a summary of the evaluation 
metrics for the testing set. Per class metrics for the com-
bined model have been also reported (Table 8).

In the evaluation results, the Extra Trees classifier dem-
onstrated impressive performance across all models. The 
molecular model achieved an accuracy of 93.59% with an 
AUC of 0.9956 (95% CI: [0.988–1.000]), recall of 93.59%, 
and precision of 94.28%. The biochemical model reached 
an accuracy of 96.15% and an AUC of 0.9970 (95% CI 
[0.993–1.000]), with recall of 96.15% and precision of 
96.55%. Notably, the combined model of molecular and 
biochemical features exhibited the highest accuracy at 
97.44% and an AUC of 0.9989 (95% CI [0.994–1.000]) 
along with recall and precision both at 97.44%,,indicat-
ing the effectiveness of integrating both feature types 

Table 4 The RNA panel differential expression among the four studied groups

RET: “Proto-oncogene receptor tyrosine kinase”, IGF1R: “Insulin-like Growth Factor 1Receptor”, mTOR: “mammalian target of rapamycin”, HSPA1B: “Hsp70 family 
Chaperones”, DDX58: “Retinoic acid-inducible gene-I”, NFKB1: “Nuclear factor NF-kappa-B”, RB1CC1: “RB1-inducible coiled-coil 1”, Data are presented as medians and 
interquartile range. The Kruskal–Wallis test was used, when it was significated, it followed by Dunn’s test for multiple comparison with reported significance (a, b, c, d, 
e, & f ), where each letter denotes following comparisons a: Healthy versus prediabetes, b: Healthy versus T2DM without complications, c: Healthy versus T2DM with 
complications, d: prediabetes versus T2DM without complications, e: prediabetes versus T2DM with complications, f: T2DM without complicationsversus T2DM with 
complications

Healthy n = 82 Prediabetes n = 41 T2DM without 
complications n = 87

T2DM with complications 
n = 50

p‑value

miR_342 0.541 (0.19–1) 3.2 (2.1–4.17) 33.3 (18.3–66)b,d 117 (50.8–297)c,e,f  < 0.001

miR_636 0.249 (0.02–0.859) 1 (0.17–2.01) 8.02 (3.42–23.2)b,d 69 (34.9–108)c,e,f  < 0.001

miR_15b‑5p 0.318 (0.0558–0.78) 1.67 (1.24–2.85) 5.55 (4.17–7.37)b,d 53.3 (20.8–131)c,e,f  < 0.001

miR_611 0.453 (0.090–1) 2.13 (0.841–4.32) 7.8 (3.35–21.1)b,d 48.1 (26.9–162)c,e,f  < 0.001

RET 0.159 (0.052–0.625) 3.16 (1.89–4.4)a 17 (9.77–22.5)b,d 69.6 (13.2–116)c,e,f  < 0.001

IGF1R 2.98 (2.28–4.86) 8.63 (5.24–10.9)a 39.7 (5.95–162)d 27.5 (4.16–79.7)c,e  < 0.001

mTOR 0.513 (0.0928–1) 3.94 (1.66–14.1)a 15 (1.78–28.9)b,d 30.2 (2.45–246)c,e,f  < 0.001

HSPA1B 3.17 (1.89–4.92) 9.78 (4.76–13.5) 13.2 (7.1–32)b,d 82.1 (62–327)c,e,f  < 0.001

DDX58 1.79 (0.674–8.88) 0.493 (0.0981–27.1) 64 (30.5–94)b,d 280 (120–646)c,e,f  < 0.001

NFKB1 0.273 (0.102–0.578) 3.89 (2.45–5.86)a 46.8 (18.8–89.5)b,d 110 (39.7–422)c,e,f  < 0.001

RB1CC1 14.5 (5.11–35.5) 9.83 (7.57–11.7) 2.39 (0.343–4.36)b,d 0.715 (0.425–0.8)c,e,f  < 0.001
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in enhancing predictive performance. These results 
underscore the robustness of the Extra Trees classifier 
in predicting T2DM stages and its potential for clini-
cal application. Also, the recall and precision across all 
models indicated strong sensitivity and a low rate of false 
positives. These metrics provide a more comprehensive 
understanding of the model’s classification behavior and 
confirm that its performance is not only accurate but also 
well-balanced across all classes and suggest that the clas-
sifier is not biased toward any particular class and per-
forms reliably in differentiating among the four clinical 
stages.

Evaluation of ML models in predicting T2DM
The confusion matrix illustrated in Fig.  7 outlines the 
accuracy of predictions regarding the classification of 
samples into four categories: healthy, prediabetes, T2DM 

without complications, and T2DM with complications on 
the test set for the molecular, biochemical, and combined 
models. Additionally, the ROC curve Fig.  8 provides 
insights into the performance of the prediction models, 
demonstrating their accuracy and ability to differentiate 
between the various stages of diabetes.

The confusion matrix for the final Extra Trees Classifier 
for the combined model demonstrated excellent perfor-
mance across all four health states. All healthy (n = 25) 
and prediabetes (n = 12) samples in the test set were cor-
rectly classified, indicating strong class separability for 
these groups. For the T2DM without complications class, 
25 out of 26 samples were correctly predicted, with only 
one misclassified as T2DM with complications. Like-
wise, in the T2DM with complications group, 14 out of 
15 samples were correctly classified, with one misclas-
sified as T2DM without complications. These minor 

Fig. 4 Show the correlation heatmap of T2DM dataset features
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misclassifications occurred only between the two T2DM-
related classes, suggesting partial overlap in feature space 
between patients with and without complications. These 
minor misclassifications imply that while the model 
effectively captures distinctions among the stages, there 
may be some shared characteristics between T2DM cat-
egories with and without complications.

Discussion
T2DM is multifactorial metabolic and endocrine dis-
order that has adverse influence on health. It represents 
one of the most common chronic diseases. Thus, it is 
critical to detect prediabetics and diabetics early to avoid 
diabetic complications [59]. In this research we target to 
investigate biomarker panel using clinical, bioinformatic, 
and machine learning for the identification of patients at 
risk for developing prediabetes or T2DM.

Several studies investigate the pathogenesis of T2DM. 
It’s well established that insulin resistance is one of the 
crucial players in transition to prediabetes and diabetes 
pathogenesis [60, 61].

IGF1R which is a tyrosine kinase, plays a vital role in 
insulin signaling leading to insulin  resistance. [62–64]. 
Downregulation of IGF1R improved insulin response in 
diabetic mice [65] and alleviated inflammation of diabetic 
kidney disease in mice [66] In this study IGF1R was sig-
nificantly increased when comparing healthy controls 
and prediabetics, and also when comparing prediabetic 
with diabetic patients.

mTORC1 enhances insulin resistance, and the produc-
tion of reactive oxygen species (ROS) causes oxidative 
damage in membranes, protein, and DNA [67–70]. Also, 
chronic activation of mTOR inhibits autophagy leading 
to endoplasmic reticulum stress, mitochondrial dysfunc-
tion, inflammation, and β cell failure, which is fundamen-
tal in T2DM [71]. In this study, mTOR was significantly 
increased when comparing the control group versus pre-
diabetics and when comparing prediabetics with diabet-
ics with complications.

RB1CC1 is a key autophagy inducer complex protein 
that is inhibited by mTOR [72]. Also, RB1CC1 increased 
the insulin secretion and enhanced islet cell viability [15]. 
RB1CC1 was downregulated in the urine of diabetic kid-
ney diseased patients compared to the control group 

Fig. 5 Feature Selection Performance Using RFECV. (A) Molecular, (B) Biochemical, (C) Combined set

Table 5 Show the included and excluded features for each 
feature group

Model Included Features Excluded Features

Molecular
Included: 5
Excluded: 6
Total: 11

miR 342
miR636
miR15b
RET
NFKB1

RB1CC1
miR611
IGF1R
mTOR
HSPA1B
DDX

Biochemical
Included: 14
Excluded: 0
Total: 14

Fasting Glucose
Postprandial
HbA1c
Insulin
HOMA‑IR
Total Cholesterol
Systolic blood pressure
Diastolic blood pressure
LDLc
HDLc
TGs
Albumin Creatinine Ratio
Creatinine
eGFR

None

Combined
Included: 7
Excluded: 18
Total: 25

miR 342
miR636
miR 15b
NFKB1
FastingGlucose
HDLc
Albumin Creatinine Ratio

Postprandial
HbA1c
Insulin
HOMA IR
Total Cholesterol
Systolic blood pressure
Diastolic blood pressure
LDLc
TGs
Crestinine
eGFR
RET_RQ
RB1CC1
miR611
IGF1R_RQ
mTOR_RQ
HSPA1B
DDX
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[31]. In this study RB1CC1was markedly decreased when 
comparing prediabetics with diabetics and when com-
paring diabetics with the complicated diabetic group.

NFKB1 is an important player in inflammatory 
responses. Chronic inflammation is crucial in the 
development of insulin resistance, and subsequently, 
T2DM development [73]. Many pancreatic islets of 
T2DM patients showed elevated levels of interleukin 

Fig. 6 Feature importance for the combined feature group

Table 6 Comparison of the performance of the different machine‑learning algorithms for each model

Model (Molecular) Accuracy AUC Recall Precision F1‑Score MCC

Extra trees classifier 0.9670 0.9984 0.9670 0.9689 0.9667 0.9554

Random Forest 0.9563 0.9945 0.9563 0.9603 0.9549 0.9412

Quadratic discriminant analysis 0.9341 0.9834 0.9341 0.9387 0.9337 0.9117

Naive Bayes 0.9339 0.9849 0.9339 0.9419 0.9342 0.9125

Light gradient boosting machine 0.9177 0.9927 0.9177 0.9248 0.9178 0.8891

Model (Biochemical)

 Extra trees classifier 0.9728 0.9955 0.9728 0.9758 0.9721 0.9636

 Random forest 0.9619 0.9952 0.9619 0.9657 0.9605 0.9488

 Naive Bayes 0.9617 0.9939 0.9617 0.9659 0.9610 0.9488

 Light gradient boosting machine 0.9565 0.9905 0.9565 0.9623 0.9551 0.9422

 Quadratic discriminant analysis 0.9071 0.9862 0.9071 0.9225 0.9022 0.8767

Model (Combined)

 Extra Trees Classifier 0.9728 0.9985 0.9728 0.9758 0.9721 0.9636

 Random Forest 0.9673 0.9975 0.9673 0.9701 0.9670 0.9558

 Quadratic Discriminant Analysis 0.9673 0.9872 0.9673 0.9708 0.9672 0.9564

 Naive Bayes 0.9616 0.9872 0.9616 0.9678 0.9621 0.9495

 Light Gradient Boosting Machine 0.9562 0.9912 0.9562 0.9597 0.9557 0.9411
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(IL)−1β and NFKB1 also macrophage hyperinfiltra-
tion [74, 75]. Translocation of NFKB1 to the nucleus 
and binding to promoters of many genes facilitates dia-
betic nephropathy progression [76]. On the other hand, 
inhibition of NFKB1 by Boswellic extracts could be a 
potential therapeutic target in T2DM [77].

In this study, NFKB1 was significantly increased when 
comparing control with prediabetics, prediabetics with 
diabetics, and diabetics withdiabetics with complications.

Proto-oncogene receptor tyrosine kinase RET, which 
binds to glial-derived neurotrophic factor GDNF ligand. 
Binding of RET to GNDF ligand initiates downstream 
stimulation of PI3K-AKT-mTOR pathways. RET is fun-
damental in the neuronal system [78]. Targeting RET 
with a small ligand, protein, or peptide hinders diabetic 
retinopathy progression [79]. In this study, RET was 
significantly elevated when comparing control versus 
prediabetics, prediabetics versus diabetic patients, and 
diabetics versus complicated diabetics.

One of the Hsp70 family chaperones concerning diabe-
tes is HSPA1B.HSPA1B plays a crucial role in regulating 
proteostasis by transporting and folding synthesized pol-
ypeptides. Moreover, HSPA1B acts as a quality controller 
in the ER through checking the correct folding of pro-
teins; it also regulates subsequent degradation of proteins 
[80]. HSPA1A/HSPA1B represents excellentcandidates 
for therapeutic studies and experiments, as it is suggested 
by VIVO data that its loss might be protective in respect 
of albuminuria [81].

DDX58, also known as retinoic acid-inducible gene-
I (RIG-I) is one of the RIG-I-like receptor (RLR) family. 
This family plays a vital role as a pathogen recognition 
receptor, as it gives the host an antiviral response and 
puts immune surveillance into action. Diabetic nephrop-
athy showed upregulation of DDX58 when compared to 
the control group at protein and transcriptomic levels 
[82].It was also differentially expressed in obese patients 
with T2DM [83]

Recently, many studies highlight epigenetic regulators 
in T2DM. miRNAs represent one of these regulators. 
miRNAs are major players in the pathogenesis of T2DM, 
starting with pancreatic development, insulin secretion, 
and insulin resistance [84]. It has also drawn much atten-
tion as a therapeutic target and has been studied in the 
context of future diagnosis and treatment responses [85].

High levels of miR-15b-5p in T2DM patients’ urine 
were noted to be associated with high albuminuria, in 
addition to low eGFR. This represents a crucial factor in 
diabetic nephropathy progression, making it potential 
target for therapy [86, 87]. While studying livers of hyper-
glycemic mice, miR-15b was overexpressed. And insulin 
sensitivity in the livers of mice was enhanced by the inhi-
bition of miR-15b. [88]

miR611 expression was elevated from the healthy con-
trol group to the prediabetic group to T2DM [89]. Also, 
in the rat model, it was significantly increased in the 
healthy group compared to the T2DM group [90].

In T2DM patients, initial blood glucose was positively 
correlated with miR-342–3p [91]. Also in gestational DM, 
IR and liver gluconeogenesis were inhibited by downreg-
ulation of miR-342-3p, which potentiates miR-342 as a 
therapeutic target in GDM [92]. However, in T regulatory 
cells, T1DM patients’ miR 342 was downregulated [93].

In the current study there was a significant increase in 
miR-15b-5p, miR611, and miR-342–5p as we go from the 
healthy control group to prediabetic to non-complicated 
T2DM, reaching the maximum level in complicated 
T2DM patients.

High expression levels of miR-636 were noted during 
diabetes progression in rats’ renal tissues, in correlation 
with HbAc1 and the albumin creatinine ratio in urine 
[94]. Caffeic acid that stimulates autophagy is used for 

Table 7 shows the evaluation metric for the best classifiers on the testing set for each feature group

Model (Molecular) Accuracy AUC Recall Precision F1‑Score MCC

Extra Trees Classifier 0.9359 0.9956 0.9359 0.9428 0.9359 0.9142

Model (Biochemical)

 Extra Trees Classifier 0.9615 0.9970 0.9615 0.9655 0.9605 0.9486

Model (Combined: Molecular + Biochemical)

 Extra Trees Classifier 0.9744 0.9989 0.9744 0.9744 0.9744 0.9647

Table 8 Shows the evaluation metric per class for the Extra trees 
classifier for the combined model

Model (Combined) Precision Recall F1‑Score

Healthy (class 0) 1.00 1.00 1.00

Prediabetic(class 1) 1.00 1.00 1.00

T2DM without Complications (class 3) 0.96 0.96 0.96

T2DM with Complciations (class 4) 0.93 0.93 0.93

Macro average 0.97 0.97 0.97

Weighted average 0.97 0.97 0.97
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mR-636 inhibition, which enhances glomerular func-
tions in diabetic model rats [95]. In this study, there was 
a significant increase in miR-636 RQ when we went from 
prediabetics to non-complicated T2DM, reaching the 
highest level in complicated T2DM patients.

Machine learning has revolutionized the healthcare 
sector, emerging as a critical tool for early diagnosis and 
prediction of the disease. It improves the decision-mak-
ing process for medical professionals by facilitating rapid 
and accurate diagnoses of diseases [96].

In this study, we integrated bioinformatics and machine 
learning techniques to develop a robust predictive model 
that distinguishes individuals across four health states: 
healthy, prediabetes, T2DM without complications, and 
T2DM with complications. By incorporating molecular 
and biochemical markers, we identify key biomarkers 
that can discriminate between these disease stages and 

offer clue aboutthe progression of Type 2 Diabetes Mel-
litus (T2DM).

The target variable representing the four stages of 
diabetes was encoded to facilitate effective multi-class 
classification within the machine learning framework. 
Specifically, each category was assigned a numerical 
label: healthy (0), prediabetes (1), T2DM without compli-
cations (2), and T2DM with complications (3). This labe-
ling approach ensured that no ordinal relationship was 
imposed between the classes, treating each health state 
as a distinct, categorical class. As a result, the machine 
learning models were able to differentiate between these 
discrete health conditions, enabling accurate multi-class 
predictions.

We employed a multi-classifier approach, utilizing 
Extra Trees Classifier, RFClassifier, Quadratic Discrimi-
nant Analysis, Naive Bayes, and Light Gradient Boosting 

Fig. 7 Confusion Matrix for top classifier prediction for each feature group. (A) Molecular, (B) Biochemical, (C) Combined
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Fig. 8 ROC curve for the top‑performing classifier for each feature set. (A) Molecular, (B) Biochemical, (C) Combined
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Machine. Our analysis included three models focusing on 
individual feature types—molecular and biochemical—as 
well as a combined model. We divided dataset into 70% 
for training and 30% for testing. We applied Recursive 
Feature Elimination with Cross-Validation (RFECV) and 
feature importance analysis for feature selection, which 
identified five key features contributing significantly 
to predicting diabetes stages: three molecular mark-
ers—miR342, NFKB1, and miR636—and two biochemi-
cal markers, namely the albumin-to-creatinine ratio and 
HDLc. All models were evaluated using fivefold cross-
validation to ensure their robustness.

The predictive performance of the molecular, biochem-
ical, and combined models, all utilizing the Extra Trees 
Classifier, highlights its selection as the top-performing 
model. This classifier demonstrates a strong capability 
to accurately and reliably classify health states within the 
testing set. Each model was assessed using critical met-
rics, including accuracy, AUC, recall, precision, F1-score, 
and the MCC, which collectively reflect its effectiveness 
in classification. While we applied the SMOTE technique 
to balance the sample sizes across the classes, it remains 
recommended to use MCC when comparing the perfor-
mance of different machine learning models.

The molecular model achieved an accuracy of 93.59%, 
with an impressive AUC of 0.9956, indicating excellent 
discrimination ability. The model’s recall and precision 
were similarly high, at 93.59% and 94.28%, respectively, 
resulting in an F1-score of 93.59% and an MCC of 0.9142. 
These results suggest that the molecular model is robust 
at capturing relevant biological variations across the four 
health states.

The biochemical model slightly outperformed the 
molecular model with an accuracy of 96.15% and an 
AUC of 0.9970. Its recall, precision, and F1-score were all 
above 96%, and its MCC was notably high at 0.9486, indi-
cating a strong correlation between predicted and true 
classes.

Finally, the combined model, which used both molecu-
lar and biochemical features, performed the best with 
an accuracy of 97.44% and an AUC of 0.9989, indicat-
ing near-perfect discrimination ability. Its recall, preci-
sion, and F1-score were all 97.44%, and MCC was 0.9647, 
reflecting the highest agreement between predicted and 
actual health states. This result indicates that combining 
molecular and biochemical features enhances the model’s 
overall performance, likely due to the complementary 
information provided by these two feature types. The 
combined model’s high accuracy and strong MCC sug-
gest that it is well-suited for clinical applications, as it 
can accurately stratify patients into distinct T2DM pro-
gression stages, supporting more tailored and effective 
patient management strategies.

The confusion matrix for the combined model using 
the Extra Trees Classifier reveals strong predictive perfor-
mance across the four health states: healthy, prediabetes, 
T2DM without complications, and T2DM with compli-
cations. All 25 healthy samples and all 12 prediabetes 
samples were accurately classified, indicating the model’s 
robustness in identifying these groups. For the T2DM 
without complications class, 25 out of 26 samples were 
correctly classified. Only one sample was misclassified as 
T2DM with complications, suggesting a slight overlap in 
feature patterns between these two T2DM groups. Simi-
larly, in the T2DM with complications group, 14 samples 
were correctly classified, with one misclassified as T2DM 
without complications. These minor misclassifications 
imply that while the model effectively captures distinc-
tions among the stages, there may be some shared char-
acteristics between T2DM categories with and without 
complications. Overall, the confusion matrix highlights 
the model’s high accuracy and reliability in predicting 
each health state, with minimal misclassifications. These 
results suggest that the combined model effectively cap-
tures the key patterns and distinctions among the four 
health states, supporting its potential utility in clinical or 
diagnostic applications for stratifying patients based on 
T2DM progression.

Batch effects were addressed starting from GEO data-
set harmonization, GEO2R normalization, statistical 
adjustment, and final validation of the chosen molecular 
parameter in the validation cohort (n = 260) (details in 
supplementary table S5).

Many studies have investigated the use of machine 
learning methods for predicting diabetes. Kaur and 
Kumari [84] analyzed risk factors for diabetes using 
the Pima Indian Diabetes dataset, focusing on female 
patients, with data provided by the National Institute of 
Diabetes and Digestive and Kidney Diseases. The dataset, 
comprising 768 samples with binary classification and 
eight risk factors, underwent preprocessing to handle 
outliers and impute missing values using k-nearest neigh-
bor imputation. Feature selection via the Boruta Wrap-
per algorithm identified four significant attributes. Five 
classification models were implemented in R, including 
K-Nearest Neighbor, Neural Network, Support Vector 
Machine (SVM) with linear and radial basis function ker-
nels, and Multifactor Dimensionality Reduction. Among 
these, SVM with a linear kernel and K-Nearest Neighbor 
achieved the highest accuracy scores of 0.90 and 0.92, 
respectively, highlighting them as effective methods for 
predicting diabetes risk [97].

Kishor and Chakraborty [98] introduced an advanced 
healthcare model using machine learning to improve 
the accuracy and promptness of diabetes diagnosis. This 
model incorporates five classifiers: logistic regression, 
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K-nearest neighbor, naive Bayes, random Forest, and 
support vector machine. To refine model performance, 
they applied the Fast Correlation-Based Filter (FCBF) to 
exclude irrelevant features and used Synthetic Minority 
Over-sampling (SMOTE) to address data imbalance. The 
model’s evaluation involved four metrics—accuracy, sen-
sitivity, specificity, and AUC. Results revealed that only 
a few critical features were needed to enhance model 
accuracy, with the Random Forest classifier achieving top 
scores in accuracy (97.81%), sensitivity (99.32%), specific-
ity (98.86%), and AUC (99.35%) [98].

Chen and Pan [99] conducted a study to identify 
the most effective machine learning model for diabe-
tes prediction, utilizing a dataset with 520 samples and 
17 health-related features. They compared eight clas-
sification methods, including Support Vector Classi-
fier, Gaussian Naive Bayes, Random Forest, DT, Logistic 
Regression, Extra Trees Classifier, K-Nearest Neighbors, 
and XGBoost. Among these, the Extra Trees Classifier 
demonstrated the highest accuracy at 98.55%, highlight-
ing it as the most accurate and efficient classifier for dia-
betes diagnosis based on their selected variables [99].

Zou et  al. [100] utilized machine learning to predict 
diabetes in a study based on data.

from hospital examinations in Luzhou, China. They 
employed J48DT, RF, and Artificial Neural Network 
(ANN) models, selecting the top-performing methods for 
further validation to ensure broad applicability in clinical 
settings. This selection helped in refining techniques for 
diabetes prediction in diverse population samples [100].

Modak and Jha [101] developed a diabetes prediction 
model that uses machine learning to aid early diagno-
sis, potentially reducing complications such as kidney 
and heart disease. The model leverages a range of algo-
rithms—logistic regression, SVM, Naïve Bayes, and ran-
dom forest—alongside advanced ensemble methods like 
XGBoost, LightGBM, CatBoost, AdaBoost, and bagging 
to improve prediction accuracy and reliability. Using a 
dataset from Kaggle and implemented in Python, their 
model was evaluated based on confusion matrix, sensi-
tivity, and accuracy metrics. Among the methods tested, 
CatBoost was the best performer, achieving a 95.4% accu-
racy and a 0.99 AUC-ROC score, surpassing XGBoost, 
which reached 94.3% accuracy and a 0.98 AUC-ROC. 
This study underscores the potential of ensemble meth-
ods in enhancing diabetes prediction performance 
through robust and precise diagnostics [101].

Abnoosian et  al. [102] developed a pipeline-based 
multi-classification framework to.

predict diabetes status across three categories: dia-
betic, non-diabetic, and prediabetic, using an imbal-
anced dataset of Iraqi patients. Their approach 
involved several pre-processing steps, including 

duplicate removal, data normalization, feature selec-
tion, and missing value imputation, along with k-fold 
cross-validation. They evaluated various machine 
learning models, such as k-Nearest Neighbors (k-NN), 
Support Vector Machine (SVM), DT, RF, AdaBoost, 
and Gaussian Naïve Bayes (GNB). To address data 
imbalance, they introduced a weighted ensemble 
model optimized by AUC. Model performance was 
further refined using grid search and Bayesian opti-
mization for hyperparameter tuning. Their ensemble 
model achieved an impressive accuracy of 98.87% and 
AUC of 0.999, outperforming other classifiers tested 
in the study [102].

Our biomarker selection aligns with and extends 
findings from prior large-scale studies while address-
ing their limitations (supplementary table  S6). The 
biomarker panel (miR342, NFKB1, miR636, albumin-
to-creatinine ratio, HDLc) bridges mechanistic depth 
(autophagy-inflammation axis) and clinical scalabil-
ity, aligns with established pathways in T2DM patho-
genesis while introducing novel insights into disease 
progression and complications outperforms iso-
lated GWAS/proteomic markers in personalized risk 
stratification. Even with minor misclassifications, the 
model provides actionable thresholds for early inter-
vention, as evidenced by validation cohort outcomes. 
Of note, GWAS has some limitations, as: a) miRNAs 
are rarely prioritized in GWAS due to their regula-
tory roles, but transcriptomic studies link miR-342-5p 
to insulin signaling (e.g., suppression of IRS1 in adi-
pose tissue) and miR-636 to autophagy in diabetic 
nephropathy. b) While HDLc is a known cardiovascu-
lar risk factor, GWAS highlights genetic variants (e.g., 
CETP) influencing HDL levels rather than HDLc itself 
as a causal biomarker. Our model leverages HDLc’s 
dynamic decline with disease progression, consistent 
with longitudinal studies. Lastly, larger omics cohorts 
prioritize other variants like TCF7L2 or SLC30A8, 
which were not addressed here. Future work could 
harmonize our biomarkers with GWAS loci for poly-
genic risk scoring.

Conclusion
In conclusion, our results indicate that integrating 
machine learning, bioinformatics, and clinical data 
with biochemical and molecular features shows sig-
nificant potential to enhance diagnostic precision 
and staging of diabetes. The classifiers developed in 
this study effectively differentiated diabetes stages in 
our cohort, highlighting the promise of multimodal 
approaches for precision medicine applications. 
However, these results represent a proof-of-concept 
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requiring rigorous external validation before clini-
cal implementation can be considered. Future work 
must address key limitations through: (1) Valida-
tion on larger, multi-center datasets with diverse 
demographics, (2) Real-world performance testing in 
clinical workflows, and (3) Assessment of long-term 
impact on patient outcomes. Until such validation is 
completed, this framework should be considered a 
research tool rather than a clinical solution."
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