
1Scientific RepoRts | 7:43343 | DOI: 10.1038/srep43343

www.nature.com/scientificreports

Modulation of circular current 
and associated magnetic field in a 
molecular junction: A new approach
Moumita Patra & Santanu K. Maiti

A new proposal is given to control local magnetic field in a molecular junction. In presence of finite bias 
a net circular current is established in the molecular ring which induces a magnetic field at its centre. 
Allowing a direct coupling between two electrodes, due to their close proximity, and changing its 
strength we can regulate circular current as well as magnetic field for a wide range, without disturbing 
any other physical parameters. We strongly believe that our proposal is quite robust compared to 
existing approaches of controlling local magnetic field and can be verified experimentally.

The study of electronic transport through single molecules has been the objects of intense research due to the 
fact that molecular components can be utilized as significant functional elements in electronic devices. In 1974 
Aviram and Ratner1 first proposed a unimolecular device considering a molecule as the basic building block, and 
latter many works have been done2–17 to explore electron transport through different simple as well as complex 
molecular structures.

Though a wealth of literature knowledge has been established in the field of molecular transport, most of the 
works have focused essentially on net junction current, while very few attempts have been made18–26 so far where 
distribution of current in different arms of a molecular junction has been analyzed. In presence of finite bias a 
net circular current is established in the molecular ring which results a non-zero magnetic field at its centre. 
Depending on bias voltage and molecule-to-electrode interface geometry this magnetic field becomes quite high 
and in some cases it becomes ~Millitesla (mT) or even ~T24,25. A number of recent investigations of electronic 
transport through molecular junctions24,25,27–29 have shown that in the limit of weak molecule-to-electrode cou-
pling much higher circular current is obtained in molecular loops compared to the net transport current across 
the junction. Possible applications of such high local magnetic fields in molecular systems came into limelight fol-
lowing the realization of controlling spin orientation20 of a cation site embedded in a conducting junction by the 
local magnetic field induced by loop current or the prediction of carbon nanotubes as molecular solenoids29–31. 
Considering a T-shape tape-porphyrin molecular wire Tagami and Tsukada have shown that the current which is 
established in the molecular loop produces the local magnetic field ~0.1 T at the bias voltage of 1.2 V, that can be 
utilized to regulate local spin orientation, and it has an important viewpoint as detecting the spin orientation by 
means of changing the bias polarity one can get a clear idea of the existence of circular current in the molecular 
loop. The phenomenon of circular current is also directly linked with other context the so-called current transfer 
process32, where a current imposed in one path affects a current in other arms exploring the quantum interference 
affect, which certainly demands a detailed analysis.

Though several suggestions were made for the possible exploitations of such high local magnetic fields at the molec-
ular regime, probably the most significant application can be the generation of spin-based quantum computers33–36.  
To achieve this goal proper spin regulation is highly important, which on the other hand requires finite tuning of 
magnetic field in a localized region. Few propositions have already been done along this direction. For instance, 
using phase locked infra-red laser pulses Pershin and Piermarocchi have shown37 that circular current can be 
established in an isolated quantum ring where the magnetic field reaches up to few mT. Utilizing this local mag-
netic field they have shown how the spin orientation, provided e.g., by a magnetic impurity embedded at the 
ring centre or on top of a ring, can be locally controlled by magnetic field due to the current in the ring. In other 
work Lidar and Thywissen have established38 that a localized magnetic field, which may reach up to 10 mT, can be 
generated with the help of an infinite array of parallel current carrying wires, though it has severe limitation due 
to heating effect and one has to work at much lower temperature (< 2.4 mK). Comparing all these propositions 
we can argue that bias induced magnetic field, associated with circular current, in a nano-junction is quite robust 
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and easy to operate24,25,39–41. The essential motivations behind the consideration of a molecular junction with 
loop structure(s) are as follows: (a) Bias induced circular current produces strong magnetic field (that can also 
be varied in a wide range) at the molecular/nano-scale level compared to the net junction current. At this length 
scale simple quantum wire cannot produce such a strong magnetic field. (b) Exploiting quantum interference 
effect several anomalous features can be observed in ring-like geometry, which are not possible in conducting 
junctions without any loop. (c) Spectral response of magnetic ions placed near or on the molecular ring to the 
current induced magnetic field gives an atypical observation of magnetic shielding and deshielding effect in NMR 
spectra of aromatic molecules42. (d) Another operation can also be implemented by assigning up and down spin 
states as two binary logic bits 0 and 1. The flipping of spin states, as a result of local magnetic field will correspond 
to the switching between 0 and 1 states, which thus carry quantum information. This is the basic principle used 
in designing quantum computation which reduces much power dissipation, compared to the conventional com-
puting which is charge based where two different charges are assigned to encode binary logic bits 0 and 1, and 
involves charge flow that costs excessive power loss. Thus, the study of circular current due to voltage bias in the 
molecular scale level is certainly worthy and interesting.

In the present paper we essentially focus on how to control circular current and associated magnetic field in a 
molecular junction having single or multiple loops coupled to source and drain electrodes. Due to close proximity 
electrons can directly hop between the end atomic sites of these two electrodes and tuning this coupling strength, 
which is done simply by changing the orientation/position of these electrodes, we can regulate circular current 
and associated magnetic field in a wide range. No one has addressed this issue before, to the best of our concern, 
and certainly gives a new insight to modulate electron transmission through a nano-junction.

Molecular Model and Theoretical Framework
The molecular junction is schematically shown in Fig. 1 where a benzene molecule is coupled to two 
one-dimensional (1D) perfect electrodes, viz, source and drain. The electrodes are connected to the molecule 
in ortho-configuration such that an electron can directly hop between the end atomic sites of these electrodes 
due to their close proximity which essentially provides a new path in addition to the conventional path i.e., the 
molecular ring.

To describe this model we use tight-binding (TB) framework, which is most convenient for analyzing elec-
tron transport through a molecular junction particularly in the limit of non-interacting electrons. The full 
Hamiltonian of the molecular junction can be written as: H =  HM +  HS +  HD +  HT, where HM corresponds to the 
Hamiltonian for the molecule, HS(D) represents the Hamiltonian for the source(drain) electrode and HT gives the 
tunneling Hamiltonian. In TB framework these sub-Hamiltonians are expressed as follows:
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Figure 1. Schematic view of a molecular junction where a benzene molecule is coupled to source (S) and 
drain (D) electrodes in ortho-configuration. Due to close proximity there exists a direct coupling between S 
and D which provides a new path along with the conventional path i.e., the bridging molecule.
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here †ci  and ci correspond to the creation and annihilation operators, respectively, for an electron at i-th site of the 
molecular ring, while these operators are †an , an and †bn , bn for the source and drain electrodes, respectively. The 
molecule is characterized by the on-site potential i  and nearest-neighbor hopping integral t, whereas for the side 
attached electrodes these parameters are 0 and t0, respectively. tS describes the molecular coupling with the 
source and it is tD for the drain. These electrodes are connected at the sites p and q (which are variable and 
nearest-neighbors). For this molecular junction (Fig. 1) p =  1 and q =  6. tc represents the inter-electrode coupling 
and it can be tuned either by changing the separation between the electrodes or by rotating them. Our main con-
cern in this article is how tc affects electronic transmission through the molecular junction.

To evaluate transmission probability across the molecular wire we adopt wave-guide theory24,25,43–45 where a 
set of coupled linear equations involving wave amplitudes at different lattice sites are solved. These coupled equa-
tions are generated from the Schrödinger equation ψ ψ=H E , considering ψ  in the form:
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where An, Bn and Ci correspond to the amplitudes for an electron at site n of the source/drain electrode and at the 
site i of the ring, respectively. In terms of the reflection and transmission coefficients r and τ, the amplitudes An 
and Bn can be written as = ++ − +A e ren

ik n ik n( 1) ( 1) and Bn =  τeikn, where we assume that a plane wave with unit 
amplitude is coming from the source. Thus for each wave vector k, associated with energy E, we calculate τ from 
the set of linear equations and get the transmission probability
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Using the transmission function T(E), net junction current at absolute zero temperature for a particular volt-
age bias V is determined from the relation46
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where EF is the equilibrium Fermi energy.
Now to find circular current in the molecular ring we need to calculate current carried by individual bonds. 

For any such bond, connecting the sites i and i +  1, it becomes24,25
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relation24,25,39–41
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where L =  Na, a being the lattice spacing and N represents the total number of atomic sites in the bridging mole-
cule. We assign a positive sign to a current flowing in the anti-clockwise direction.

Due to this circular current a net magnetic field is established. The local magnetic field at any arbitrary point r 
(say) inside the molecule can be determined using the Biot-Savart’s law24,25,39–41
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where μ0 is the magnetic constant.

Results and Discussion
Based on the above theoretical framework now we present our results which include two-terminal transmission 
probability, junction current, circular current and associated magnetic field at the ring centre. There are some 
physical parameters those values are kept constant throughout the numerical calculations. These parameter are 
described as follows. In the molecular ring we choose = − .1 5eVi  and t =  2.5 eV, while for the side-attached 
electrodes they are: = 00  and t0 =  3 eV. The molecule-to-electrode coupling parameters (tS and tD) are fixed at 
1 eV, and the equilibrium Fermi energy EF is set at zero. The values of other physical parameters, those are not 
same for all figures, are specified in appropriate places. To calculate magnetic field we assume the perpendicular 
distance from the centre of the benzene ring to any C-C bond is ~0.13 nm25.



www.nature.com/scientificreports/

4Scientific RepoRts | 7:43343 | DOI: 10.1038/srep43343

Before going to the central part of our analysis i.e., how direct coupling (tc) affects circular current and induced 
magnetic field, let us focus on transmission probability and junction current. In Fig. 2 we present the variation 
of two-terminal transmission probability as a function of injecting electron energy for the benzene molecule 
considering some typical values of tc. For tc =  0 fine resonant peaks associated with energy eigenvalues of the 
molecular ring are obtained while the transmission probability drops very close to zero for all other energies. This 
behavior has already been discussed in several earlier papers12,17,24 for ortho-connected benzene ring. The situa-
tion becomes very interesting when we include the effect of tc. Apparently it shows that electron gets transmitted 
almost for the entire energy window and the transmission amplitude gradually increases with the rise of tc. But, 
a careful inspection yields many fascinating points. To reveal this fact we select a small part of the spectrum, the 
dashed framed region, and place its zoomed version in the inset. Very interestingly we see that a sharp dip (van-
ishing transmission) appears at ~E =  1 eV, and above and below this dip resonant curves exhibit completely oppo-
site behavior. One side of this dip, the height of the peak increases while in the other side it gradually decreases 
with respect to the coupling parameter tc. This feature is also observed in other energies where a transmission 
peak is followed by a dip. It is an important observation since one can get higher and/or lower electronic trans-
mission at different energies simply by tuning the external coupling parameter tc, without changing any other 
physical variables. The anomalous feature in this ring-like geometry is observed due to the presence of the new 
path between the electrodes. A combined interference effect among electronic waves passing through different 
arms (upper and lower arms of the molecular ring including the external new path) leads to such a nice phenom-
enon, and of course would not be noticed in molecular junctions without any loop structure. Thus a competition 
takes place between the interfering paths i.e., the molecular arms and the external path, and the response depends 
on the resultant of all these paths. For strong enough tc electrons mostly follow the external path, avoiding the 
conventional molecular ring.

The above signature is clearly reflected in the current-voltage characteristics as the junction current is eval-
uated by integrating transmission function T over an energy window associated with the bias voltage V (Eq. 7). 
Figure 3 displays the dependence of junction current IT with applied bias voltage V for the othro-connected ben-
zene molecule for some specific values of tc. The current starts increasing approximately linearly with V, while a 
sudden change of its amplitude takes place at a critical voltage (V ~ 2 V). This sudden jump is associated with the 

Figure 2. Two-terminal transmission probability (T) as a function of energy (E) for the molecular junction 
(shown in Fig. 1) at some typical values of tc. The inset of the figure represents the zoomed version of the 
dashed framed region. A sharp dip (vanishing transmission) is observed at ~E =  1 eV and across this dip 
resonant peaks exhibit completely opposite scenario. In the right side the peak height gradually increases with tc, 
while it decreases with tc in the other side of the dip. The similar feature is also observed in other energies where 
a transmission peak is followed by a dip.

Figure 3. Junction current IT as a function of applied bias voltage V for the ortho-connected benzene 
molecule considering identical values of tc as taken in Fig. 2.
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crossing of one of the resonant energy levels which is clearly seen from the T-E spectrum (Fig. 2). Most interest-
ingly we see that for low enough tc current is smaller (green line) compared to the molecular junction without any 
tc (red line), but eventually the current increases sharply with tc, following the T-E curve (Fig. 2).

Now we concentrate on the variations of circular current and induced magnetic field produced at the ring 
centre for the molecular junction given in Fig. 1. The results are presented in Fig. 4. Unlike junction current (IT), 
circular current (Ic) changes its sign in different voltage regimes for any side (positive or negative) of the applied 
bias. And also the magnitude of Ic may be sufficiently large compared to the transport current IT, depending on 
the external voltage V. For narrow voltages when no resonant energy level appears within the voltage window 
we get vanishing circular current. While a non-zero contribution comes when anyone of such energy levels lies 
within the voltage window. With increasing voltage more and more resonant energy levels appear within the 
window and all of them contribute to the current, resulting a net circular current which may be positive or neg-
ative depending of the sign of the dominating energy levels (the sign reversal can be clearly understood from the 
forthcoming analysis). Though junction current always increases with voltage bias in conventional conducting 
junctions (where negative differential resistance effect is not considered). Most importantly, the magnetic field 
which is developed at the ring centre as a result of this circular current is surprisingly high, and it increases sig-
nificantly with tc. For a wide voltage region (> ~2 V) the magnetic field remains almost constant for any specific tc 
(Fig. 4), following Ic, as within this window there is no other energy channel to contribute current.

In order to see more clearly the dependence of circular current and associated magnetic field on tc in Fig. 5 
we present their variations as a function of tc for some typical values of bias voltage V. It is observed that both the 
circular current and induced magnetic field decrease with tc and reaching to zero, and eventually they increase 
with increasing the coupling parameter tc. For lower tc, one of the doubly degenerate energy levels comes within 
the voltage window (the degeneracy disappears as a result of molecule-to-electrode coupling) which contributes 
to the current. But as we increase tc the other resonant energy levels also appear within this bias window and 
contributes current in opposite direction with respect to the earlier one yielding a reduction of current. Finally, 
when they become exactly opposite with each other a vanishing net current is obtained. Beyond this critical 
value of tc both these states contribute in the same direction providing a resultant higher circular current. From 
this behavior it can be manifested that tuning the coupling between source and drain electrodes one can regulate 
circular current and thus locally control induced magnetic field for a wide range starting from zero to few Tesla. 
Certainly this phenomenon gives a new way of controlling magnetic field in a specific region without disturbing 
any physical parameters of the system and can be utilized in designing effective spin based quantum devices.

The sign reversal of circular current, and hence the induced magnetic field, with tc for different voltages can be 
clearly understood from the variation of bond currents, as circular current is determined from the bond currents 
(Eq. 9). The variations of two bond currents, where the bonds are chosen from the two arms of the junction, with 
bias voltage are shown in Fig. 6. The results are computed for two typical values of tc, one for which Ic is negative 

Figure 4. Circular current Ic and associated magnetic field B at the centre of the benzene molecule as a 
function of bias voltage for different values of tc. 

Figure 5. Dependence of Ic and B with tc for the benzene molecule at some typical bias voltages. The dashed 
horizontal line represents the line of zero circular current.
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in Fig. 5 (tc =  0.25 eV) and for the other (tc =  0.75 eV) Ic becomes positive in Fig. 5. From the spectra given in Fig. 6 
it is clearly noticed that for a fixed tc bond current changes its sign with voltage. At the same footing for a fixed 
bias voltage the sign reversal of bond current also takes place with the change of tc yielding a change of sign of the 
circular current Ic.

The results presented above are worked out for the molecular wire containing only the benzene molecule. 
So the question naturally comes whether similar kind of behavior is observed in other molecular wires with 
higher number of loops. To answer it now we analyze the behavior of circular current and associated magnetic 

Figure 6. Bond currents (two bonds are taken from two arms of the molecular junction) as a function 
of bias voltage for the benzene molecule at two different values of tc. We choose these two typical values of 
tc to explore the sign reversal of circular current and induced magnetic field displayed in Fig. 5. The dashed 
horizontal line represents the line of zero bond current.
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Figure 7. Schematic view of another molecular junction where the benzene molecule is replaced by 
porphyrin molecule. The ring-to-electrode configuration remains same as in Fig. 1. The numbers 1, 2 … , 5 
represents the loop numbers.
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field of other relevant molecular structure, namely, porphyrin, that is connected with the source and drain 
electrodes as prescribed in Fig. 7, analogous to the configuration given in Fig. 1. The results are shown in Fig. 8. 
Qualitatively the circular currents and induced magnetic fields in different sub-loops of the porphyrin mole-
cule exhibit almost similar characteristic features to what we get for the case of benzene molecule (Fig. 5). An 
additional important feature is that in some wide voltage regions circular currents in different loops are oppo-
site in sign. Note that the magnitude of circular current in the four outer loops is much larger compared to the 
bigger inner one. Here it is relevant to note that based on circular current induced magnetic field, controlling 
of spin orientation of a cation site embedded in the T-shape tape-porphyrin molecular wires has already been 
discussed elaborately in ref. 20. Identical features are also obtained for other molecular junctions involving 
several such molecular loops (not shown here) which we confirm through our detailed numerical calculations. 
Thus, one can in principle consider a molecular system where magnetic fields of variable strengths can be 
established in different sub-regions of the geometry that might be very helpful for designing nanoelectronic 
quantum devices.

Summary
In this work we have demonstrated how to control local magnetic field in a wide region (from zero to a surpris-
ingly large value) considering a simple molecular structure by introducing a new path between two electrodes. 
Using the wave-guide theory, we have calculated two-terminal transmission probability, junction current, circu-
lar current and current induced magnetic field at ring centre(s) based on a coherent tight-binding framework.  
Our finding, to the best of our concern, gives a unique idea of regulating electron transport through a conducting 
junction.

Figure 8. Circular current (Ic,n, n =  1, 2 … , 5) and induced magnetic field (B) in different sub-loops (presented 
in (a–e)) of the molecular junction shown in Fig. 7 as a function of tc for some typical bias voltages.
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