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Abstract: The current dietary habits cause health problems due to foods’ composition, with bread
as an important example. Our aim was to formulate an optimum dough blend with flours from
wheat, amaranth and orange sweet potato to obtain a physically good and highly nutritional bread.
Bread was prepared with blends of wheat, amaranth and orange sweet potato flours, optimizing the
technological properties of the doughs by the response surface methodology and analyzing their
physical and nutritional properties. Amaranth provides protein and fiber, and sweet potatoes provide
β-carotenoids and high antioxidant activity. The prediction models were adjusted by mixing time
(MT), peak dough resistance (PDR), setback (SB) and breakdown (BD). The interaction between
wheat and amaranth significantly (p < 0.05) affected MT, PDR and SB, while the interaction between
amaranth and sweet potato affected BD (p < 0.05); none of the components influenced PDR. The
optimized blend (68.7% wheat, 22.7% amaranth and 8.6% sweet potato) produced a bread with
the best crust and crumb appearance. This bread was comparable to that made with 100% wheat
in specific volume and textural characteristics, but had better protein quality, higher content of
fermentable fiber, pro-vitamin A, and bioactive compounds with good antioxidant capacity, and a
lower glycemic index.

Keywords: bread; wheat; amaranth; orange sweet potato; optimized blend

1. Introduction

The rich Mesoamerican ancestral diet included ingredients such as amaranth and sweet
potato in bakery products of high nutritional and functional quality [1]. The amaranth
grain is an excellent possibility for new recipes because of its high-quality proteins and
high content of minerals and dietary fibers [2,3]. Although sweet potato has been used
since old times, the orange sweet potato is a novel variety with an even richer content of
bioactive compounds such as phenolics and β-carotenes, with antioxidant properties [4].

The dietary habits have changed worldwide, promoting overweight and obesity due
to the high caloric intake associated with a low physical activity level. Among the foods
with a high contribution to energy are bread and pastries or sweet bakery products [5] with
a high content of fat and sugar and a low fiber content [6]; these are additionally, the more
common takeaway products, from Latin America to East Europe [5,6]. Therefore, a change
in the composition of bread and pastries could help to prevent excessive weight gain and
diet-related diseases and promote a healthy nutrition. The modification should be subtle to
maintain physical characteristics similar to those of the highly accepted wheat-made bread
while providing increased nutritional quality.

It is well known that a total or partial substitution of wheat flour with its ideal
properties for bread-making could induce negative changes in dough properties and crumb
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and crust appearance. Even a 15% amaranth flour replacement of wheat flour negatively
affected the physical and textural characteristics of bread, despite improving its nutritional
quality [7]. We prepared a 100% amaranth bread with good physical properties but with
quite different appearance and sensorial properties compared to wheat bread [3].

Orange sweet potatoes have been used also to prepare bread. A simple partial re-
placement of wheat flour by sweet potato puree produced bread with good nutritional
qualities [8]. In Nigeria, a very complex composite flour with sweet potatoes, soy concen-
trate, date palm powder and potato starch was prepared [4]; the bread presented a high
content of β-carotene and a low glycemic index. No information about its physical and tex-
tural properties was provided in the two former studies. Two Ghanaian-style breads, with
partial substitution of wheat flour with a sweet potato puree, including butter and milk,
were prepared and resulted to have high acceptability and a high β-carotene content [9],
but they could not replace the occidental wheat bread.

Our objective was to formulate an optimum blend of flours from wheat, amaranth
and orange sweet potato to obtain dough with the best properties to prepare bread with
similar physical properties to those of wheat bread. Additionally, we aimed to obtain better
nutritional qualities due to macronutrients, β-carotenes and total phenols as well as optimal
antioxidant capacity, amino acid score, fermentable fiber functionality and glycemic index
in vitro.

2. Materials and Methods
2.1. Materials

Popped amaranth seeds (Amaranthus hypochondriacus L.) were from an indigenous com-
munity in San Juan de Amecac, Puebla, Mexico. Orange sweet potatoes (Ipomoea batatas),
wheat flour, yeast, salt and sugar were from a local market. Chemical-grade reagents were
from Sigma Aldrich.

2.2. Flour Preparation and Property Analysis

The popped amaranth seeds were ground in a Pulvex 200 grinder (Molinos Pulvex,
Mexico City, Mexico) and sieved through a 250 µm mesh (US No. 60) in a Dura Tap sieve
shaker (DT168 Advantech Mfg. Co., New Berlin, WI, USA). The orange sweet potatoes
were peeled, cut into 2 cm cubes, blanched in boiling water for 5 s and dried in a Riossa
E-33 oven (Mexico City, Mexico) at 50 ◦C for 10 h. After drying, they were ground and
sieved as described for amaranth.

2.2.1. Proximate Analysis and Bioactive Compounds

Moisture (method 44-15A) and protein content (method 46-30B) were determined
according to the AACC [10]; total lipids (method 920.39) and ash (method 923.03) were
determined by AOAC methods [11]. Carbohydrates were calculated by difference. Total
phenolic compounds were analyzed according to [12]. DPPH scavenging capacity was
measured to determine the antioxidant activity [13]. Carotenoids were quantified by
HPLC [14]. All analyses were performed in triplicate.

2.2.2. Viscosity and Mixographic Measurements

RVA analysis was performed following the AACC method 76-21 [10]. Each flour blend
(3.5 ± 0.1 g, 14% moisture basis) was mixed with 25 ± 0.1 g of water, heated to 50 ◦C,
brought to 95 ◦C, kept at this temperature for 2.5 min, then cooled to 50 ◦C for 2 min;
setback (SB) and breakdown (BD) were obtained. Analyses were carried out in triplicate.

The mixographic measurements were performed on 30 g (14% moisture basis) of each
blend using a mixograph (model 9T51B508, National Manufacturing Co., Lincoln, NE,
USA), at 25 ◦C according to the AACC method 44-40A [10]. Mixing time (MT) and peak
dough resistance (PDR) were graphically evaluated.
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2.3. Flour Blend Optimization and Breadmaking

The amount of each flour (wheat, amaranth and sweet potato) was estimated using a
central composite rotational design with 3 factors, performing 18 experimental runs. The
proportion of wheat flour (X1) ranged from 50% to 70%, that of amaranth flour (X2) from
10% to 30%, and that of sweet potato flour (X3) from 5% to 10%, as shown in Table 1. Breads
were elaborated with the optimum blends as well as with 100% wheat flour as a control
(two replicates for each bread). For the control bread, we used the 10-10B method [10],
with 100 g of wheat flour, 1.5 g of salt, 2 g of yeast, 6 g of sugar, 3.43 g of fat and 54.28 mL
of water, considering the protein content of each blend at a 14% moisture basis and the
mixographic behavior.

Table 1. Matrix of the central composite rotational design and experimental values of the parameters
of the blends with percentages of wheat, popped amaranth and orange sweet potato.

Blend Wheat Amaranth Sweet Potato MT PDR SB BD

A 72.97 18.92 8.11 0.70 32.92 124 358
B 76.74 16.28 6.98 6.43 38.33 89 395
C 67.35 26.53 6.12 0.51 33.75 101 108
D 62.79 30.23 6.98 1.14 40.00 57 56
E 70.13 18.18 11.69 0.70 33.75 56 166
F 74.16 15.73 10.11 7.50 40.00 18 228
G 65.35 25.74 8.91 0.54 37.92 59 106
H 60.67 29.21 10.11 0.49 37.92 42 95
I 64.52 25.81 9.68 0.59 30.83 57 122
J 71.79 20.51 7.69 0.46 37.08 135 305
K 77.42 12.90 9.68 5.05 40.83 70 268
L 61.54 30.77 7.69 0.49 40.00 39 49
M 70.59 23.53 5.88 0.70 35.65 112 128
N 66.67 22.22 11.11 0.68 33.75 63 196
O 68.57 22.86 8.57 0.50 33.33 89 141
O 68.57 22.86 8.57 0.50 33.33 91 190
O 68.57 22.86 8.57 0.50 33.33 95 183
O 68.57 22.86 8.57 0.65 33.33 95 178

MT: mixing time; PDR: peak dough resistance; SB: set back; BD: breakdown.

For the breads prepared with the optimum blends instead of wheat alone, we omitted
punches, and they were molded just after mixing. For the final bread, sugar was reduced
by 50% (3 g). All doughs were fermented for 90 min.

2.4. Physical and Nutritional Composition of the Breads

Bread volume (cm3) was evaluated by the rapeseed displacement method, and the
specific volume was calculated in relation to weight (cm3/g). The texture analysis used
slides at 1.7 mm/s to compress the breads’ crumb center to 50% of their original height.
The parameters hardness, cohesiveness and chewiness [15] were measured by a double
compression test using a texturometer (TA-XT2, Stable Micro Systems Ltd., Godalming,
Surrey, UK). Three replicates of each measurement were examined.

The amino acid profile was analyzed by HPLC [16] in triplicate samples after acid
digestion and derivatization with o−ftalaldehide, in a Thermo Scientific Ultimate 3000
chromatograph with a C18 column Microsorb 100-3, and detection was performed by
fluorescence. The glycemic index was determined in vitro using a modification of the
method of Goñi et al. [17], with respect to glucose. Glucose was quantified by the D-Glucose
assay kit (GOPOD format) from Megazyme (K-GLUC). Dietary fiber was quantified using
a Megazyme kit (K-TDFR-200A).

Fiber in the optimal flour blend was fermented in vitro after gastrointestinal digestion,
in comparison to that of wheat flour, according to [18] with some modifications. Digestion
in vitro was carried out at 37 ◦C with pepsin and pancreatin for 1 and 6 h, respectively, and
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pancreatic amylase for 16 h. After centrifugation, the supernatant was evaluated for the
degree of hydrolysis and glucose content. The precipitates (fibrous residues) were analyzed
for moisture and nitrogen [10], total phenols and flavonoids [12]. Each fibrous residue
was used as a substrate for in vitro fermentation by the action of the microbiota from the
homogenized human feces of 10 healthy volunteers with healthy or ultra-processed dietary
patterns. The fecal homogenates were added to sterile medium plus each fibrous residue;
incubation was carried out in a 5% CO2 chamber at 37 ◦C [18]. Aliquots of each fermentation
were taken at 0, 12 and 24 h. Bacteroides spp. and Prevotella spp., the two bacterial genera
more common in the microbiota of the study population, were quantified as a proportion
of total bacterial DNA. Amplification of the bacterial 16S rRNA was performed with the
standard curve protocol in a StepOnePlus PCR system [19].

2.5. Statistical Analysis

We analyzed the values of the variables MT, PDR, SB and BD by response surface
methodology, fitting a quadratic model with the JMP 13.10 software (SAS Institute Inc.,
Cary, NC, USA). The second-order polynomial equation included the linear, quadratic and
interaction effects of the factors wheat, amaranth and sweet potato. Significant terms of
the model were found by analysis of variance (ANOVA) for each response. Lack of the
fit and determination coefficient (adjusted R2) were calculated to verify the accuracy and
adequacy of the model. Quadratic terms of the factors were not significant for the full
fitted model; therefore, they were moved out of the model. Additionally, 3-D surface plots
were generated with the same software. After obtaining the predictive models, the optimal
values of the independent variables for the optimum response were estimated using the
desirability function available from the response surface methodology. The criterion was
a maximum response for PDR and minimal ones for MT, SB and BD. One-way ANOVA
was applied for the proximate composition of flours and other variables of the obtained
breads and the Tukey–Kramer test for means comparison (or the Kruskal–Wallis test for
non-normal variables). Significance was considered at p < 0.05.

3. Results and Discussion

Table 2 presents the proximate composition of the wheat, amaranth and sweet potato
flours. Amaranth contained a higher level (p < 0.05) of protein than wheat, in addition to
minerals (as ashes in Table 2) and 15.73 ± 0.13% of dietary fiber as part of its carbohydrates.
Although the orange sweet potato appears poor in macronutrients, its starches reduce
the glycemic index of composite breads [20]. Additionally, this potato contains 14,692 ±
241 µg/100 g of β-carotenes and 235 ± 0.2 mg GAE/100 g of total polyphenols and has
an antioxidant capacity of 21.2 ± 5.3 µmol TE/g. The orange sweet potato is an excellent
source of phenolic compounds, with high antioxidant activity [4]. Although wheat bran
contains polyphenols with antioxidant capacity, the refined flour is not a good source of
them and does not contain β-carotenes.

Table 2. Proximate composition of the wheat, amaranth and sweet potato flours.

Flour Protein
(%)

Lipids
(%)

Moisture
(%) Ashes (%) Carbo-Hydrates

(%)

Wheat 11.6 ± 0.03 b 1.50 ± 0.09 b 8.98 ± 0.11 a 0.76 ± 0.01 c 77.18
Amaranth 17.9 ± 0.02 a 7.35 ± 0.17 a 3.62 ± 0.09 b 2.85 ± 0.01 b 68.24

Sweet potato 3.68 ± 0.08 c 0.26 ± 0.01 c 9.24 ± 0.12 a 3.52 ± 0.02 a 83.46
Results are expressed as mean ± SD of three determinations; different superscript letters within each column
represent significant differences at p < 0.05.

3.1. Optimized Blends for Breadmaking

The prediction models were adjusted by MT, PDR, SB and BD. Quadratic factors
were lost by adjusting; therefore, only linear and combined interactions remained. The
interaction between wheat (X1) and amaranth (X2) significantly affected (p < 0.05) MT,
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PDR and SB, explaining 73%, 79% and 76% of the variation, respectively. In addition, the
linear terms (X1, X2 and X3) were significant for PDR (p < 0.05). The interaction of wheat
(X1) and amaranth (X2) was negative for MT and PDR, while the same interaction was
positive for SB (p < 0.05). Finally, the interaction of amaranth (X2) and sweet potato (X3) was
significantly positive for BD (p < 0.05), with the highest R2 value and 86% of the variability
explained by the proposed model (Table 3).

Table 3. Significance and regression coefficients of the prediction models.

Variable Intercept X1 X2 X3 X1 * X2 X1 * X3 X2 * X3 R2 p-Value

MT −7517.7 75.3 75.0 75.1 * −0.04 −0.02 - 0.73 0.004
PDR 24,588.0 * −245.5 * −245.5 * −245.8 * −0.08 0.05 −0.06 0.79 0.003
SB 167,407.0 −1671.5 −1674.2 −1683.6 * 0.63 0.90 1.47 0.76 0.006
BD 194,835.7 −1941.4 −1959.5 −1954.3 −0.07 - * 4.98 0.86 0.000

MT: mixing time; PDR: peak dough resistance: SB: set back; BD: breakdown. X1: wheat, X2: amaranth, X3: sweet
potato. * Significant terms of the response variable.

The PDR behavior is important due to its direct correlation with the specific volume
of the produced bread [21]; conversely, MT is indirectly related to dough extensibility [22].
SB and BD are related to starch retrogradation and bread hardness, with low values being
positive for bread quality with respect to slow hardening and better stability [23]. Therefore,
these parameters are clear indicators of the bread-making quality.

Figure 1 shows the determinant ingredients for each variable’s response in addition
to their relationship to each other, all of them with a linear behavior. In panels I, II and
III corresponding to MT, SB and PDR, respectively, it is possible to see the interaction
of wheat with amaranth, which was significant for the three variables. Panel II shows
that blends containing less than 65% of wheat and 15% of amaranth were outside of
the predictor. Figure 1 (IV) presents the variable BD, which was only significant for the
interaction between sweet potato and amaranth, where amaranth had a higher influence
on the response changes. It is interesting to see that SB, PDR and BD in Figure 1 (II, III and
IV) were negative when more than 30% of amaranth was added, although only for PDR the
change was significant.

After optimization, four blends were obtained with 63–76% wheat, 13–30% amaranth
and 7–11% sweet potato flours (Table 4). Blends 1 and 2 were designed from the estimator
model of each variable; blend 3 was obtained from the central points of the range for each
ingredient. When searching for a blend with less than 68% wheat and a PDR higher than 33,
blend 4 appeared to satisfy these criteria, as shown in the design matrix. The PDR values
of the four blends ranged from 33 to 40, among the higher values of the matrix. The highest
MT value was 5 min, SB was low in all cases, and BD values ranged from 56 to 248, with 56
determined for blend 4.

3.2. Breadmaking and Product Characterization

Bread was prepared using the four optimized blends, in addition to 100% wheat as
a control. The resulting loaves of the optimum blends of wheat, amaranth and orange
sweet potato were good. Figure 2 shows the obtained crusts, smooth and without cracks.
The crumb appearance was uniform, with a yellow color because of the orange sweet
potato content. Clearly, it was an advantage to optimize the blends by the response surface
methodology, because no chemical additives were needed to obtain a good appearance in
spite of the even more than 30% substitution of wheat flour that caused a partial loss of
the functional gluten. Studies about bread elaboration with composite flours used a high
degree of orange sweet potato flour substitution [4,9]. They did not present information
about the resulting bread’s physical characteristics but a general description, because their
attempts were to contribute to reducing nutritional deficiencies in protein and vitamin A.
In the present study, the attempt was to offer a bread for sandwiches similar in appearance
but with better nutritional quality than the 100% wheat-containing commercial breads.
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Figure 1. Determinant ingredients for the response variables: MT, mixing time; PDR, peak dough
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Table 4. Predicted optimized formulations of the blends.

Ingredients (%) Response Variables

Blend Wheat Amaranth Sweet Potato MT PDR SB BD

1 74 16 10 3.8 37.4 65.7 248
2 76 13 11 5 41.51 28.5 219
3 68.7 22.7 8.6 0.6 33.7 93 189
4 62.8 30.2 7.0 1.1 40 57 56

MT: mixing time; PDR: peak dough resistance; SB: set back; BD: breakdown.

The different bread loaves prepared with the optimum blends were comparable in
textural characteristics to that made with 100% wheat flour, as shown in Table 5. However,
the breads made with blends 1 and 2 presented higher values for hardness and chewiness
than those of blends 3 and 4, and blend 3 was preferable to blend 4 because of a better
cohesiveness. Therefore, the bread with blend 3 was chosen for composition analyses.
These results are important to ensure the acceptability of the new highly nutritive bread,
especially by schoolchildren who may consume it in their sandwiches.



Foods 2022, 11, 1473 7 of 11

Foods 2022, 11, x FOR PEER REVIEW 7 of 11 
 

 

of the even more than 30% substitution of wheat flour that caused a partial loss of the 
functional gluten. Studies about bread elaboration with composite flours used a high de-
gree of orange sweet potato flour substitution [4,9]. They did not present information 
about the resulting bread’s physical characteristics but a general description, because their 
attempts were to contribute to reducing nutritional deficiencies in protein and vitamin A. 
In the present study, the attempt was to offer a bread for sandwiches similar in appearance 
but with better nutritional quality than the 100% wheat-containing commercial breads. 

The different bread loaves prepared with the optimum blends were comparable in 
textural characteristics to that made with 100% wheat flour, as shown in Table 5. However, 
the breads made with blends 1 and 2 presented higher values for hardness and chewiness 
than those of blends 3 and 4, and blend 3 was preferable to blend 4 because of a better 
cohesiveness. Therefore, the bread with blend 3 was chosen for composition analyses. 
These results are important to ensure the acceptability of the new highly nutritive bread, 
especially by schoolchildren who may consume it in their sandwiches. 

 
Figure 2. Appearance of the crusts and crumbs of the loaves made with the optimum blends of 
wheat, amaranth and orange sweet potato flours. 

Table 5. Specific volume and textural characteristics of the breads made with wheat flour and the 
optimal blends. 

Bread 
Specific Volume 

(cm3/g) ** Hardness (N) ** Cohesiveness * 
Chewiness * 

(kg/mm) 
Wheat 3.47 ± 0.3 ab 9.04 ± 1.7 ab 0.54 ab 4.62 ab 
Blend 1 3.25 ± 0.2 ab 10.44 ± 1.6 a 0.53 ab 5.20 ab 
Blend 2 3.21 ± 0.0 b 10.72 ± 1.2 a 0.51 b 5.33 a 
Blend 3 3.59 ± 0.1 a 6.66 ± 0.5 b 0.56 a 3.53 bc 
Blend 4 3.61 ± 0.1 a 7.03 ± 1.7 b 0.55 ab 3.53 bc 

Different letters along the columns indicate significance (p < 0.05). ** Comparison by Tukey–Kramer 
test: mean ± SD. * Median comparison, non-parametric Kruskal–Wallis test (value z > 1.96): medians. 
In all the cases, the interquartile for cohesiveness was 0.512–0.557, and that for chewiness was 3.46–
6.05. 

3.3. Nutritional Composition of the Produced Bread 
The proximate composition of the bread prepared with blend 3 is shown in Table 6, 

with similarities and differences with respect to the bread prepared with 100% wheat 
flour. There was no change (p > 0.05) in protein content, but the quality was different as 

Figure 2. Appearance of the crusts and crumbs of the loaves made with the optimum blends of wheat,
amaranth and orange sweet potato flours.

Table 5. Specific volume and textural characteristics of the breads made with wheat flour and the
optimal blends.

Bread Specific Volume
(cm3/g) ** Hardness (N) ** Cohesiveness * Chewiness *

(kg/mm)

Wheat 3.47 ± 0.3 ab 9.04 ± 1.7 ab 0.54 ab 4.62 ab

Blend 1 3.25 ± 0.2 ab 10.44 ± 1.6 a 0.53 ab 5.20 ab

Blend 2 3.21 ± 0.0 b 10.72 ± 1.2 a 0.51 b 5.33 a

Blend 3 3.59 ± 0.1 a 6.66 ± 0.5 b 0.56 a 3.53 bc

Blend 4 3.61 ± 0.1 a 7.03 ± 1.7 b 0.55 ab 3.53 bc

Different letters along the columns indicate significance (p < 0.05). ** Comparison by Tukey–Kramer test:
mean ± SD. * Median comparison, non-parametric Kruskal–Wallis test (value z > 1.96): medians. In all the
cases, the interquartile for cohesiveness was 0.512–0.557, and that for chewiness was 3.46–6.05.

3.3. Nutritional Composition of the Produced Bread

The proximate composition of the bread prepared with blend 3 is shown in Table 6,
with similarities and differences with respect to the bread prepared with 100% wheat flour.
There was no change (p > 0.05) in protein content, but the quality was different as explained
in the next paragraph. The bread from blend 3 contained a higher (p < 0.05) amount
of ash and lipids than the 100% wheat bread, because of the amaranth grain presence.
Although the total carbohydrates appeared to be exactly the same in proportion, we found
a difference in dietary fiber, as described below.

Table 6. Proximate composition of the breads prepared with blend 3 and with 100% wheat.

Bread Protein Moisture Ashes Lipids Carbo-
Hydrates

Blend 3 10.15 ± 0.1 a 38.1 ± 0.4 a 2.44 ± 0.02 a 3.0 ± 0.3 a 46.28
Wheat 10.12 ± 0.2 a 40.1 ± 0.1 a 1.70 ± 0.05 b 1.9 ± 0.0 b 46.13

Results are expressed as mean ± SD of three determinations. Different superscript letters within each column
represent significant differences at p < 0.05.

For healthy nutrition, the quantity of protein is very important as well as its quality,
evaluated on the basis of the indispensable amino acid profile and digestibility. A simple
evaluation of protein nutritional quality consists in quantifying the indispensable amino
acids and in calculating their proportion with respect to the recommended profile [24]. The
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smallest rate value corresponds to the limiting amino acid and is called amino acid score.
Table 7 presents the indispensable amino acid profile of the protein in the bread from blend
3; it exceeded the recommendation for almost all the indispensable amino acids, except for
Leu and Lys, although the limiting amino acid appeared to be Lys, with a score of 62 (or
0.62). Wheat protein showed a lower quality, with 0.49 for Lys, as the limiting amino acid.
Additionally, the digestibility of wheat protein was lower than that of the blend 3 protein,
as its degree of protein hydrolysis was 19% lower than that of blend 3, as evaluated after
the in vitro pepsin/pancreatin assay (assay for fiber fermentation). Due to the high content
of proline in gluten proteins, gastrointestinal enzymes are not able to cleave part of these
sequences [25].

Table 7. Indispensable amino acid profile of blend 3 protein and the reference pattern.

Amino Acid (AA)
g AA/100 g Protein

Blend 3 Wheat * Reference **

Ser + His 6.09 ± 0.10 6.89 ± 0.42 His 1.6
Thr 3.40 ± 0.06 2.70 ± 0.33 2.5

Met + Cys 3.75 ± 0.24 3.07 ± 0.37 SAA 2.3
Val 5.07 ± 0.01 4.03 ± 0.49 4.0

Phe + Tyr 7.60 ± 0.69 7.23 ± 0.88 AAA 4.1
Ile 4.06 ± 0.60 3.94 ± 0.48 3.0

Leu 5.42 ± 0.44 7.33 ± 0.89 6.1
Lys 2.98 ± 0.16 2.36 ± 0.29 4.8

Results are expressed as mean ± SD of three determinations. * Data from Hoehnel et al., 2020 [26]. ** FAO,
2013 [24]. SAA: sulphur amino acid (Met + Cys); AAA: aromatic amino acid (Phe, Trp, Tyr).

Because of its composition, the bread prepared with blend 3 provides dietary fiber,
β-carotenes and other compounds with antioxidant capacity. In addition, its glycemic index
is lower than that of conventional wheat bread. The results are shown in Table 8.

Table 8. Fiber, total phenolic compounds, β-carotenes, antioxidant capacity and glycemic index of
the bread made with blend 3.

Compound or Property Blend 3 Wheat

Dietary fiber (g/100 g) 4.98 ± 0.03 2.04 ± 0.03
Total phenolics (mg GAE/100 g) 83.13 ± 0.2 15.80 ± 0.3

β-carotenes (µg/100 g) 1123.2 ± 19.2 Traces
TEAC (mg TE/100 g) 242.4 ± 5.7
DPPH (mg TE/100 g) 67.5 ± 2 6.22 ± 0.2
ORAC (mg GA/100 g) 15 ± 0

Glycemic index 51.8 72.0
Results are expressed as mean ± SD of three determinations.

A very important quality of the bread made with blend 3 is its high dietary fiber
content, i.e., 4.98 g/100 g of bread in comparison to 2.04 g/100 g in wheat bread; this
characteristic is attributed to the high fiber content in amaranth. Currently, it is possible
to find several expensive commercial breads with wheat bran on their crust to suggest a
high fiber content. Such strategy is not a healthy advantage because it cannot mitigate the
adverse consequences of obesity as fermentable fibers do [27]. The fiber of blend 3 was
more fermentable, as described below, than that of wheat. The high fiber content is not
detectable by the tongue, which could increase the bread acceptability by children.

After 12 h of fermentation in vitro, Bacteroides and Prevotella remained in almost the
same proportions with respect to total bacteria when the source of fiber was 100% wheat
flour. In contrast, Bacteroides increased significantly (p < 0.05) after 12 h of fermentation
when the source of fiber was the blend 3 flour, while Prevotella levels remained similar
(p > 0.05). The important properties of fiber to sustain functions in the organism include
its capacity to react with water, its colligative property, its capacity to ferment and to
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chelate [28]. Such functions influence the metabolism directly or through the microbiota.
Although the fiber content of blend 3 was 5:1 insoluble:soluble, Prevotella did not increase
but Bacteroides did. It is possible that the Bacteroidetes composition was affected by the
content of total phenols in the fibrous residues of the bread made with blend 3.

With respect to total phenols and β-carotenes (Table 8), the baking process induced
losses. Oloniyo et al. [4] prepared blends with flours of orange sweet potato, soy concentrate,
date palm and potato starch, and processing significantly affected the β-carotene content.
Our results shown in Table 8 for β-carotenes and total phenols correspond to these previous
results [4] if the proportions are considered.

In spite of the antioxidant activity evaluated as TEAC or DPPH being affected by
processing, especially the long fermentation time and the high baking temperature, when
it was measured as ORAC, the value increased with respect to the original one. Possibly,
the phenolic compounds can be better detected by their ability to neutralize free peroxyl
radicals as ORAC does [29]. The glycemic index is a very important parameter for healthy
nutrition. It evaluates food carbohydrates from 0 to 100 as a measure of the velocity of
glucose increasing in the circulation of the consumers after eating [30]. The glycemic
index of the blend 3 bread was 51.8, a value that is considered low (≤55), and 27% lower
than that of the 100% wheat bread with a high index (≥70). In spite of differences in
composition, our blend 3 bread compares very well in glycemic index with those prepared
by Oloniyo et al. [4] with a different blend. Multiplying the value of the glycemic index as
a percentage by the available carbohydrates (without fiber) results in the glycemic load.
Therefore, a slice (26 g) of blend 3 bread has a glycemic load of 5.7, while a comparable slice
of 100% wheat bread has a glycemic load of 8.1. At the end, the blend 3 bread appeared
to contain less digestible carbohydrates than the wheat bread, which contribute to energy
consumption and eventually to excessive body weight gain.

4. Conclusions

The optimized blend 3 with 68.7% wheat, 22.7% amaranth and 8.6% sweet potato,
produced a bread with the best crust and crumb appearance. This bread was comparable
to that made with 100% wheat in specific volume and textural characteristics, but had a
better protein quality, higher content of fermentable fiber, pro-vitamin A, and bioactive
compounds with good antioxidant capacity, and a lower glycemic index.
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