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Abstract: Sodium-ion batteries (SIBs) have attracted increasing interest as promising candidates for
large-scale energy storage due to their low cost, natural abundance and similar chemical intercalation
mechanism with lithium-ion batteries. However, achieving superior rate capability and long-life
for SIBs remains a major challenge owing to the limitation of favorable anode materials selection.
Herein, an elegant one-step solvothermal method was used to synthesize VS4 nanorods and VS4

nanorods/reduced graphene oxide (RGO) nanocomposites. The effects of ethylene carbonate/diethyl
carbonate(EC/DEC), ethylene carbonate/dimethyl carbonate(EC/DMC), and tetraethylene glycol
dimethyl ether (TEGDME) electrolytes on the electrochemical properties of VS4 nanorods were
investigated. The VS4 nanorods electrodes exhibit high specific capacity in EC/DMC electrolytes. A
theoretical calculation confirms the advance of EC/DMC electrolytes for VS4 nanorods. Significantly,
the discharge capacity of VS4/RGO nanocomposites remains 100 mAh/g after 2000 cycles at a large
current density of 2 A/g, indicating their excellent cycling stability. The nanocomposites can improve
the electronic conductivity and reduce the Na+ diffusion energy barrier, thereby effectively improving
the sodium storage performance of the hybrid material. This work offers great potential for exploring
promising anode materials for electrochemical applications.

Keywords: Sodium-ion batteries; two-dimensional material; vanadium tetrasulfide; synergy effect;
morphology control

1. Introduction

Since the successful preparation of graphene in 2004 [1,2], two dimensional transition
metal dichalcogenides (TMDs) have aroused increasing research interests for their potential
applications in the field of electrochemical storage owing to the unique layered structure
and outstanding physical and chemical properties [3–5]. Currently, lithium-ion batteries
(LIBs) dominate portable electronic devices and smart grids ascribed to their high energy
density and excellent long cycling stability [6–8]. However, the high cost of lithium caused
by limited resource and uneven distribution of lithium hinders the further development
in large-scale storage systems. Therefore, it is of great importance to develop desirable
battery storage technologies with low prices as an alternative to LIBs [9–11]. Sodium-ion
batteries (SIBs) have attracted rapidly growing attention for their earth abundance and
similar chemistry intercalation mechanism compared with LIBs, and are looking forward
to be one of the most promising next generation energy storage devices [12,13]. Despite
its great potential, sluggish reaction kinetics caused by the large ionic radius and the lack
of suitable electrode materials limit the practical application of SIBs [14,15]. Hence, it is
of great importance to explore favorable SIBs anode materials with high specific capacity,
excellent rate capability and superior long life cycles.
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Among the studied TMDs anode materials, vanadium-based chalcogenides [16,17]
have received widespread interest due to their unique layered crystal structure and high
electronic conductivity [18–20]. Specifically, vanadium sulfide (VS4) with a monoclinic
phase possesses a unique linear-chain structure consisting of V4+ and sulfur dimers (S2

2−)
extending along the c-axis direction, and the individual atomic chains are bonded by weak
interchain van der Waals forces, forming a loosely stacked framework [21]. The large
open channels (interchain distance of VS4 is 0.583 nm) can provide abundant active sites
for Na-ion diffusion and storage [22]. In addition, VS4 has a high theoretical capacity of
1196 mAh/g and is considered as a promising candidate anode material for SIBs [21,23].
Nevertheless, the disadvantages of VS4 electrode materials including low conductivity
and large volume expansion lead to poor rate performance and cycling stability during
the discharge/charge process, hindering the practical energy storage applications. To
promote the electrochemical performance, it has been widely accepted that one strategy is
to construct nanosized electrode materials due to the sufficient redox sites and to shorten the
electron/ion diffusion distance during sodiaion/desodiation [24,25]. The second strategy is
to incorporate nanomaterials into highly conductive graphene that can effectively enhance
the conductivity and maintain the whole structure stability of electrodes [26–29].

In this work, we report the fabrication of uniform VS4 nanorods by a facile solvother-
mal method. After introducing graphene oxide into the reaction system, VS4 nanorods/
reduced graphene oxide hybrids (denoted as VS4/RGO) were successfully obtained after
subsequent annealing treatment. The VS4 nanorods have an average diameter of 30 nm, and
the small VS4 nanorods grown on the conductive support of RGO nanosheets can elevate
the electronic conductivity and effectively interrupt their aggregation. Furthermore, three
typical electrolytes [30] are optimized to achieve the high Na ions storage performance for
VS4 nanorods. Using ethylene carbonate/dimethyl carbonate (EC/DMC) as the electrolyte,
the as-prepared novel VS4/RGO nanocomposites display superior cycling stability with
the discharge specific capacity of 100 mAh/g after 2000 cycles at a current density of 2 A/g.
The improved performance is attributed not only to the conductive network of large-size
RGO nanosheets, but also to the EC/DMC electrolyte with high ionic conductivity, low
solvation energy and Lowest Unoccupied Molecular Orbital (LUMO) energy.

2. Results

The XRD diffraction pattern of VS4 nanorods is shown in Figure 1a. All the diffraction
peaks are perfectly matched to the monoclinic phase of VS4 (JCPDS no. 87-0603, space
group I2/c, lattice constants a = 0.677 nm, b = 1.042 nm, c = 1.211 nm), indicating the high
phase purity [21,23]. The two strongest characteristic diffraction peaks at 2θ = 15.7◦ and
17◦ are in line with the (110) and (020) crystal planes. A Raman spectrum of VS4 nanorods
shows that two typical bands at 190 and 279 cm−1 are attributed to the stretching and
bending vibration modes of the V−S bonds, respectively (Figure 1b) [31].

The XRD and Raman spectroscopy analyses confirm that the prepared sample is mon-
oclinic VS4. The V 2p X-ray photoelectron spectroscopy (XPS) of the material in Figure 1c
shows two peaks at 517.3 and 524.3 eV, which are ascribed to the 2p3/2 and 2p1/2 compo-
nents of V4+, respectively. Two other peaks at 513.9 and 521.5 eV correspond to the V−C
bond, which indicates that the VS4 nanorods are anchored on the graphene surface through
it. The scanning at S 2p region demonstrates the existence of S2

2− dimers (Figure 1d), and
the peaks at 162.9 and 164.0 eV are ascribed to S 2p3/2 and S 2p1/2 bands, respectively.

As shown in Figure 2, the morphology and microstructure of the as-prepared VS4
nanorods were performed by field emission scanning electron microscopy (FESEM) and
transmission electron microscopy (TEM). The obtained samples are composed of surface-
smoothly and well-dispersed short nanorods with an average diameter about 30 nm.
Moreover, these nanorods are randomly stacked together to form large clusters, which may
be caused by the anisotropy of the monoclinic phase VS4 (Figure 2a–c). The TEM image
of the products exhibits a rod-like structure. A lattice space of about 0.59 nm is observed
by high-resolution transmission electron microscopy (HRTEM), which is consistent with
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the (002) plane of VS4. The fast-Fourier transform (FFT) (Figure 2f) further confirms the
monoclinic phase of VS4.
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The successful formation of the VS4/RGO nanocomposite is verified by Raman spec-
trum analysis in the range of 180–1800 cm−1 (Figure S1, Supplementary Materials). The
two typical bands at 1340 cm−1 and 1585 cm−1 are designated as the D band and G band
of RGO, respectively. The D band is associated with edge defects and disordered carbon in
hexagonal graphene layers, while the G band is attributed to the in-plane stretching vibra-
tion of the sp2 carbon atoms hybrid and highly ordered graphite [23,32,33]. The two bands
at 190 and 279 cm−1 in the low wavenumber region are the vibration dispersion character-
istics of VS4. Figure 3a shows the FESEM images of VS4/RGO nanocomposites. Obviously,
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the surface of RGO with the large wrinkled sheet structure is not smooth in the hybrid
materials. The substantial VS4 nanorods are grown on the large RGO nanosheets with
uniform distribution, indicating that RGO sheets with rich oxygen-containing functional
groups not only support the nucleation and growth of VS4, but also effectively alleviate the
agglomeration of VS4 nanorods in the VS4/RGO nanocomposite. The TEM characterization
of VS4/RGO nanocomposites are shown in Figure 3b. The VS4 nanorods are randomly
and uniformly dispersed on the surface of the large-sized RGO nanosheets with typical
wrinkled structure morphology, which is closely related to the anisotropy of the monoclinic
phase VS4. The introduction of RGO as a large-area conductive channel plays an important
role in enhancing the electrical conductivity and improving the structural stability of VS4.
The energy dispersive X-ray (EDX) elemental mappings analysis reveals that these elements
of V, C and S are uniformly distributed throughout the entire VS4/RGO nanocomposite
(Figure 3c–f). The growth process of the prepared VS4/RGO nanocomposite should be
that oxygen-containing functional groups provided a large number of growth sites for VS4,
so that the VS4 nanorods grew uniformly on the RGO sheet, thereby obtaining uniform
composites of RGO and VS4. During the hydrothermal reaction, VS4 gradually nucleated
and grew on the surface of GO, while GO lost most of the oxygen-containing functional
groups and was reduced to graphene (RGO).
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Electrolytes are essential for the proper functioning of any battery technology, and
the emerging Na-ion technology is no exception. Hence, a major focus on battery research
is to identify the most appropriate formulation so as to minimize interface reactions and
enhance both cell performances and safety aspects. While a number of efforts are being
directed to the search for new electrode materials for sodium ion batteries, studies dealing
with the electrolyte are much scarcer. Still, some available reports demonstrate that the
solid electrolyte interphase (SEI) formed on carbonaceous electrodes is markedly differ-
ent for sodium- and lithium-based electrolytes, even those using the same solvent. To
investigate the effect of different electrolytes on the Na-ion storage performance of VS4
nanorods electrodes, CR2032 coin-type cells were assembled to obtain the superior electro-
chemical properties by using 1 M NaClO4 in ethylene carbonate/diethyl carbonate (1:1,
v:v; EC/DEC), ethylene carbonate/dimethyl carbonate (1:1, v:v; EC/DMC), and tetraethy-
lene glycol dimethyl ether (TEGDME) as electrolytes. The galvanostatic charge/discharge
(GCD) profiles of pure VS4 nanorods with the three selected electrolytes in the voltage
range of 0.1–2.5 V at the current density of 0.1 C and 0.8 C are shown in Figure 4a–b. When
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the EC/DMC based electrolyte is used, the discharge specific capacity of VS4 nanorods
is 288 mAh/g at 0.1 C, which is higher than the other two electrolytes (Figure 4a). From
Figure 4b and Table S1, taking the charge-discharge curve with a current density of 0.8 C
as an example, when the electrolyte is EC/DMC, the Coulombic efficiency of the material
is the highest (98%), indicating that the electrolyte can obtain the best electrochemical
performance, and its charge-discharge capacity is 186, 190 mAh/g, respectively; when the
electrolyte is EC/DEC, its coulombic efficiency is 92%, and the charge-discharge capacity is
148, 161 mAh/g, respectively; when the electrolyte is TEGDME, the coulombic efficiency is
the lowest (90%), and the charge-discharge capacity is 96, 106 mAh/g.
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The rate performance of three electrolytes is summarized and compared at various
current densities from 0.8 C to 1.6 C in Figure 4c. The capacities of VS4 nanorods in the
EC/DMC electrolyte are 288, 202, 174, 156 and 104 mAh/g at current densities of 0.1, 0.2,
0.4, 0.8 and 1.6 C, respectively. When the current density is restored to 0.1 C, the discharge
specific capacity still remains a high reversible capacity of 280 mAh/g, demonstrating
the remarkable rate performance of the samples. The corresponding GCD curves are
presented in Figure 4d. The cycling performance at 0.4 C of VS4 nanorods with different
electrolytes are shown in Figure 4e. For the EC/DMC electrolyte, the initial discharge
specific capacity of VS4 is 440 mAh/g, corresponding to an initial coulombic efficiency
(CE) of 70%. The irreversible capacity loss may be caused by the formation of an SEI
film and the pre-activation process of electrode materials. The CE of VS4 nanorods is
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close to 98% in the following cycles. The capacity of VS4 nanorods is stable (182 mAh/g)
after 100 cycles, indicating outstanding cycling stability compared to other electrolytes.
To further explore the electrochemical performance and charge-transfer kinetics of the
three electrolytes, electrochemical impedance spectroscopy analysis (EIS) was tested by the
Nyquist plots (Figure 4f). The semicircle mainly reflects the charge transfer resistance (Rc)
of the electrode, including an ohmic resistance (R1) and a charge-transfer process (Rc/C2)
of the electrolytes, as indicated in the proposed equivalent circuit. The ohmic resistance
R1 is related to the ionic conductivity of the discharge of the materials, and the Warburg
impedance (W) responds to the diffusion of Na+ ions [34,35]. As shown in Figure 4f, the
significant difference between the three impedance spectra is that the EC/DMC (red line)
has much lower (Rc) than the EC/DEC and TEGDME. Meanwhile, it was found that the
EC/DMC electrolytes had higher frequencies in the onset between the semicircle and the
slopping straight line than the control cell. This is another indication for the higher reaction
kinetics of the EC/DMC electrolytes. Based on these results, the improved performance
by EC/DMC electrolytes can be attributed to a smaller resistance (Rc), or in other words
to an increase in the cell reaction kinetics of the EC/DMC electrolytes. All of the results
demonstrate that the EC/DMC electrolyte contributes to the boosting of the Na-ion storage
performance of VS4 nanorods. To better understand this issue, the viscosity of binary
solvent EC-based electrolytes, which are proportional to the viscosity of the co-solvent
(EC:DEC > EC:DMC), is discussed, while in single solvent-based electrolytes (TEGDME),
the viscosity of the electrolyte is higher, which also proves that the presence of EC can
allow good dissociation of the salt. In addition, the electrochemical stability of the binary
solvent-based electrolyte EC/DMC is greater than that of EC/DEC. Therefore, EC/DMC
is the optimal electrolyte. Because EC is a co-solvent that increases ionic conductivity
by improving salt dissociation (if the dielectric constant is high) and/or by reducing the
viscosity of the resulting electrolyte and thus increasing ionic mobility, its content should
not be too large or too small. It should be optimal when its volume ratio to another solvent
is 1:1.

Figure 5a presents the cyclic-voltammetry (CV) curves of the first three cycles of
VS4/RGO as SIBs anode material, which are measured in the voltage of 0.1–2.5 V at the scan
rate of 0.1 mV/s. During the initial cathodic sweep, a prominent cathodic peak is observed
at 1.3 V and disappears in the subsequent cycles, which is ascribed to the formation
process of the irreversible SEI film. The redox peaks in the subsequent cycles represent
the multiple conversion reaction between VS4 and NaxVS4 [23], and the corresponding
reaction equations are as follows:

VS4 + x Na++x e− → NaxVS4 (1)

NaxVS4 + (8 − x) Na+ + (8 − x) e− → 4 Na2S + V (2)

The CV profiles of VS4/RGO electrode materials overlap after the first cycle, indicat-
ing high chemical reversibility. The galvanostatic charge/discharge profiles of pure VS4
nanorods, VS4/RGO nanocomposites and RGO in the voltage range of 0.1–2.5 V at a current
density of 0.1 C are shown in Figure S2 (Supplementary Material). The VS4/RGO elec-
trode exhibits superior sodium storage capacity (395 mAh/g) compared to VS4 nanorods
(300 mAh/g) and RGO (35 mAh/g) anodes. There are two advantages for the outstanding
Na-ion storage performance of VS4/RGO nanocomposites: RGO, as one of the most desir-
able carbon materials, can enhance the electronic conductivity of VS4. Moreover, the large
scale RGO nanosheets with abundant oxygen-containing functional groups can provide
sufficient redox active sites to effectively alleviate the aggregation of VS4 nanorods. When
the current density is 0.4 C, for the EC/DMC electrolyte, the first-cycle discharge capacity
of the VS4 electrode material is 571 mAh/g, which is due to the irreversible capacity loss
caused by the formation of the SEI film during the first charge-discharge process (Figure S3,
Supplementary Material).
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The rate capabilities of VS4 nanorods and VS4/RGO nanocomposites are measured
and compared at various current densities (Figure 5b). As the current density increases
from 0.1 C to 1.6 C, the discharge capacity of VS4/RGO nanocomposites slowly delay.
When returning to the initial density of 0.1 C, the average capacity of hybrid electrode
materials remains about 400 mAh/g. As a consequence, Figure 5c demonstrates the cycling
performance of VS4 and VS4/RGO at the current density of 1.6 C. A long-term and stable
cycling performance of VS4/RGO nanocomposites is achieved with the discharge capacity
retention of 100 mAh/g over 2000 cycles. This is closely related to the layer structure of VS4
nanorods dispersed uniformly on the surface of RGO nanosheets with high conductivity,
which provides sufficient conductive channels and electroactive sites for fast electron
transport and sodium ions insertion/extraction and increases the effective contact between
the surface of the electrode material and the electrolyte, thus facilitating the redox reactions.
Furthermore, the introduction of layered RGO can offer a stable substrate for superior
long-term cycling performance.

Density functional theory (DFT) calculations were carried out to further illustrate the
influence of electrolytes on VS4 nanorods. As shown in Figure 6, the solvation energy of 1 M
NaClO4 in EC/DMC, EC/DEC and TEGDME electrolytes are −1.52606 eV, −1.54102 eV
and −1.43974 eV, respectively (Table 1). The lower solvation energy demonstrates a weak
interaction between salt and solvent, favoring Na+ diffusion and desolvation. For carbonate-
based electrolytes (EC/DMC and EC/DEC), the values of solvation energy is very close.
In addition, the LUMO energy of EC/DMC electrolyte (−0.61146 eV) is lower than that
of EC/DEC (−0.66178 eV) and TEGDME (−0.74174 eV), suggesting that it is easier to
reduce [32]. Electrolyte ionic conductivity is one of the most crucial factors for sodium
ion storage performance [36]. Therefore, the electrical conductivity and viscosity of three
electrolytes are also measured (Table S2 and Figure S4, Supplementary Materials). The
highest conductivity value of 1 M NaClO4 in EC/DMC electrolyte is presented (7.88 mS/cm)
due to its lower viscosity values as compared to other electrolytes. In conclusion, the lower
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viscosity of an electrolyte can improve the ionic mobility. These results indicate that an
optimized EC/DMC electrolyte can facilitate Na-ion diffusion/desolvation for superior
cycling stability of electrode materials.
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Table 1. Solvation energy, HOMO and LUMO of three electrolytes.

Electrolytes Solvation Energy (eV) HOMO (eV) LUMO (eV)

EC/DMC −1.52606 −7.64646 −7.64646
EC/DEC −1.54102 −7.53603 −0.66178
TEGDME −1.43974 −7.12885 −0.61146

3. Materials and Methods
3.1. Synthesis of VS4 Nanorods and VS4/RGO Nanocomposite

All chemical reagents used in the experiments were of analytical grade without further
purification. In a typical fabrication process, 2 mmol ammonium vanadate (NH4VO3)
was first dissolved in 30 mL deionized water/ethanol (1:1) mixed solution and stirred
vigorously for 1 h at room temperature to form a homogeneous suspension, followed by
the addition of 10 mmol thioacetamide (CH3CSNH2). The obtained precursor suspension
was then transferred to a 50 mL Teflon-lined stainless-steel autoclave and heated at 160 ◦C
for 12 h. After naturally cooling down to room temperature, the precipitate was filtered
and washed thoroughly with deionized water and absolute ethanol for several times, and
dried in a vacuum oven at 60 ◦C overnight. For comparison, 50 mg of graphene oxide
(GO) power prepared by the modified Hummers method [37] was dispersed into the above
suspension of VS4 nanorods and then underwent a similar procedure of solvothermal
treatment. Finally, the precursors were annealed at 400 ◦C for 1 h to thermally reduce GO
to RGO to obtain the VS4/RGO nanocomposite.

3.2. Material Characterizations

The phase purity and crystal structure of the products were investigated by X-ray
diffraction on a MiniFlex 600 (Rigaku, Tokyo, Japan) with Cu Kα radiation (λ = 0.15406 nm)
under the accelerated voltage and current of 40 kV and 15 mA, respectively. The mor-
phology and microstructure of as-prepared samples were characterized by field emission
scanning electron microscopy (FESEM, SU-8020) (Hitachi High-Technologies Corporation,
Japan.) and transmission electron microscopy (TEM, JEM-2800) (JEOL, Tokyo, Japan) with
an energy dispersive X-ray detector (EDX). Raman spectra were examined using a Ren-
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ishaw in Via Raman microscope (Renishaw, Wotton-under-Edge, UK) with an excitation
wavelength of 532 nm.

3.3. Electrochemical Measurements

Electrochemical tests were evaluated by assembling CR2032 coin type half-cells in
an argon-filled glove box (O2 < 0.1 ppm, H2O < 0.1 ppm). The working electrodes were
fabricated by mixing 70 wt% of as-prepared active materials, 20 wt% acetylene black and
10 wt% polyvinylidene fluoride (PVDF) binder using N-methyl pyrrolidone as solvent and
the mass loading of an electrode of 0.62 mg/cm2. Sodium disks were cut into a round shape
with 13 mm and employed as the counter electrode and glass fiber was used as the separator.
The obtained homogeneous slurry was coated onto the current collector (Al foil) and dried
in a vacuum oven at 60 ◦C overnight. In the cells, 1 M NaClO4 in ethylene carbonate/diethyl
carbonate (EC/DEC, 1:1 v/v), ethylene carbonate/dimethyl carbonate (EC/DMC, 1:1 v/v)
with the addition of 5% fluoroethylene carbonate, and tetraethylene glycol dimethyl ether
(TEGDME) were used as the electrolytes for SIBs. Galvanostatic discharge/charge tests
were collected on a Neware multichannel battery system between 0.1 V and 2.5 V. Cyclic
voltammetry (CV) profiles were carried out using a CHI660E electrochemical analyzer (CH
Instruments Inc., Shanghai, China) and electrochemical impedance spectroscopy (EIS) was
performed on an Autolab electrochemical workstation.

4. Conclusions

In summary, VS4 nanorods with an average diameter of 30 nm were successfully
prepared by a fast and simple one-pot solvothermal process. To further increase the electric
conductivity of VS4 materials and improve the electron transportation, small VS4 nanorods
were uniformly anchored into the conductive network of large-sized RGO nanosheets to
obtain VS4/RGO nanocomposites. When tested as anode materials at the half-cell of SIBs,
VS4 nanorods in the EC/DMC electrolyte exhibit outstanding electrochemical performance
in terms of a high reversible capacity (185 mAh/g at a current density of 0.8 C), good
rate capability and long cycle life (182 mAh/g after 100 cycles at 0.4 C) compared to the
EC/DEC and TEGDME electrolytes. This is ascribed to the high ionic conductivity, lower
solvation energy and LUMO energy for the EC/DMC electrolyte, which is favorable for Na+

diffusion and desolvation. Moreover, VS4/RGO nanocomposites can deliver a discharge
capacity of 100 mAh/g after 2000 cycles at a large current density of 1.6 C, which indicates
excellent long-term cycling properties compared to pure VS4 nanorods. The outstanding
electrochemical performance of VS4/RGO nanocomposites is mainly attributed to the
synergistic effect between the introduction of graphene, the rational synthesis of VS4
nanorods and the optical electrolytes, which can effectively shorten the transportation path
for electrons/ions, meanwhile greatly improving the electronic conductivity and structure
stability of electrode materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196303/s1, Figure S1: Raman spectrum of VS4/RGO
nanocomposites; Figure S2: Galvanostatic charge and discharge profiles at the current density of 0.1 C
of VS4/RGO nanocomposites in comparison with VS4 nanorods and RGO; Figure S3. Electrochemical
measurements of VS4 nanorods with different electrolytes: the charge-discharge curves of the first
cycle at the current density of 0.4 C; Figure S4. Conductivity and viscosity distribution of VS4
nanorods with various electrolytes; Table S1. Coulombic efficiencies of VS4 electrode materials under
three electrolyte conditions at a current density of 0.8 C; Table S2: The electrical conductivity and
viscosity of three electrolytes.
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