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Abstract

Background: Genome assembly is difficult due to repeated sequences within the genome, which create
ambiguities and cause the final assembly to be broken up into many separate sequences (contigs). Long range
linking information, such as mate-pairs or mapping data, is necessary to help assembly software resolve repeats,
thereby leading to a more complete reconstruction of genomes. Prior work has used optical maps for validating
assemblies and scaffolding contigs, after an initial assembly has been produced. However, optical maps have not
previously been used within the genome assembly process. Here, we use optical map information within the
popular de Bruijn graph assembly paradigm to eliminate paths in the de Bruijn graph which are not consistent
with the optical map and help determine the correct reconstruction of the genome.

Results: We developed a new algorithm called AGORA: Assembly Guided by Optical Restriction Alignment.
AGORA is the first algorithm to use optical map information directly within the de Bruijn graph framework to
help produce an accurate assembly of a genome that is consistent with the optical map information provided.
Our simulations on bacterial genomes show that AGORA is effective at producing assemblies closely matching
the reference sequences.
Additionally, we show that noise in the optical map can have a strong impact on the final assembly quality for
some complex genomes, and we also measure how various characteristics of the starting de Bruijn graph may
impact the quality of the final assembly. Lastly, we show that a proper choice of restriction enzyme for the
optical map may substantially improve the quality of the final assembly.

Conclusions: Our work shows that optical maps can be used effectively to assemble genomes within the de Bruijn
graph assembly framework. Our experiments also provide insights into the characteristics of the mapping data that
most affect the performance of our algorithm, indicating the potential benefit of more accurate optical mapping
technologies, such as nano-coding.
Background
Although next generation genome sequencing approaches
have improved greatly over the last decade, genome
sequencing and assembly still relies primarily on shotgun
sequencing [1,2]. Genome assembly, the process of recon-
structing the original genome sequence from sequence
reads, is made difficult by the fact that the most com-
monly used sequencing technologies only produce reads
between 35 base pairs (bp) and 1 kilo base pairs (kbp)
long. Repetitive sequences longer than read lengths lead to
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ambiguities in the assembly, and additional information
from paired-end reads [3] is required to resolve those
ambiguities. However, information from paired-end reads
is often still insufficient for a comprehensive reconstruc-
tion of the original genome sequence [4].
Genome assembly is aided by Optical Mapping--a

single molecule system [5-11] for the construction of
genome-wide ordered restriction maps through the
assembly of (400–500 kbp) genomic DNA, restriction
digested and mapped in situ. The optical mapping sys-
tem provides estimates on the locations of restriction-
enzyme recognition sequences within a genome. Although
optical maps have been used previously to provide a means
for scaffolding and validation, in addition to discernment
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of structural variants [7,11], optical map data is com-
monly used only after a nascent sequence is produced
[12] by a genome assembler.
Here, we explore an alternative approach for genome

assembly leveraging optical map data within the popular
de Bruijn graph assembly paradigm, developing an algo-
rithm we call AGORA: Assembly Guided by Optical
Restriction Alignments. We analyze the advantages of
utilizing AGORA with optical map information in con-
structing accurate and comprehensive assemblies. Our
algorithm and analysis present the first results showing
the benefits of using optical maps within the de Bruijn
graph assembly paradigm.
Initial simulations show that our algorithm is effective

at providing comprehensive assemblies of bacterial gen-
omes, given an optical map with simulated errors and
an error-free de Bruijn graph with k-mer size 100. The
majority of our assemblies match the original reference
sequences very closely. We also measure how the com-
plexity of a genome's repeat structure, reflected in char-
acteristics of the de Bruijn graph, impact AGORA's
assembly accuracy. In addition, we investigate how op-
tical mapping error and the choice of restriction enzyme
can affect the quality of the final sequence assembly.
Moreover, we verify that AGORA works with an experi-
mentally determined optical map from the Yersinia
pestis KIM genome [13]. Finally, we also explore the
applicability of our methods to assembly graphs pro-
duced from real sequence reads with errors, and provide
a comparison of our results to what can be achieved
through the use of mate-pairs (as described in [4]).

Optical mapping
The Optical Mapping system was first described in 1993
[5,14,15] as a single molecule platform capable of whole
genome analysis and as a way to quickly construct phys-
ical maps to aid in genome assembly. Optical Mapping
produces ordered restriction maps constructed from
individual molecules (Rmaps), comprised of an ordered
list of restriction fragments identified within each mol-
ecule after digestion with a restriction enzyme. The con-
struction of a genome-wide optical map employs assembly
techniques akin to those used for sequence assembly
[9,10,16], modified to account for error in the Rmaps
[9,10,17,18]. The resulting genome-wide optical map pro-
duced by this process provides a globally ordered list of
restriction fragment sizes across the entire genome.
Previously, algorithms have been developed [13,19-23]

to use optical maps to verify and scaffold contigs (partial
segments of genome sequence). This scaffolding and
validation process is done by first computing for each
contig an in silico map, which is an ordered restriction
map (represented as an ordered list of fragment sizes)
constructed computationally by finding all occurrences
of the restriction enzyme recognition sequence within
each contig. The size and order of the fragments within
the in silico map are then compared to the sequence of
fragments within the optical map of the genome (in a
manner analogous to sequence alignment [24]), with the
goal of assigning the contig to a single location within
the optical map. Recent work by Nagarajan, et al. [12]
employs a dynamic programming algorithm to align
contigs to an optical map to form a scaffold for the con-
tigs. The validation of contigs is similarly performed
by comparing an in silico map of each contig with an
experimentally determined optical map.

De Bruijn graph assembly
In this paper, we explore the benefits of using optical
maps within the de Bruijn graph genome assembly
framework first proposed by Pevzner et al. [25]. A de
Bruijn graph is a graph whose nodes correspond to
k-mers (sequences of length k) and edges correspond to
(k + 1)-mers; an edge may join two nodes if one of the
nodes is a prefix of the edge and the other is a suffix. In
the context of genome assembly, a node is created for
each k-mer in the set of reads and an edge for each
(k + 1)-mer. In this formulation, genome assembly is
reduced to finding a “Chinese postman path” [26], a path
through the de Bruijn graph that visits all edges at least
once, which represents the true genome sequence. A full
description of this approach is beyond the scope of our
paper. Readers interested in more details should refer
to [25,27,28].
Practical implementations of the de Bruijn graph

assembly paradigm have been used successfully in prac-
tice [27-33], and must tackle two major challenges:
the presence of sequencing errors, which induce false
k-mers in the graph, and the presence of repeats. Due to
repeats, the number of Chinese postman paths in the
de Bruijn graph can be exponential in the number of
nodes and edges [34], making it infeasible to identify
the one path that correctly matches the sequence of
the genome being assembled. Furthermore, imposing
additional constraints on the reconstruction of the
genome leads to computationally intractable formula-
tions (see, e.g., [35,36]).
In practice, implementations of this approach forgo

the ultimate goal of correctly reconstructing the entire
genome sequence and instead attempt to reconstruct a
collection of contigs, which generally represent repeat-
free sub-paths in the graph. Once these segments have
been constructed, additional information from paired-
end read data is typically used to resolve repeats and
generate scaffolds.
Although paired-end information is generally used

only after an initial assembly is produced, recently,
Narzisi and Mishra proposed a new algorithm SUTTA
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[37], which uses paired-end read information within the
genome assembly process. The algorithm uses pair-end
information to prioritize a greedy branch and bound tra-
versal of the assembly graph according to paired-end
constraints, thereby resolving repeats and potentially
generating longer contigs. They suggest that optical
mapping information could be used in a similar way, but
do not provide the details of such an implementation.
Here, we design and implement the first algorithm that
uses optical mapping data during assembly, employing a
framework similar in spirit to the one used by SUTTA,
along with several additional improvements. We also
use AGORA to explore the effect of the other para-
meters, such as noise in the optical mapping process,
on our ability to effectively reconstruct the sequence of
bacterial genomes.

Overview of AGORA
As outlined above, genome assembly can be effectively
formulated as the search for a path within a de Bruijn
graph that “spells” the same sequence as the genome
being assembled. Optical map information can guide the
search for this correct path by eliminating alternate
paths that are not consistent with the optical map. To
guide the search, an in silico map of the sequence corre-
sponding to a partially completed path can be compared
to the optical map. If the two maps disagree, we can dis-
card the path as incorrect. As a result, we can quickly
prune the set of possible paths, and find a Chinese post-
man path matching the optical map, which is likely
to represent the true reconstruction of the genome.
Although imposing map-based constraints on the traver-
sals of the graph leads to computationally intractable
problems similar to the Longest Path Problem (a well
known problem in computational graph theory, see e.g.,
[38]) and the Edge Disjoint Paths Problem [39], we show
that appropriately chosen heuristics lead to a practical
implementation that solves the map-guided assembly
problem effectively for bacterial genomes.
A key idea for making our search tractable in practice

is the identification of edges within the de Bruijn graph
which only match at one location in the genome optical
map. These landmark edges seed our search, and dra-
matically reduce the number of paths that need to be
investigated. After identifying landmark edges, we then
proceed to search for paths connecting pairs of consecu-
tive landmark edges, ensuring that these paths are con-
sistent with the optical map. Although finding a suitable
path between consecutive landmark edges may still
require exponential time, our experiments on bacterial
genomes show that the search process between land-
mark edges is generally solvable in practice.
To search for paths between landmark edges, we use a

refined version of depth first search. As the depth first
search proceeds, we check if the in silico map of the
current path matches the optical map, and if so, we
proceed with the depth first search. Otherwise, we back-
track and proceed along a different path until we find a
path to the next landmark matching the optical map.
With a few additional modifications to the algorithm to
improve efficiency (described in the Methods section),
AGORA was generally able to find a path in the de
Bruijn graph with a sequence and corresponding in silico
map consistent with the optical map. Although there
may be multiple paths in the de Bruijn graph that yield
a sequence with an in silico map matching the genome
optical map, our simulations show that these paths
typically yield very similar sequences, differing only in
the reconstruction of small complex repeat regions.

Results and discussion
Experimental setup
We analyzed the performance of AGORA on 369
sequenced bacterial genomes, using error-free de Bruijn
graphs generated from the complete genome sequences
as previously described in [34] and optical maps simu-
lated from the sequences. In addition, we also tested
AGORA on a published optical map of the Y. pestis
KIM genome [13]. Note that the error-free de Bruijn
graph of a genome sequence of order k is identical
to the de Bruijn graph constructed from a collection of
error-free sequence reads where every k-mer in the
genome is covered by at least one read. The de Bruijn
graph of each sequence was simplified by replacing uni-
paths (a path in which all of the nodes have in-degree =
out-degree = 1 [28,32]) with a single edge representing
the longer sequence, along with other de Bruijn graph
simplifications, which preserve all the information rele-
vant for genome reconstruction from the original de
Bruijn graph (see [34] for further details on the simplifi-
cation procedures). Moreover, we collapsed parallel edges
with greater than 99% sequence similarity, as long as the
difference in the sequences did not create or remove any
restriction sites (see Methods for more details).
To simulate optical maps from a genome sequence, we

first compute an in silico map of the sequence and then
perturb the fragments within this map by sampling from
an error distribution. We modeled three different error
levels – high, medium and low — and simulated one op-
tical map from each of these distributions to measure
the effect of optical mapping error on assembly quality.
Although the error simulation is a simple process which
may not capture the full characteristics of experimentally
generated optical maps (see Methods for details), the
results nonetheless show the impact of noise on the final
assembly quality. The high error setting has characteris-
tics matching the maximum fragment sizing error and
maximum size of small fragments lost observed in the



Table 1 Statistics of the de Bruijn graphs and optical
maps used in our simulations

Min Median Mean Max

Nodes 1 35 63.63 1,023

Edges 3 110 324.4 14,251

N50 Size (kbp) 14 212.1 419.2 3,587

Genome Length (Mbp) 0.34 2.91 3.2 9.14

Restriction Sites 6 334 491.7 9,668

The de Bruijn graphs for 369 bacterial genomes were generated with k-mer
size 100 from the known sequences from [34] (without errors and without
bubble collapsing), and the N50 size was computed for each genome, treating
each edge in the de Bruijn graph as a separate contig. The row “Restriction
Sites” refers to the number of cuts within the genome when using the
restriction enzyme BamHI.
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experimental Y. pestis KIM optical map, while the low
error setting corresponds to what might be achievable
with the new nano-coding technology [40]. The low
error setting can noticeably improve the performance of
our algorithm since it does not remove small fragments
from the optical map. A more precise description of the
three levels of noise used in our simulations can be
found in the Methods section.
After running AGORA, we used four different metrics

to measure the quality of the final path through the de
Bruijn graph and the sequence associated with it. (See
Methods for detailed descriptions of these measures.)
Our first metric, sequence correctness, roughly corre-
sponds to the percentage of the final sequence that was
assembled in the correct order. Our second metric, edge
correctness, is the number of graph edges placed in the
correct order divided by the total number of edges in
the de Bruijn graph. The last two metrics measuring the
final N50 size and number of contigs produced by our
algorithm are computed after breaking the reconstructed
sequence (from the path found by AGORA) wherever an
error occurs, and treating sequence segments between
errors as independent contigs produced by our assem-
bler. This approach is consistent with the one used by
Salzberg et al. [41] in the context of assembly evaluation.
These final contig statistics are then compared against
the original N50 size and number of contigs that would
arise if one were to treat each edge in the starting de
Bruijn graph as a separate contig.

Assembly of bacterial genomes with simulated optical maps
We start by measuring the performance of AGORA on
assembling 369 bacterial genomes, providing as input
their simplified de Bruijn graphs of order k = 100, which
are equivalent to the graphs that can be obtained in an
error-free sequencing experiment generating reads
longer than 100 bp, covering each k-mer of length 100
in the genome. For each genome, we computationally
generated BamHI (recognition sequence G^GATCC)
in silico maps for simulating optical maps. Statistics
summarizing the number of restriction sites in the
in silico map of each genome and the characteristics of
the de Bruijn graphs of the genomes are shown in Table 1.
Table 1 provides some indication of the complexity of

the genomes in our test data set, as measured by their
corresponding de Bruijn graphs. The number of nodes
in each de Bruijn graph roughly represents the number
of distinct repeat sequences longer than 100 bp occur-
ring in the genome, while the number of edges roughly
represents the number of times those repeated
sequences occur in the genome. Genomes with more
nodes and edges in the de Bruijn graph are generally
more difficult to assemble, since they contain more
repeat sequences.
To determine how well we could assemble the 369
bacterial genomes with the help of optical maps, we
ran our algorithm on each de Bruijn graph and optical
maps simulated with the three different error settings
described above. We then measured the quality of our
assemblies based on sequence correctness, edge correct-
ness, N50 size, and number of contigs. The results are
aggregated in Figure 1, and per-genome information is
provided in Additional file 1.
As we can see in Figure 1a, AGORA assembles over

3/4 of all genomes with greater than 98% sequence cor-
rectness for all three error settings. The mean sequence
correctness in the high, medium, and low error settings
were 89.2%, 91.9%, and 95.9%, respectively. The means
were lower than the median sequence correctness values
due to a few very complex genomes for which the
algorithm could only assemble a small fraction of the
genome, producing outliers which are not shown in
the Figure 1. When measuring the number of edges
assembled in the correct order as shown in Figure 1b,
the edge correctness percentages are lower than the
sequence correctness percentages, primarily because
edges with short sequences (typically under 1 kbp in
length) may be misplaced by our algorithm due to a lack
of restriction sites. Although AGORA may misplace
10%-20% of the de Bruijn graph edges, these edges typic-
ally contribute to less than 2% of the genome assembled,
as indicated by the sequence correctness boxplot shown
in Figure 1a.
In Figure 1c and 1d, we plot statistics on the final N50

size and number of contigs that would result if we were
to break the final path produced by AGORA wherever a
mistake is made, and compare these values with the ini-
tial quality of the assembly before using mapping data.
We can see in the figures that our algorithm substan-
tially improves the N50 size and number of contigs,
even after errors are accounted for. When measuring
the overall improvement in N50 size we found that, in
the median case, the N50 size increased by a factor of



Figure 1 Assessment of the quality of bacterial genome assemblies. Measurements of the quality of assemblies produced by our algorithm
on 369 bacterial genomes under three different optical map error rates. In each boxplot, we extend the whiskers beyond the upper and lower
quartiles for 1.5 times the interquartile range, and omit outliers beyond the whiskers. (a) Sequence correctness of the assemblies, measuring the
percent of the genome that was correctly assembled. (76, 72, and 65 outliers are not shown the high, medium, and low error bars, respectively.)
Over 3/4 of the genomes are assembled with greater than 98% sequence correctness, even in the high error setting. (b) Percent of edges
assembled in the correct order by our algorithm on the 369 genomes, over three error rates. The percent of edges correct is generally lower
than the sequence correctness percentages, but the difference is mostly due to short edges misplaced by the algorithm. (26, 33, and 37 outliers
are not shown in the high, medium, and low error settings, respectively.) (c) N50 size of the final contigs produced by our algorithm, after
breaking genomic segments at assembly errors, normalized by genome size. (54 outliers were omitted from the first bar, measuring assembly
without a map.) (d) Number of contigs that would be produced with no optical map (and only the de Bruijn graph), and with optical maps
simulated with three different levels of noise. (We omit 42, 53, 50, and 45 outliers in the no map, high error, medium error, and low error settings,
respectively.) We see a substantial improvement in both the final number of contigs and the final N50 size, when given an optical map with any
one of the three error rates.
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between 3.61 and 4.09, while the mean improvement
was between 5.44 and 5.77, depending on the level of
mapping error simulated. Similarly, the number of con-
tigs decreased by a factor of between 3.48 and 5.15
in the median case, and the mean improvement was
between 6.67 and 10.74. In addition, we found that we
had assembled 43, 52, and 69 genomes perfectly into a
single contig representing the entire genome sequence in
the high, medium, and low settings, respectively.
AGORA finished in under one minute for 3/4 of
instances, while the longest runtime was around 20 min-
utes. Note that we forced the algorithm to skip to the
next landmark if no path could be found within one mi-
nute (see Methods for more details), since our tests
required running the algorithm more than 1,000 times.
We do not expect this time limitation to significantly
affect the median and quartile statistics, as only 18.1%
percent of genomes had any regions skipped. Those
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genomes were generally complex genomes with assem-
bly quality in the lowest quartile, and additional running
time did not improve their assembly quality significantly.
In addition to the aggregate statistics shown in Figure 1,

we also individually compared the original and final N50
sizes produced by our algorithm for each genome using
the medium error setting. In Figure 2, we plot a point
for each genome at its original and final N50 size, after
normalizing by genome length. We see that most gen-
omes have substantial improvement in N50 size, with
some genomes even having normalized N50 size starting
below 20% and improving to nearly 100% after assembly.
Some genomes with normalized N50 size starting below
20% did not improve much, mostly because the corre-
sponding graphs contained many short edges without
any restriction sites, making it difficult to place those
edges on the optical map and rule out incorrect paths in
the de Bruijn graph.
As the normalized N50 size did not seem to predict

very well how accurately we could assemble the final
genome, we performed further statistical analyses to test
whether other factors were more correlated with the
final assembly quality. We computed Spearman’s rank
correlation coefficient between sequence correctness and
various de Bruijn graph characteristics. We found that
Figure 2 Improvement in normalized N50 size after assembly.
For each of our 369 bacterial genomes, we plot the initial
normalized N50 size (x axis) relative to the normalized N50 size after
assembly (y axis) when provided a simulated optical map with the
medium error rate, as described in the Methods section. The N50
sizes are normalized by dividing by the genome length. Most
genomes exhibit substantial improvement in the normalized N50
size with the exception of complex genomes (with low initial
normalized N50 size), and some simple genomes (with initial N50
size already close to the entire genome size).
the sequence correctness obtained by AGORA had the
highest correlation with the average edge length of
the de Bruijn graph among all the characteristics we
measured. The correlations are: genome size (−0.04),
normalized N50 size (0.61), N50 size (0.69), number of
edges (−0.75), average number of restriction sites per
edge (0.76), and average edge length (0.83).
It is not surprising that average edge length, average

number of restriction sites per edge, and N50 size have a
very strong correlation with sequence correctness as this
implies the corresponding de Bruijn graph has long
edges which are likely to contain multiple restriction
sites. These long edges are easier to place unambigu-
ously along the map and can be used to rule out incor-
rect de Bruijn graph paths very effectively.
It is important to note that the average edge length

and number of edges are strongly anti-correlated (−0.90
Spearman’s coefficient) due to the fact that the genome
lengths in our dataset are within a fairly narrow range of
1–5 Mbp (mega base pairs). Given our data, we cannot
fully distinguish between the impact of long edges versus
fewer edges (lower complexity) on our ability to recon-
struct a genome. Genome length also has very low cor-
relation with the sequence correctness of the assembly,
but more testing needs to be done on larger and more
complex genomes in order to better determine the fac-
tors that most influence the quality of genome assembly.
We also directly plotted sequence correctness versus

the average edge length in each de Bruijn graph over all
three error rates (Figure 3) and observed that sequence
correctness generally increases with average edge length.
Almost all genomes with average edge length greater
than 10 kbp can be assembled with accuracy over 98%,
even when relying on maps with the highest error rate,
while we have mixed results for genomes with shorter
average edge length. Also, note the impact of error level
in the optical map on the assembly accuracy is less than
2% for genomes with average edge length greater than
10 kbp (which includes 79.9% of our genomes), but has
a greater impact on graphs with shorter edges, where
the final sequence correctness differs by as much as 40
percentage points between the high and low error set-
tings. Additionally, we find that most genomes with a
starting N50 size larger than approximately 50 kbp also
yield map-guided assemblies with greater than 98%
accuracy. (See Additional file 2.)

Assembly of Y. pestis KIM with previously published
optical map
We also evaluated the performance of AGORA on the
assembly of the genome of Y. pestis KIM (NCBI acces-
sion NC_004088) with a PvuII (recognition sequence
CAG^CTG) optical map experimentally determined
in [13]. In addition to the experimental optical map,



Figure 3 Impact of average edge length of de Bruijn graph on
sequence correctness of assembly. A plot showing the sequence
correctness of 369 bacterial genome assemblies versus the average
edge length of their starting de Bruijn graphs, under three different
optical map error rates. Genomes with average edge length greater
than 10 kbp are generally assembled with near perfect correctness
over all three error rates, while the results are mixed for genomes
with shorter average edge lengths. For genomes with average edge
length below 10 kbp, correctness may improve by as much as 40%
when moving from the high error to low error setting, highlighting
the potential benefits of more accurate mapping technologies.
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we also ran AGORA on optical maps simulated for
PvuII with the same three levels of noise mentioned pre-
viously. Since Y. pestis is a complex genome containing
many repeats (primarily IS elements), we provided
AGORA with a de Bruijn graph produced with a larger
k-mer size of 500 in the initial experiment. Subsequent
experiments for k-mer size 100 yield lower quality
assemblies, as described in the next section. AGORA
took under 5 minutes to find a path matching the gen-
ome optical map for each error rate (without having to
skip any regions between landmarks due to the 1 minute
timeout). The resulting reconstruction of the genome
matched the correct sequence with accuracy between
86.74% and 99.13%, depending on the error rate used
(see Table 2).
Optical mapping information substantially improves

the initial N50 size of 62,865 bp (computed from the de
Bruijn graph of this genome with k-mer size 500) by a
factor of between 6.4 and 18.9 depending on the quality
of the optical map. The number of contigs is corres-
pondingly reduced by a factor of between 2.45 and 16.6.
While the maximum fragment sizing error and max-
imum size of small fragments lost in the high error
optical map simulation match the values observed the
experimentally produced optical map [13] (10% and
2 kbp sizing error and loss of fragments smaller than
2 kbp), AGORA generates a slightly worse assembly
when guided by the experimental map. This indicates
that the simple heuristic procedure we used to simulate
noise may not adequately match the precise characteris-
tics of the noise seen in experimentally determined
optical maps (see Methods for more details). Nonethe-
less, our results still show the potential impact of noise
in the optical on the quality of the final assembly.
To further assess the quality of the assemblies, we

used Mummer [42] to compare the sequences produced
by our algorithm to the known genome sequence.
Figure 4a illustrates our previous analysis showing that
the sequence generated by AGORA matches the original
sequence with greater than 99% accuracy, when given an
optical map with low noise. The line along the diagonal
indicates sequence that correctly matches the true gen-
ome, while only 7 errors can be seen at the locations
marked by small circles, which occur due to short mis-
placed edges. In Figure 4b, we see that there are more
errors in the assembly built using the experimental op-
tical map. The gaps in the line along the diagonal in
Figure 4b indicate roughly 13% of the genome is not cor-
rectly assembled by our algorithm. The longest regions
of incorrectly assembled sequence occur in portions of
the genome where there are few restriction sites.
In these regions, AGORA picks a single path among

several possible paths which may match the optical map,
possibly leading to errors in the reconstruction. For ex-
ample, the largest erroneous gap shown in the lower left
of Figure 4b occurs within a 110 kbp genomic region
that contains only two restriction fragments of size
40 kbp and 70 kbp, respectively. Within the same region,
genomic repeats lead to a fragmentation of the de Bruijn
graph resulting in a collection of short edges without
any restriction site information, and one edge which
contains a single restriction site. The difference in per-
formance on the low error optical map and the experi-
mental optical map highlights the potential benefit of
developing higher resolution and more accurate map-
ping technologies (such as nano-coding [40]). Alterna-
tively, additional mate-pair information (providing short-
range information) along with an optical may also help
resolve ambiguities in regions with few restriction sites.

Effect of restriction enzyme choice on assembly quality
We further examined the effect of using different restric-
tion enzymes on the quality of the assembly that can be
produced by our algorithm for the Y. pestis KIM gen-
ome. We generated a de Bruijn graph with k-mer size
100 for the sequence of Y. pestis KIM, and then com-
puted the in silico map of the genome for each of 102
different restriction enzymes. We then simulated noisy



Table 2 Statistics on the assembly of Y. Pestis KIM with optical maps of different error rates

Sequence Correct Edges Correct Landmarks Final Contigs N50 Size

Low Error 99.13% 192/199 64 12 1,190,834

Med Error 97.57% 188/199 38 20 905,369

High Error 90.52% 169/199 25 81 776,452

Map from [13] 86.74% 149/199 26 80 405,321

A summary of the results of our algorithm on assembling Y. Pestis KIM, when given a de Bruijn graph with k-mer size 500, and a simulated optimal or
experimental optical map from [13].
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optical maps by adding three different levels of noise to
each in silico map, as described previously. In Figure 5,
we plot the number of restriction sites versus the
sequence correctness achieved by our algorithm using
the optical map for each enzyme at the three different
optical map error rates.
The vertical line in Figure 5 corresponds to the num-

ber of restriction sites for the enzyme PvuII used to con-
struct the experimental optical map of this genome [13].
The circles drawn on the line represent the quality of
the corresponding assemblies with a PvuII map under
different mapping error rates. Although we are able to
assemble the genome with 90.3% sequence correctness
in the low error setting, the medium and high error set-
tings only assemble with 68.3% and 58.6% sequence cor-
rectness, respectively (using the experimental map only
yields 48.6% accuracy). Figure 5 illustrates that restric-
tion enzymes that cut more frequently can yield better
assemblies. A HindIII (recognition sequence A^ACGTT)
optical map with 1,566 restriction sites achieves 99.8%
sequence correctness in the low error setting and 98.4%
in the medium error setting, as indicated by the green
Figure 4 Mummerplot comparison of assemblies produced with low
Mummerplot comparing the known genome sequence of Y. pestis KIM to
optical map with low error added (a), and when using the experimental op
blue squares in Figure 5, respectively. In the high error
setting, we can achieve 66.3% sequence correctness
(shown as the red square) with a BSrGI (recognition
sequence T^GTACA) optical map with 573 restriction
sites. Over the three cases, we can improve the accuracy
by between 7.7% and 30.1% by choosing an appropriate
restriction enzyme.
Figure 5 also shows the dependence between the fre-

quency with which an enzyme cuts and the quality of
the resulting assembly. In the low error setting, assembly
accuracy generally increases with the density of restric-
tion sites on the optical restriction map, although this is
not true for the medium and high error rates where the
performance of the algorithm starts decreasing beyond
a certain cut frequency. This phenomenon can be
explained by the loss of more small fragments as cut fre-
quency increases, and the increased difficulty of finding
landmark edges when there are many smaller fragments
of roughly the same size. In the high error setting, we
note that restriction enzymes with around 500 recogni-
tion sites yield assemblies with the highest sequence cor-
rectness for Y. pestis KIM.
error and experimental optical map. Two dot plots generated by
the sequence assembly produced by our algorithm, when given an
tical map from [13] (b).



Figure 5 Impact of restriction enzyme choice on assembly
quality. The choice of restriction enzymes can impact the
correctness of the assembly. Each point represents the sequence
correctness of an assembly of Y. pestis KIM when given a de Bruijn
graph of k-mer size 100 and an optical map of low, medium, or high
error rate. The vertical line in the picture indicates the number of
restriction sites for the enzyme PvuII used to construct the
experimental optical map of this genome, and the colored circles
represent the correctness that can be achieved under the three
error rates for the PvuII enzyme. The red, blue, and green filled
squares to the right of the vertical line, indicate an improvement
of between 7.7% and 30.1% in the final sequence correctness that
can be achieved when choosing a better restriction enzyme in the
high, medium, and low error settings, respectively.
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The strong dependence of the quality of assembly on
the restriction enzyme used highlights the need for
choosing an appropriate enzyme. Running preliminary
lab experiments to digest the genome with different
enzymes can be used to find an enzyme which cuts
the genome at an appropriate frequency (in the case of
Y. pestis, the ideal restriction enzyme yields an average
fragment size of roughly 10 kbp). Alternatively, generat-
ing preliminary sequence data and building a corre-
sponding de Bruijn graph, can also help estimate the cut
frequency of various restriction enzymes.

Optical maps versus mate-pairs
The use of mate-pairs to guide the assembly process was
previously studied by Wetzel et al. [4] using the same
genomes used in our study. A direct comparison to the
full results presented previously is difficult to perform as
our goal here is the reconstruction of a single contig
spanning an entire chromosome, while the work of
Wetzel et al. is focused on the resolution of individual
repeats (and the corresponding reduction in the complex-
ity of the assembly graph) using mate-pair information.
Furthermore, mate-pairs and optical maps provide com-
plementary types of information: mate-pairs provide local
information and are most effective in the short range
(as shown, e.g., in [4]) where the optical mapping reso-
lution may be limited, while optical maps provide global
information and are particularly effective in the long
range (10s-100s of kbp, ranges for which mate-pair
libraries are difficult to generate). To demonstrate the
complementary strengths of these technologies, we high-
light a couple genomes analyzed both with mate-pairs in
[4] and with optical maps in our study.
First, Rhodospirillum rubrum ATCC 11170 (NCBI

accession NC_007643) was completely and correctly
resolved by AGORA in our study, but mate-pair based
analyses were unable to fully resolve this genome even
when trying different combinations of library sizes.
We applied the mate-pair repeat resolution approach
described in the work of Wetzel et al. [4] using both the
tuned library mixture of sizes 477 and 6047 (see [4] for
details on how the library sizes were chosen), and the
‘standard’ combinations of 2kbp + 8kbp, or 2kbp + 35kbp.
Note that it is possible that some combination of two or
more mate-pair libraries could have resolved this gen-
ome, as we have not exhaustively explored all possible
combinations of mate-pair libraries. However, in prac-
tical terms, it is unlikely that a lab interested in solving
the Rhodospirillum genome would attempt multiple
library preparations in hopes of finding the perfect com-
bination for this genome.
A second example is the genome of Streptococcus

agalactiae NEM316 (NCBI accession NC_004368) which
contains a 47 kbp-long plasmid-like repeat (pNEM316-
1) occurring three times within the main chromosome
[43]. Resolving this repeat would require mate-pairs
longer than 47 kbp, which are beyond the sizes routinely
generated, especially in the context of next generation
sequencing technologies (fosmid libraries only extend
to ~40 kbp).

Real assembly graphs
Our results have focused on running our proof-of-
principle algorithm on ideal de Bruijn graphs obtained
from error-free sequencing data. The application of
AGORA to data from real sequencing experiments is
the object of future work and beyond the scope of this
paper. However, it is natural to ask whether our algo-
rithms can feasibly be extended to real datasets. To
address this question we focused on sequencing data
available for the Yersinia pestis KIM genome, specific-
ally a 454 dataset (SRA accession SRX012379). We
assembled these reads using Newbler [Roche] and
explored the structure of the resulting contig graph
(available from the 454ContigGraph.txt file produced
by Newbler).
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We compared the Newbler graph to the ideal de
Bruijn graphs of order 100 and 500, as the average
length of the 454 reads falls between these values at
438 bp. The Newbler assembly resulted in 283 contigs
with an N50 size of 38,282 while the order 500 graph
had 199 contigs with an N50 size of 62,865 bp and the
order 100 graph had 648 contigs with an N50 size of
38,786 bp. Thus, in broad terms, the real assembly graph
has similar characteristics to the perfect de Bruijn graphs
in our experiments.
More relevant to our study is the question of whether

landmark edges can be easily found in the Newbler
graphs. The AGORA algorithm critically depends on our
ability to find edges that have a unique placement along
the optical map. According to this criterion, the Newbler
contig graph is also roughly similar to the simulated
graphs. Specifically we find 15 landmarks in the Newbler
assembly, compared to 15 and 26 landmarks in the order
100 and 500 de Bruijn graphs, respectively. We also
aligned the Newbler contigs using the more complex
dynamic programming algorithm described in [12] and
identified 22 landmarks, indicating that the use of
already existing optical map alignment algorithms will
be effective in extending the AGORA algorithm to real
sequencing data.
Conclusions
We have presented a computational framework that
allows optical mapping data to be used during the genome
assembly process. Our work demonstrates the potential
of this approach in improving the assembly of bacterial
genomes. With optical maps, over 3/4 of our bacterial
genomes were assembled with over 98% accuracy, and
even the complex genome of Y. pestis KIM could be
assembled with sequence correctness between 86.74% and
99.13%, depending on the quality of the reference optical
map. Moreover, for the bacterial genomes in our test data
set, in the median case we could improve on the N50
size by a factor of between 6.4 and 18.9 and reduce the
number of contigs by a factor of between 6.67 and 10.74
over what could be achieved with sequence data alone.
Our initial study also allowed us to explore the effect

of experimental parameters on the usefulness of mapping
data. We demonstrated substantially improved quality of
assembly when using high quality optical maps, high-
lighting the value of continued improvements in this
technology (such as the nano-coding approach [40]).
In addition, we showed that the choice of restriction
enzyme significantly affects assembly quality, indicating
the benefits of preliminary analysis to determine a suitable
restriction enzyme before constructing an optical map.
The results we have shown are only a first step towards

developing a map-guided genome assembler. AGORA
has only been tested on error-free assembly data and will
need to be adapted to handle the characteristics of
assembly graphs derived from real sequencing data. The
heuristics used to speed up the alignment process may
not be effective in the context of a combination of realis-
tic sequencing and mapping error profiles. A practical
implementation of our approach may need to rely on a
variant of the dynamic programming alignment algo-
rithm described in [12] with additional heuristics or the
use of parallel/high-performance architectures. Addition-
ally, it may be useful to develop methods to detect
regions of the assembly where multiple paths may match
the optical map, and exclude those regions from the final
assembly to avoid introducing errors.
Finally, a promising area of future research involves

the combination of mapping and mate-pair data. These
types of information offer complementary strengths –
long-range structural information from optical maps,
and short-range links from the mate-pair data – which
can be leveraged to overcome our difficulty in resolving
genomic regions that are sparsely sampled by the restric-
tion map.

Methods
Optical mapping error simulations
To describe our experiments precisely, we need to for-
mally describe the various types of noise that add error
to the optical map, and how we simulate noisy optical
maps for use in our experiments. In general, optical
maps may have three types of errors: fragment sizing
error, small fragments missing, and restriction site
errors. Fragment sizing error occurs because measuring
the sizes of the Rmap fragments is performed using
optical techniques that associate restriction fragment
mass with fluorescence intensity. Small fragments can be
missing from the optical map due to desorption. Restric-
tion site errors refer to missing or added restriction sites
on the genome optical map, which can be caused by
errors in the physical process or in the image processing.
To simulate optical maps for our experiments, we start

by computing an in silico map for each genome, and
then add noise to the in silico map to simulate fragment
sizing error and small fragments lost. In our experi-
ments, we did not extensively test restriction site errors
as they are fairly rare in a finished optical occurring at
around 2% of restriction sites [22]. However, we do
simulate the loss of small fragments according to a small
fragment threshold μ ≥ 0, as well as fragment sizing error
according to two parameters α≥ 1 and β ≥ 0. Using fluor-
escence intensity to estimate restriction fragment length
leads to an error proportional to the length of the frag-
ment, which we characterize with a multiplicative error
parameter (α). Smaller fragments have different factors
contributing to their error profile, however, which we
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characterize with an additive error parameter (β). (For
more details on optical mapping error models, see
[10,44].)
Given an in silico map and the parameters described

above, we start by deterministically removing all frag-
ments of size less than μ, which is the worst case for
small fragment loss, as some small fragments are
retained in practice.
Next to simulate fragment sizing error for parameters

α, β, and μ, we add a random amount of noise to the
remaining in silico fragments, so that an in silico frag-
ment of size S may produce an optical map fragment of
size between a lower bound L=max(S/α – β, μ) and
upper bound U= αS + β. For each fragment of size S, we
substitute a fragment of length S + E, where E is Gaussian
noise with mean 0 and standard deviation (U-L)/4. If S +
E < L or S + E >U, then we substitute L or U, respectively.
The three parameters α, β, and μ are then used to

model the three levels of noise used for our experiments.
In the low error setting, we set α= 1.01, β= 100 bp, and
μ= 0 (which did not allow for any small fragments to be
lost). In the medium error setting, we set α= 1.05,
β= 1000 bp, and μ= 1000 bp. In the high error setting,
we set α= 1.10, β= 2000 bp, and μ= 2000 bp. The high
error setting has bounds on the maximum sizing error
and maximum size of small fragments lost, correspond-
ing to the values observed in the published optical map
of the Y. pestis KIM genome [13]: up to 10% (α= 1.10)
multiplicative and 2000 bp additive fragment sizing
error; in addition, small fragments up to size 2000 bp
were lost (and no restriction site errors were observed).
The low error rate setting, which did not allow for small
fragments to be lost (μ= 0), may eventually be achievable
using the nano-coding system currently being developed
[40]. Note that our error simulation does not fully cap-
ture all the factors that affect the quality of experimental
optical maps, which causes differences between the per-
formance of our algorithm when applied to simulated
and experimental optical maps. We opted for a simpli-
fied model in order to enable the detailed simulations
described in our paper; however we plan to further
investigate more realistic error models in future work.

AGORA algorithm
High level pseudocode illustrating the basic idea of the
AGORA algorithm is provided below. A more detailed
explanation describing additional improvements to the
basic algorithm is given in the following sections.
The source code for AGORA is provided as Additional
file 3, along with code needed to run our experiments.
AGORA takes as input two data structures: OpMap –
an ordered list of fragment sizes representing the optical
map; and Edges – a list of de Bruijn graph edges with
their corresponding sequences.
AGORA(OpMap, Edges)
Set LandmarkEdges = FindLandmarkEdges(Opmap, Edges)
Sort LandmarkEdges in order of their position on the
optical map
For circular genomes, add a copy of the first landmark
edge to the end of LandmarkEdges
Set CurrentEdge to be NULL_POINTER
Set CurrentPath to be the empty path
Push the first edge of LandmarkEdges onto the top of
EdgeStack, a stack of edges to be explored in the DFS

For each pair of consecutive edges (E1, E2) in
LandmarkEdges

// Perform a depth first search from E1 until E2 is
// reached with a path matching the optical map
While (CurrentEdge != E2)

CurrentEdge = Pop top element of EdgeStack
If (CurrentEdge == NULL_POINTER) then

Backtrack by removing last edge from CurrentPath
Else

If the in silico map of CurrentPath + CurrentEdge
matches the optical map then
CurrentPath = CurrentPath + CurrentEdge
Push NULL_POINTER onto EdgeStack for
backtracking
Push each edge outgoing from the end of
CurrentEdge onto EdgeStack

EndIf
EndIf

EndWhile

EndFor
EndProgram

Finding landmark edges
The first step of AGORA computes landmark edges,
which are edges in the graph that have a unique place-
ment within the reference optical map. These landmark
edges are found by computing an in silico map from the
sequence of each edge, and checking if the in silico map
can be placed at exactly one location by attempting to
align the in silico map starting from each fragment in
the genome optical map. We implemented a simple
greedy algorithm to align an in silico map to an optical
map alignment, although a more precise dynamic pro-
gramming algorithm was described previously in [12].
We used a heuristic approach instead of the more accur-
ate alignment algorithm in order to speed up landmark
computation. The dynamic programming algorithm has
run-time proportional to the fourth-power of the
number of fragments being aligned.
Our greedy alignment algorithm simply compares

in silico fragments to optical map fragments in order,
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allowing for a size mismatch within the bounds specified
by the (α, β) parameters, and allowing fragments of size
smaller than μ to be missing. (In the experiments, the α,
β, and μ parameters are set according to the values
used to simulate the optical maps, or in the case of the
Y. Pestis KIM experimental optical map, we set α= 1.10,
β= 2,000 bp, and μ= 2,000 bp).
The greedy algorithm does not allow restriction site

errors in the optical map alignment when determining
landmark edges. Although restriction site errors may
occur in practice, we do not allow restriction site errors
when determining landmark edges to limit ambiguous
placements and help ensure that all our landmark edges
have correct placements on the genome optical map.
This greedy alignment algorithm has a linear run-time,
which was made even more efficient by saving the align-
ments of previous edges in the path and progressively
aligning new edges added to the path during the depth-
first search process.
In case no landmark edges can be found, we search for

a landmark pair – a pair of consecutive edges whose
combined sequence and corresponding in silico map has
exactly one valid alignment to a single location in the
optical map. An alignment is valid if the sizes of con-
secutive restriction fragments within the optical map
and the in silico map are approximately matched, mod-
ulo sizing errors and potential loss of small fragments.
If a landmark pair is found, we use it to start our depth
first search instead (not shown in the pseudocode).

Landmark to landmark path search
After determining landmark edges, we search for paths
connecting consecutive landmark edges, starting with
the landmark with the earliest placement within the
reference optical map. (Although our bacterial genomes
are circular, the experimental and simulated optical
maps are provided to the algorithm as an ordered list of
fragment sizes, which is used to define the earliest place-
ment in the optical map.) After the search reaches the
last landmark edge, we search for a path connecting
the last landmark edge to first landmark edge to finish
the path, since we were assembling circular bacterial
genomes. In case only one landmark edge can be found,
we search for a path from the one landmark edge back
to itself. If no landmark edges can be found, but a land-
mark pair can be found, then we attempt to find a path
from the landmark pair back to itself (otherwise we re-
turn with no path found).
To find a path between pairs of consecutive landmark

edges (or from a landmark edge or landmark pair back
to itself ), we rely on a depth-first search algorithm,
pruning the search space according to the following
criteria. An edge can only be used to extend the current
depth-first search path if the in silico map of the path
matches the optical map, and three additional conditions
hold (not shown in the psuedocode):

1. the edge is not currently used in the current path
(if multiple edges have been collapsed into a single
edge, we ensure an edge is not used more times than
its multiplicity);

2. the in silico map alignment of CurrentPath to the
optical map does not extend past the first restriction
site of the alignment of the next consecutive
landmark edge;

3. the edge currently being added to the depth first
search has not been explored more than 500 times
previously, while being aligned at the same optical
map location (this step avoids repeatedly exploring
very many similar paths within a highly complex
region of the genome).

In AGORA’s depth first search implementation,
we explore edges in decreasing order of length (explor-
ing edges with the longest sequence length first). Their
longer length often makes those edges the easiest to
accurately place along the optical map.
Modifications to improve efficiency
In preliminary tests, we found the depth first search can
incorrectly traverse an edge in the path between two
landmark edges early in the search process, which pre-
vents the correct path from being found between subse-
quent landmark edges without substantial backtracking.
When no path can be found between two consecutive
landmark edges without backtracking through previously
explored landmark edges, we simply ‘restart’ the search
from the current landmark edge with the algorithm
assuming that no edges have been traversed so far. The
search should succeed this second time, since edges
which may have been incorrectly used in the prior path
are now available to be explored again.
Additionally, if the algorithm fails to find a path

between landmarks within a preset amount of time (we
used one minute in our simulations), we simply skip to
the next landmark without attempting to reconstruct
the region between the landmarks. In our experiments,
we did not have to use this procedure often, but the add-
itional check was useful for a small set of complex gen-
omes to ensure completion within a reasonable amount
of time.
It is important to note that the various heuristics

described above, while dramatically improving the per-
formance of our algorithm, lead to potential errors in
the reconstruction, especially when using lower quality
mapping data. We plan to explore the tradeoff between
accuracy and performance in future work.
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Edge and sequence correctness metrics for measuring
assembly quality
Before describing the edge correctness and sequence
correctness metrics more precisely, it is important to
note a significant difference between AGORA and typ-
ical genome assembly algorithms. Our algorithm seeks
to construct a single contig representing the full genome
of the organism being assembled, while accepting some
errors, in contrast to most assemblers, which break the
assembly into separate contigs to avoid assembly errors.
As a result, traditional metrics of assembly quality do
not directly apply in our case, and thus we propose the
alternative metrics described below. In brief, we attempt
to compare the traversal of the de Bruijn graph chosen
by AGORA to the true traversal representing the cor-
rect genome sequence. We measure the concordance
between these two paths in terms of both number of
concordant edges and similarity between the recon-
structed sequences. We term the two measures edge
correctness and sequence correctness, respectively.
To compute the edge correctness measure, we start by

matching the path found by AGORA to the correct path
through the graph using a longest common subsequence
algorithm. The edges not aligned by this algorithm cor-
respond to errors in our reconstruction. The edge cor-
rectness metric overestimates the amount of error in the
reconstruction. In many cases the errors correspond
to short edges and thus do not significantly affect the
overall correctness of the reconstructed sequence.
To account for this issue, we also computed a metric

which we called sequence correctness, which weights the
edge correctness metric by the actual length of the
edges. More precisely, we implement a weighted longest
common subsequence algorithm to identify the ‘heaviest’
set of edges that match the correct path in the correct
order. We then sum the length of these edges and divide
by the total genome sequence length to obtain our
sequence correctness metric.
One last caveat we should mention is that if we ever

find two different edges between the same nodes in the
de Bruijn graph with greater than 99% sequence similar-
ity, then we treat them as if they were the same edge,
as long as the sequence differences do not cause any
change to their restriction sites. This procedure of col-
lapsing similar edges is known as “bubble collapsing”
and is useful for handling nearly equivalent edges within
the de Bruijn graph. Such edges are impossible to disam-
biguate through optical mapping, and we ignore any
errors we might make by swapping the order in which
they are traversed. Note that even if we were to measure
the additional differences in the sequence produced by
AGORA that occur due to bubble collapsing which are
ignored in the sequence correctness score, the overall
decrease in the percent of sequence matching the true
genome is at most 1%, since we only collapse bubbles
that are at least 99% identical.

Additional files

Additional file 1: Per-genome results of assembling each genome.
An excel spreadsheet detailing the results of assembling 369 bacterial
genomes with AGORA, given optical maps simulated with three different
error rates.

Additional file 2: Figure showing the impact of starting N50 size of
the de Bruijn graph on sequence correctness. A plot showing the
sequence correctness of 369 bacterial genome assemblies by AGORA
versus the starting N50 size of their de Bruijn graphs, under three
different optical map error rates. Genomes with starting N50 size greater
than 50 kbp are generally assembled with higher than 98% correctness
over all three error rates, while the results are mixed for genomes with
lower starting N50 size.

Additional file 3: AGORA source code. A zip file containing the code
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