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Abstract: The presence of traces of heavy metals in wastewater causes adverse health effects on
humans and the ecosystem. Adsorption is a low cost and eco-friendly method for the removal of low
concentrations of heavy metals from wastewater streams. Over the past several years, graphene-based
materials have been researched as exceptional adsorbents. In this review, the applications of graphene
oxide (GO), reduce graphene oxide (rGO), and graphene-based nanocomposites (GNCs) for the
removal of various metals are analyzed. Firstly, the common synthesis routes for GO, rGO, and GNCs
are discussed. Secondly, the available literature on the adsorption of heavy metals including arsenic,
lead, cadmium, nickel, mercury, chromium and copper using graphene-based materials are reviewed
and analyzed. The adsorption isotherms, kinetics, capacity, and removal efficiency for each metal on
different graphene materials, as well as the effects of the synthesis method and the adsorption process
conditions on the recyclability of the graphene materials, are discussed. Finally, future perspectives
and trends in the field are also highlighted.
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1. Introduction

Both natural and anthropogenic sources linked to industrial activities such as electroplating,
metal smelting, fertilizer industries, mining operations, pesticides, and paper manufacturing result
in wastewater streams contaminated with various heavy metals. Discharging these streams into the
environment leads to the absorption and accumulation of heavy metals into living organisms resulting
in severe health complications. Therefore, the current stringent regulations, requires the removal of
heavy metal from wastewater streams to extremely low levels. The WHO guideline [1] for the quality
of drinking water restricts the concentrations of heavy metal to a fraction of mg/L, as shown in Table 1.

Table 1. WHO guideline for metal concentration in drinking water quality.

Metal Cu Cr Cd Hg Pb As Ni

Permissible
limit, µg/L 2000 50 3 3 10 10 700

Several technologies are being used or proposed for removing heavy metals from wastewater
streams including chemical precipitation [2], ion exchange [3], membrane filtration [4], flotation [5],
electrochemical coagulation treatment [6], and adsorption. Among these methods, adsorption has the
advantage of process flexibility, low cost, and the ability to reduce the heavy metal to the required
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low level, making it the preferred treatment method for heavy metal removal [7]. Both conventional
adsorbents such as activated carbon [8,9] and nanoadsorbents including carbon nanotubes [10,11],
chitosan [12], and nanocellulose [13] are candidates for heavy metal removal. Recently, graphene-
based materials are being explored and proved to be efficient nanoadsorbents for the removal of heavy
metals as shown by the number of publications on “graphene metal removal” that increased from 2
publications in 2012 to 102 publications in 2019 with the majority of these publications on removal of
copper and chromium as indicated in Figure 1.
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Although graphene can be prepared by bottom up approaches such as CVD, epitaxial growth,
templating, and organic synthesis, graphene materials used in adsorption applications are prepared by
top-down methods via oxidation of graphite to produced graphene oxide (GO) that can be thermally
or chemically reduced to obtain reduced graphene oxide (rGO). Further modification of GO and rGO
via the development of nanocomposites with metal oxides and organic molecules enhances their
sorption characteristics.

This review focuses on the removal of heavy metals from wastewater using various graphene
materials. Although there are already few articles that review the adsorption of various metals on
graphene materials, this article is more comprehensive and it also accounts for the large number of very
recent articles appeared in 2018 and 2019, which represent about 60% of the total number of publications.
Moreover, this review includes a concise section on the synthesis of various graphene materials and
composites in order to classify the various graphene materials and establish the correlation between the
synthesis method, structure, and the adsorption characteristics of the graphene materials. Moreover,
the key adsorption parameters associated with each metal on various graphene-based materials are
summarized in tables and the performance of the key graphene materials are highlighted and discussed.

It is very evident that application of graphene materials as adsorbents for metal removal is a
rapidly growing research field as can be seen by the very large increase in number of publications in 2018
and 2019, Figure 1. The adsorptive properties of graphene can be applied in many forms, e.g., sheets,
nanotubes, 3D structures, and membranes [14]. These forms have been utilized in water purifications
for removal of a variety of contaminants such as heavy metals, different dyes, pharmaceuticals, and
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organics [15]. It is also worth noting that this review focuses on the adsorptive removal of heavy metal
and the use of graphene-based membranes for removal of heavy metals is beyond its scope.

This review begins with a concise discussion on the synthesis of GO, rGO and their nanocomposites
with organic, inorganic, and polymers, which have been used for metal removal. Then an overview
of the typical methodology to study adsorption and the models used for analysis of the process
thermodynamics and kinetics are provided and a comprehensive analysis of the performance of
various graphene-based materials for the adsorption of various metals is carried. Finally, an outline of
the major challenges for the commercialization of graphene-based adsorbents for heavy metals and
highlights the future research directions are presented.

2. Graphene-Based Materials for Removal of Heavy Metals

The graphene materials used for the removal of heavy metals are classified into two broad
categories that include:

1. GO and rGO and their foam/aerogel structures and
2. Hybrid of GO or rGO with metallic, organic, inorganic, and polymeric materials

While there are few studies on the use GO and rGO in powder, aerogel, and 3D foam structure,
most of the reports are on using hybrids of GO and rGO with organic, inorganic, and/or polymers. In
this section, we summarize the synthesis methods for GO, rGO and hybrid graphene materials.

2.1. Graphene Oxide and Reduced Graphene Oxide

Although graphene can be obtained directly from graphite using mechanical cleavage or solution
assisted exfoliation, the dominant type of graphene used in adsorption application is prepared via
the graphite oxide route not only because its potential for large scale production, but also because it
produces a functional form of graphene that is attractive for adsorption applications. In this route, GO is
produced by exfoliation of graphite powder, which is produced through solution oxidation/intercalation
of graphite using acids and oxidants. The first report on the synthesis of graphite dates back to 1958 by
Brodie using nitric acid and potassium chlorate [16]. Currently, the most widely used methods in the
preparation of graphite powder are the Hummer’s method [17], modified Hummer’s method [18],
and Tour’s method [19]. GO maintains the layered structure of graphite but with expanded interlayer
separation due to the presence of polar oxygen groups such as hydroxyl, epoxy, carbonyl, and carboxylic.
The introduction of these groups changes the carbon hybridization from sp2 in graphite to a mixture of
sp2 and sp3 in GO. The oxygen content of graphite oxide is defined by the C/O ratio which ranges
between 1:1 in highly oxidized GO to 4:1 in less oxidized GO depending on the oxidation method and
conditions. The presence of these oxygen groups makes graphite oxide very hydrophilic such that it
readily exfoliates to GO in aqueous solution. rGO is prepared by thermal, hydrothermal, or chemical
reduction of graphite oxide or GO. The reduction of GO to rGO reduced the oxygen content to about
C/O ratio of 10. The structure of GO and rGO as well as the schematic for their preparation is shown in
Figure 2 [20].
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Figure 2. (a) Chemical structure of graphene (G), graphene oxide (GO), and reduced graphene oxide
(rGO) and (b) route of graphite to reduce graphene oxide.(Reproduced or adapted from ref. [20], with
permission from Intech, 2016).

Alazmi et al. [21] investigated the changes in the morphology of GO based on the oxidation
method and the structure morphologies of rGO prepared by thermal, chemical, and hydrothermal
reduction are probed by SEM and TEM analysis as shown in Figure 3.
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Figure 3. (a) SEM and (b) TEM of graphite, (c) SEM and (d) TEM of GO produced by Hummer’s
Method, (e) SEM and (f) TEM of GO produced by improved Hummer’s method, (g) SEM and (h)
TEM of rGO produced by thermal reduction in N2, (i) SEM and (j) TEM of rGO produced by chemical
reduction using hydrazine, and (k) SEM and (l) TEM of rGO produced by solvothermal method.
(Reproduced or adapted from ref. [21], with permission from Elsevier, 2020.)

In addition to microscopic characterization of GO and rGO, characterization using spectroscopic
techniques such as XPS and FTIR and diffraction techniques such as XRD and SAD are commonly
used to determine the structure of GO and rGO and the presence of oxygen-containing functional
compounds. Other characterization techniques have been performed. The synthesis of the adsorbents
was been carried out with a variety of methods and with great rigor and control. Heat treatment at
different temperature ranges, vacuum promoted exfoliation, physical incorporation of additives, and
surface modifications using oxidative agents are a few techniques used in the synthesis processes [14].
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For more details on the synthesis and characterization of GO and rGO, we refer the reader to the
excellent and concise review article by Park and Ruoff [22].

2.2. Graphene Composites for Adsorption Applications

To improve the adsorption characteristics of GO and rGO and to enable their effective application
in selective adsorption of heavy metals, a few strategies are applied. These strategies include the
formation of hybrid structures of GO or rGO with oxides of transition metals such as iron, Zn, Cu,
Ni, and Co, organic materials such as cellulose and chitosan, inorganic materials including metal
organic framework (MOF), zeolites, and silica nanostructure, polymers and mixtures of two or more
of these groups. Among these strategies, the development of magnetic nanocomposites of GO and
rGO with Fe3O4 are very commonly applied not only to enhance the adsorption characteristics, but
also to allow the retrieval of the adsorbent for regeneration at the end of the batch adsorption using
magnetic recovery. Nevertheless, many studies have further modified the magnetic GO or rGO with
other metallic, organic or inorganic materials. A concise review of the synthesis of these different
hybrid graphene materials applied for the adsorption of heavy metals is provided.

2.2.1. Magnetic Nanocomposites and Nanocomposites with Other Metals

One of the significant challenges faced when using nanosorbents is their separation from the
treated solution. Centrifugation, sedimentation, filtration, and other traditional separation methods
deem to be ineffective and time consuming. On the other hand, magnetic GO (mGO) is synthesized
via impregnation or co-precipitation methods [23–27] and can be easily separated by the aid of
magnetic materials like Fe3O4 or Fe3S4. mGO is synthesized via impregnation or co-precipitation
methods [23–27]. In the co-precipitation method, mGO is synthesized via the hydrothermal process by
an in-situ reduction/decomposition of a metal precursor such as Fe3O4, FeSO4, Fe(NO)3, or iron acetate
on the surface of dispersed GO under sonication, see Figure 4. This step is frequently followed by
an annealing step to enhance the crystal structure of the magnetic nanoparticle and induce complete
reduction of GO to rGO. In addition, mGO could also enhance the adsorption of heavy metal ions
but the calcination step may have a negative effect on the sorption properties as reducing GO tend to
decrease the content of the oxygen functional groups, which in turn decreases the number of binding
sites on the surface of the mGO.
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Figure 4. Synthesis of magnetic GO nanocomposite via precipitation method. (Reproduced or adapted
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In the impregnation method, a GO suspension is mixed with pre-synthesized magnetic
nanoparticles and sonicated at room temperature until a homogenous suspension is achieved. The
mGO is then collected by centrifugation followed by freeze-drying, Figure 5.
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particles on the surface of GO flakes (Reproduced or adapted ref. [27], with permission from Royal
Society of Chemistry).

Zhu et al. used ZnSO4·7H2O to create GO/Brianyoungite GO/BY) composite with hollow spherical
and flake-like morphologies. Wen et al. [29] incubated GO into a simulated body fluid for 7 days to
ensure mineral growth, which resulted in GO–hydroxyapatite (GO-MWCNT-PDA) 3D flower-like
composite. Khatamian et al. [23] fabricated Fe3O4/GO/Cu-ZEA via solid state dispersion of Cu-ZEA
and Fe3O4 into GO suspension followed by sonication. Lingamdinne et al. [30] mixed Hydrazine
hydrate, iron and nickel with GO and heated to 120 ◦C to make rGO-Nickel Ferrite nanocomposite
(rGO-NiFerrite NC).

2.2.2. Hybrids with Chitosan and Cellulose

Graphene-based hybrids have been widely used in the removal of heavy metals. Some of the
materials used to make these composites include chitosan and cellulose. Cellulose is combined with GO
to form Ethylenediaminetetraacetic acid (EDTA)-functionalized magnetic chitosan (CS) graphene oxide
(GO) nanocomposites (EDTA-MCS/GO) through a reduction precipitation method [31]. This composite
is characterized by FT-IR, XRD, SEM, MPMS, zeta-potential and BET analyses and is applicable for
the removal of Pb2+, Cu2+, and As3+. Shahzad et al. synthesized EDTA-MCS/GO via 2-step process
in which the first step yielded (MCS/GO), which was dried and mixed with Na2EDTA to produce
the composite [31]. Yang et al. [32] cross-linked GO and rGO with chitosan (CS) to create CS/GO
and CS/RGO nanohybrids functionalized with amine and hydroxyl groups. Sun et al. prepared
GO-chitosan composite decorated with ionic liquids as shown in Figure 6 [33].
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2.2.3. Graphene Hybrids with Polymers

Zhu et al. fabricated a magnetic composite by polymerizing Fe3O4 and adding it to graphene to
develop polypyrrole–graphene (PPy–GO) nanocomposites [34]. Yang et al. polymerized Lignosulfonate
and Polyaniline with GO via ultrasonication and vigorous mixing in HCL to produce (LS-GO-PANI) [35].
Tadjarodi et al. added 2-pyridinecarboxaldehyde thiosemicarbazone to GO to create (GO/2-PTSC)
assisted with ultrasonic waves [36]. Sulfuric acid doped poly-diaminopyridine/graphene (G-PDAP) was
synthesized by Dinda and Saha via the mutual oxidation-reduction technique by adding 2,6-Diamino
pyridine to a GO suspension [37]. Najafabadi et al. used glyoxal as a crosslinking agent to develop
chitosan/graphene oxide using electrospinning [38]. Li et al. cross-linked DTPA and mGO using
diethylenetriamine to produce (DTPA/MGO) [39]. Zare-Dorabei et al. modified graphene oxide with
2,20-dipyridylamine to make (GO-DPA) for the simultaneous adsorption of different metal ions [40].
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Nano sized hydrated manganese oxide was grown by Wan et al. [41] on GO to fabricate (HMO@GO),
a nanocomposite with a high selectivity for lead. Fu et al. prepared magnetic Fe3O4-encapsulated
poly(C3N3S3) polymer/rGO nanocomposite following the method shown in Figure 7 [42].These are only
some of the hybridizations mentioned in this review. Other composites will be discussed throughout
the manuscript.
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3. Adsorption Measurements and Data Analysis

Water solution containing various concentrations of heavy metal ions are used to carry out
the adsorption studies typically at pH 5.5 and room temperature. After equilibrium is achieved,
the following parameters are measured or calculated: initial concentration (Co, mg/L), equilibrium
concentration (Ce, mg/L), maximum adsorption capacity (Qe, mg/g), adsorption percentage (%), the
kinetics are studies by measuring the adsorption capacity at a given time t (Qt, mg/g), solution volume
(V, L), weight of GO (m, g), and the final concentration of metal ions (Cf, mg/L). The equations are
based on the mass balance of the reaction, as follows:

Qe =
(Co −Ce)V

m
(1)

Qt =
(Co −Ct)V

m
(2)

Removal % =

(
Co −C f

)
Co

∗ 100 (3)

3.1. Adsorption Mechanism

There are two main contributors to the adsorption process. These are electrostatic forces between
the negatively charged surface of GO and the positively charged heavy metal ions which leads to ion
exchange. Therefore, the adsorption affinity of ions onto GO and rGO surfaces strongly depends on
the electronegativity, first stability constant, and standard reduction potential. An example of the order
in which metal ions are adsorbed on GO and rGO is: Pb (II) > Cu (II) >> Cd (II) > Zn (II).
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The adsorption affinity is not dependent on the ionic radius of the heavy metals but more on their
relative positions in the electro chemical series. However, the capacity can increase or decrease with
temperature depending on heat of adsorption, i.e., exothermicity or endothermicity of the process [43].

3.2. Adsorption Kinetics and Isotherms

Studying the kinetics of the adsorption process is crucial not only to identify the adsorption
mechanism but also to ensure the proper design of the adsorption process in terms of the required
residence time. In general, experiments are designed to collect data on the change of the adsorbate
concentration (Ct) and adsorption capacity (Qt) versus adsorption time (t) and various kinetic models
are used to regress these data to find the kinetic model that best describes the collected data. For the
adsorption of heavy metal ions on GO-based substances, two kinetic models are commonly applied,
pseudo-1st-order kinetic model and pseudo-2nd-order kinetic model.

Adsorption isotherms are important as they express the dependence of adsorption capacities on
the equilibrium concentration of adsorbent and adsorbate in the solution and provide information
about the mechanism and the interaction between adsorbates and adsorbents. The isotherm models
which are commonly used to describe the adsorption capacities and characteristics of heavy metals on
different graphene materials are Freundlich, Langmuir, Redlich–Peterson, Sips, and Temkin models.

3.3. Effects of Adsorption Conditions

The main factors affecting the adsorption process are temperature, pH, contact time, adsorbent
dosage, and the metal ions initial concentration. Increasing the temperature increases the adsorption
rate by diffusion but usually reduces the adsorption capacity. Increasing the adsorbent dosage leads to
an increase in the adsorption rate and the percentage of metal ion removal but decreases the specific
adsorption capacity. Moreover, an increase in the solid content may lead to “folding” of the GO thus
denying access to active binding sites. The initial rate is always high and gradually decreases. Longer
contact time ensures that equilibrium is reached and the maximum adsorption capacity at that specific
conditions is obtained. The pH of the solution is very important as it can change the charge on the GO
surface and the ion species in the solution. At relatively high pH (2 < pH < 10), more functional groups
are available and electrostatic interactions between the heavy metal ions and GO are stronger, but the
optimum pH for maximum ion uptake may vary depending on the type of the heavy metal ion.

4. Removal of Heavy Metals Using Graphene Materials

4.1. Arsenic Removal

Table 2 shows the properties of various graphene-based adsorbents used for removal of arsenate,
their adsorption properties and the applicable isotherm and kinetic models. The most utilized
graphene-based material is their nanocomposites with metal oxides, inorganic, and organics molecules,
with scattered performances with a slight skew towards metal oxide composites. These composites are
mostly synthesized via hydrothermal treatment, solid state dispersion, aqueous thermal treatment,
with the best performing composites are synthesized hydrothermally.
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Table 2. Adsorption properties of GO-based adsorbents used for removal of As (III) and As (V).

Modification Adsorbent
Surface

Area
(m2/g)

G/As
Ratio
(g/g)

pH
Max. As

Conc.
(mg/L)

Capacity
(mg/g)

Max
Removal

(%)

Ads.
Isotherm Ref.

- GO - 16.6 7.6 20 74.1 100 L [44]

Organic

Epoxy-GNP NC 47.6 0.4 - 1000 190 <99 - [45]
Aminopyrazole-f-GO - 16.6 7.6 20 131.6 100 L [44]
EDTA-MChitosn/GO 450 66 7 5 42.8 80.4 F [46]

Imino-Thiobiuret-rGO - 4 5 100 19 100 L [47]

Metal Oxide

G-Spinel CuFe2O4 - 2.4 4 1000 172.3 98 F [48]
FeOx-GO NC 341 0.7 7 1200 147 99.9 L [49]

Fe3O4/RGO/Cu- Zeolite 61.6 - 6 2000 50.5 - - [23]
Fe3O4/rGO 109 2 5.5 100 54.5 100 L [50]

Magnetite-nonOxidG 190 100 7.1 1 38 - S [51]

Inorganic
Ag-Cu2O/rGO - 1000 7 2 11.5 83.9 L [50]

LD-Hydroxide/GO 35.4 - 5 - 183.1 - L [52]
GO-Mesoporous SiO2 873 1 - 100 47.3 97.7 L [53]

L: Langmuir, F: Freundlich, S: Sips.

GO modified with metal oxides and organic molecules are among the highest capacities, while
inorganic composites (Mg−Al layered double hydroxides GO nanocomposite) when dispersed in water,
it swells and forms viscous gel as shown in Figure 8 [52]. The high capacities in Table 2 demonstrate the
excellent performance of the graphene-based materials very good capacities compared to the maximum
reported capacity of other adsorbents including nanochitosan (96.5 mg/g) [54,55], amino-functionalized
cellulose (75.1 mg/g) [56], and rice husk (27.8 mg/g) [57].
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Figure 8. Mechanism for the adsorption mechanism of Arsenic on GO-LDH (Reproduced or adapted
from ref. [52], with permission from American Chemical Society, 2020).

The kinetic of the arsenate adsorption on the various graphene materials provided in Table 2
follows with no exception pseudo second order kinetics, but the equilibrium adsorption results are best
described by Langmuir isotherm with few exceptions where Sips and Freundlich models provided
better fitting of the adsorption results for the cases of very low adsorbate concentration, e.g., C0~1 mg/L.

An important and key aspect for the commercial application of the adsorption processes that
are based on costly adsorbent, which is often neglected in research studies, is the regeneration and
re-usability of the adsorbent. Few studies have investigated the regeneration and reuse of the graphene
adsorbents using either a strong alkali (NaOH) or strong acid (HCl) in the desorption step. For As (III),
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M-nOG, EDTA-MCS/GO, and GO-f were found to be reusable. M-nOG was observed to retain 94.5% of
the first cycle capacity after 5 cycles [51]. Moreover, EDTA-MCS/GO depicted high levels of magnetic
sensitivity in the presence of an external magnetic field after 4 cycles which indicated good reusability
status [46]. On the other hand, GO-f’s removal efficiency decreased by 11% after 3 cycles [44]. For
As (V), M-nOG was found to be reusable and retained more than 92% of the first cycle capacity after
5 cycles [51].

4.2. Lead Removal

Because of the toxicity and abundance of lead in wastewater streams, there are large number of
studies focused on the adsorption of Pb (II) on GO with several of studies investigating the regeneration
of the graphene adsorbents. The properties of the graphene adsorbents and their lead (II) adsorption
properties are summarized in Table 3. Graphene composites with inorganic materials represent the
majority of the adsorbents used for Lead removal. Hybrids with Fe3O4 [41,48,58–61] was very popular
choice due to its magnetic properties that allow separation of the adsorbent as shown in Figure 9 [62].
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The trends for the best synthesis method to yield a high capacity adsorbent were very hard
to distinguish. The best capacities were achieved by modifying graphene with polymers and
inorganics [63,64]. The majority of the composites were synthesized hydrothermally or with dispersion
reaction. Solvothermal synthesis was used to composite inorganics with graphene [63]. Adsorbents
based on combination of metal oxide and inorganics with graphene were synthesized via hydrothermal
routes [30,62,65,66]. No strong correlation between the adsorbent surface area and the adsorption
capacity of these composites can be made [53,59,67].

The most economic synthesis methods are those using fewer chemicals and production steps.
One-pot hydrothermal, dispersion and co-precipitation with few components would serve as a better
synthesis option especially when coupled with good performance. For instance, 3D G/chitosan/nickel
ferrite NC was synthesized hydrothermally in a few steps utilizing sustainable components like
chitosan and is one of the best performing graphene-based adsorbents in the removal of lead from
aqueous solutions with a maximum capacity of 957.3 mg/g [62].

The potential for the regeneration of the lead loaded adsorbents has also attracted much attention
and several studies have investigated the reusability of the sorbents after regeneration. These include:
CoFe2O4-G, NiFe2O4-G, Fe3O4-GS, EDTA-mGO, EDTA-MCS/GO, DTPA/MGO, GOMCS-IL, and
IT-PRGO, Mg−Al LDH / pRGO [67–75]. Most of these nanocomposites were reusable with Fe3O4-GS
and EDTA-mGO maintained more than 80% of their original adsorption capacity [76,77]. The best
regeneration properties reported belong to mGO-PAMAM, which retained the adsorption capacity after
5 cycles [70]. EDTA-MCS/GO depicted very high magnetic sensitivity in the presence of magnetic field
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after 4 cycles which indicates good reusability status [46]. The adsorption efficiency of DTPA/MGO
was reduced by only 15.5% after 6 cycles signaling good reusability [39]. Similarly, GOMCS-IL suffered
a slight loss in adsorption capacity after 4 cycles of adsorption-desorption, indicating good recyclability
of GOMCS-IL [33]. IT-PRGO was also reusable and very efficient in adsorbing Pb (II) [47]. Mg−Al
LDH/ pRGO was effectively regenerated using HCl as an eluting agent and was reusable without loss
in removal efficiency [26]. NiFe2O4-G and CoFe2O4-G had 98% and 100% desorbing capacity and the
adsorption efficiency was almost retained during 3 repeated cycles [64,66]. Basic magnetized graphene
oxides are also used to remove lead ions and showed maximum adsorption capacity of 326.7 mg/g [70].
It worth noting that the capacities for these graphene materials for lead vary not only with the material
type and composition but also the conditions like pH, surface area and lead concentrations as shown
in Table 2.

Table 3. Adsorption properties of multiple GO-based adsorbents used in Pb (II) removal.

Modification Adsorbent
Surface

Area
(m2/g)

G/Pb
Ratio
(g/g)

pH
Max. Pb

Conc.
(mg/L)

Capacity
(mg/g)

Max.
Removal

(%)

Ads.
Isotherm Ref.

NO
GO - 1.6 - 60 120 98 - [78]

Surface-Modified G 101 4 5 1000 196 - L [79]

Inorganic

G-Fe 201.3 1 6 100 645 - L [80]
TI/GO@Fe3O4 0.2 0.4 5 500 461 - L [74]

SGO - - - - 415 - L [81]
ZIF-8@GO 946.5 - 5 30 356 70 L [82]

GO-SOxR@TiO2 208 - - - 312 - L [83]
Fe3S4/rGO 80.9 7.5 6 500 285.7 80 L [84]
GO-SOxR 102 - - - 285 - R-L [83]

GO-SOxR@SiO2 92 - - - 172 - L [83]
PG-C 154.5 - 7 1 131.4 99.8 L [85]

rGO-NiFerrite NC 167.26 40 5 10 121.9 99 L [30]
Mg−Al LDH/ pRGO 79.4 0.2 4.5 100 116.2 100 L [26]

pRGO 50.2 - 4.5 - 65.0 100 L [26]
CNF-C 45.7 - 7 1.5 42.9 48 L [85]

GO-OMS-20 872.9 1 - 100 39.5 78.7 L [53]
Cu(tpa).GO - 0.29 7 35.1 37 - L [86]

CdS-G / ZnS-G - 666.6 5.9 1.5 3.1 99 L [87]

Inorganic +
Metal
Oxide

GONF 136 0.75 5.5 1000 10.8 93 L [88]
MCF3DG - 0.064 8.5 26 957.3 100 L [62]

GO-W-MC - 0.03 7 300 253.2 89 L [65]
MGL 74.9 1.81 5 550 63.3 97.5 L [66]

rGO-NiFerrite NC 167.3 40 5 10 25.8 >99 L [30]

Metal
Oxide

HMO@GO 383.9 - 5 - 553.6 100 F [41]
MNGH 156 0.08 5 250 356.4 - L [58]

GNPs/Fe-Mg-Cu 104.9 120 7 - 251.3 99 F [89]
GOMO 623 5 6.5 80 190 - L [59]

CoFe2O4-G 126.36 8.3 5 30 142.8 100 L [60]
NiFe2O4-G 57.11 8.3 5 30 111.1 100 L [60]

G−ZnO - 100 6 10 23.4 92 L [90]

Organic

L-Glu/GO - 0.6 5 2000 513.4 - L [63]
Chitosan/GO - 0.5 3 1000 461.3 - R–P [38]

MWCNT-PDA/GO 356.1 0.167 6 400 350.9 - L [91]
PAamidoamine-g

mGO - - 6 - 326.7 92.6 L [70]

DTC-GO - 5 5.3 50 132.0 - L [92]
IT-PRGO - 0.08 5 400 101.5 98 L [47]

GOMCS-IL 357 5 5 200 85 - L [33]
GO-TETA-DAC 762 - 5 100 80.9 77 L [67]

Pb-MCGO 392.5 - 5 - 79 90 L [93]
MCGO 382.5 - 5 - 77 - L [94]
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Table 3. Cont.

Modification Adsorbent
Surface

Area
(m2/g)

G/Pb
Ratio
(g/g)

pH
Max. Pb

Conc.
(mg/L)

Capacity
(mg/g)

Max.
Removal

(%)

Ads.
Isotherm Ref.

Organic +
Metal
Oxide

EDTA-mGO 49.9 0.5 4.1 100 268.4 95.5 F/T [76]
GO/Fe3O4-g-G - - 5 - 181.4 - L [95]

rGO-PDTC/Fe3O4 194.8 0.25 6 100 147.1 - L [68]
RGO/Fe3O4 58 - 5.5 30 48 96 L [61]

Polymer

g-C-EN-GO - 0.08 7 3127 186.5 55.1 L [96]
GO+Zn@NH4Cl - 1 - 635 17900 99 F [97]

RGO/PAM - 0.6 6 1500 1000 - L [64]
GOCA - - 5 200 602 L [98]

EDA-RGO 28 0.5 7 200 413.2 - L [99]
DTPA/MGO - 0.025 3 400 387.6 - L [39]
MMSP-GO - 5 9 20 333 - L [100]

PAS-GO 53.7 0.025 4.9 400 312.5 100 L [101]
LS-GO-PANI - 0.4 5 1000 216.4 98.3 L [35]

GO Fe3O4- DETA - - 5.5 0.11 172.4 100 L [102]

L: Langmuir, F: Freundlich, T: Temkin, R–P: Redlich–Peterson.

Despite the large number of adsorption studies for the removal of lead (II) using graphene oxides
and derivatives of graphene oxide, almost all the equilibrium adsorption results are best-modeled using
the Langmuir isotherm. Most of the kinetic results follows pseudo-second order kinetics with exception
of Mg-Al LDH/pRGO and pRGO, which followed Elovich kinetics model [26], HMO@GO that followed
the Intraparticle Diffusion kinetics [41], and Chitosan/GO that followed the Double-exponential kinetic
model [38]. Moreover, as shown in Table 2 the adsorption capacity of lead (II) on various graphene
materials are exceptionally high and ranged between 150 and 1000 mg/g, which are much higher
than the capacity on other adsorbents including coconut-based activated carbon (83 mg/g) [103],
activated Melocanna baccifera Roxburgh charcoals (bamboo) (77 mg/g) [104], chitosan (115 mg/g) [105],
sphagnum peat moss (75 mg/g) [106], e-waste exchange resin and Lewatit (721 and 391 mg/g) [107], and
steel-making dust (209 mg/g) [108]. In one report, the measured capacity of Lead on GO+Zn@NH4Cl
was 17,900 mg/g which is extremely high, although the conditions and results of the study may not be
realistic [97].

4.3. Cadmium Removal

The adsorption capacity, removal efficiency, and the isotherm models for the adsorption of
Cadmium (II) on different graphene materials are summarized in Table 4. The reported adsorption
capacity ranged between 116 to 386 mg/g for high initial Cadmium (II) concentrations, the adsorption
kinetics followed the pseudo-2nd order, and the adsorption thermodynamics is consistent with the
Langmuir isotherm.

The most common routes used for synthesis of graphene composites used for Cadmium removal
were the solvothermal, hydrothermal, dispersion, and co-precipitation methods. However, nanoscale
zero-valent iron-reduced graphene oxide composite was prepared via plasma-reduction method and
graphene oxide embedded calcium alginate was prepared via drop-wise formation method to create
bead like structures [109]. The best performing adsorbent reported applied an inorganic modification to
graphene oxide and so did the second best [83,108]. Nevertheless, these adsorbents required extensive
processes to synthesize, not taking into consideration the steps required for basic GO. This may have
a negative impact on the cost and could increase it dramatically especially when taking scale-up
into consideration.

Regeneration and reusability of the graphene materials are examined by several groups and
mGO- DTPA, G-NiFe2O4, G-CoFe2O4, GO-DPA, rGO-NZVI and GO-f are found to be reusable with a
slight decrease in capacity with number of cycles. For example, the Cadmium adsorption capacities
of DTPA/MGO-based composites synthesized following the route shown in Figure 10 decreased by
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only 10.3% after 6 cycles [39]. G-NiFe2O4 and G-CoFe2O4 retained 98% and 100% of their capacity
during 3 repeated cycles [60]. GO-DPA also maintained more than 80% of its removal efficiency after 3
cycles [40]. rGO-NZVI did not show any significant decrease in efficiency after 4 cycles of adsorption
and desorption [109]. The recyclability of GO-f after 3 cycles was comparable to those reported in
literature with 89% of the maximum capacity achieved [44].
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Magnetized DTPA-mGO has been synthesized by combining Fe2O3, GO and DTPA forming a
compound with a higher metal binding and electrostatic forces thus improving adsorption capacity [31].

Cadmium is another highly toxic heavy metal, where the kinetics of its adsorption with
various conventional adsorbents including Amberlite IR-120 synthetic resin—101 mg/g [110],
modified sugarcane bagasse pith—188 mg/g [111], hydroxyapatite—181 mg/g [112], modified
magnetic chitosan—202 mg/g [113], magnetic dithiocarbamate—83.21 mg/g [68], and e-waste derived
alumino-silicate ion exchange resin—235 mg/g [114] are represented by the pseudo-second order model.
In comparison, GO-based adsorbents had better results overall with capacities ranging from 3.6 mg/g
to 426 mg/g. In a highlight case, a huge capacity of 8.4 g/g was reached where the adsorption process
happened using the in-situ reduction of GO with NH4Cl and Zinc [97]. The entire list of GO-based
adsorbents followed the pseudo second order kinetic model.
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Table 4. Adsorption properties of multiple GO-based adsorbents used in Cd (II) removal.

Modification Adsorbent
Surface

Area
(m2/g)

G/Cd
Ratio
(g/g)

pH
Max

Cd Conc.
(mg/L)

Capacity
(mg/g)

Max
Removal

(%)

Ads.
Isotherm Ref.

None GO nanosheets - 5 6 100 167 - L [115]

Inorganic

NZVI/rGOs 117.9 - 5 - 425.7 100 L [109]
GO-SOxR@TiO2 208 - - - 384 - F [83]

Surface modified G 101 4 2–8 1000 199.9 - L [79]
Cu(tpa).GO - 0.3 7 35.9 53 - L [86]
GO-OMS-20 872.9 1 - 100 48 96.9 L [53]
nZVI/rGO - 12 6.5 50 46.5 82.4 L [116]

CdS-G/ZnS-G - 1000 5.9 1 3.6 97 L [87]

Metal
Oxide

rGO/magnetite/Ag
NHs - 1.8 4 112.4 386.8 100 L [22]

GO-MO 383.9 0.02 6 500 202 99 F [117]
aminoMGO 189.9 - 7 - 184.7 - L [118]
MMSP-GO - 5 9 20 167 - L [100]

rGO-PDTC/Fe3O4 194.8 0.3 6 100 116.3 - L [68]
CoFe2O4-G 126.4 0.8 7 30 105.3 80 L [60]

mGO 44.5 7 7 - 90.2 - L [69]
NiFe2O4-G 57.1 0.5 7 50 74.6 50 L [60]

GOFe3O4-DETA - - 5.5 0.12 59.9 99.7 L [102]
GO - 0.01 6 1000 23.9 - F [119]

DTPA/MGO - 0.03 3 300 286.5 - L [39]

Organic

GO-f - 16.7 8.8 20 285.7 100 L [44]
GO-DPA - 0.4 5 100 257.2 85 L [40]

PNGF - 0.3 - 100 254.9 70 - [120]
GOCA - - 5 200 181 - L [98]

L: Langmuir, F: Freundlich.

4.4. Nickel Removal

The adsorption properties of Ni (II) on graphene-based materials are presented in Table 5.
Although there are fewer reported studies on nickel than most of the other heavy metals, the trends are
very similar to the previous heavy metal studies. All the kinetic studies follow the pseudo-second
order out of the five literature studies, four equilibrium models use the Langmuir isotherm, while one
model, with a very low initial nickel (II), ion concentration of 5 mg/L, reports a Freundlich isotherm fit.
The adsorption of nickel (II) is enhanced at pH 2.0–5.5 owing to the electrostatic force between the
negatively charged graphene oxide and positively charged Nickel (II) ions [121]. At pH higher than 7.5,
electrostatic repulsion occurs between the negatively charged Ni(II) and GO, which is why adsorption
is greatly decreased at pH higher than 7.5 [121]. The highest adsorption capacity is 344 mg/g with
GO-SOxR@TiO2 [71]. The adsorption capacity results for the removal of nickel from water show a
dependence on the surface area. There is only a limited number of papers reporting nickel removal
by GO derivatives. The regeneration of adsorbent is critical issue, yet only GO-DPA synthesized as
described in Figure 11 has been tested for number of adsorption regeneration cycles and > 80% of the
adsorption efficiency was retained after 3 cycles proving its potential reusability [40].
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The synthesis process of 2, 20-dipyridylamine (DPA) was a simple precipitation in the presence of
nitrogen gas. Dry dichloromethane and phosphorous pentachloride were added to GO and mixed to
yield a highly sensitive and stable composite for the adsorption of nickel [122].

Table 5. Adsorption properties of multiple GO-based adsorbents used in Ni (II) removal.

Modification Adsorbent
Surface

Area
(m2/g)

G/Ni
Ratio
(g/g)

pH
Max

Ni Conc.
(mg/L)

Capacity
(mg/g)

Max
Removal

(%)

Ads.
Isotherm Ref.

I GO-SOxR@TiO2 208 - - - 344 - R–P [91]
O GO-DPA - 0.4 5 100 180.9 >85 L [40]

O GO+P.
Cateniannulatus 185.6 0.833 4 60 104.2 95 L [121]

MO Fe3O4/rGO 109 3.91 5.5 51.1 76.3 100 L [123]
- GO - - 4 25 35.6 - L [124]

MO Fe3O4-GS 62.4 2 7 5 22.1 86 F [77]

I: Inorganic, O: Organic, MO: Metal Oxide L: Langmuir, F: Freundlich, R–P: Redlich–Peterson.

The reported capacities of 76, 104, 181 mg Ni (II)/g GO are linked to the high initial adsorbate
concentrations of 51, 60, 100 mg/L, respectively [116]. These values compare favorably with
reported values for other adsorbents but are not as high as certain ion exchangers. The nickel
adsorption properties on conventional adsorbents include silica-immobilized biomass (4.1 mg/g) [125],
histidine modified chitosan beads—56 mg/g [126], protonated rice bran—102 mg/g [127], pine cone
biochar—115 mg/g [128].

4.5. Mercury Removal

The results of studies on the adsorption characteristics of Hg (II) ions on GO (s) are presented in
Table 6. The Table shows that all the kinetic studies were pseudo-2nd order model. Most equilibriums
follow the Langmuir isotherm except for five Freundlich systems; however, three of the Freundlich
isotherms were for studies performed at very low mercury ion concentrations so the equilibrium
saturation level is reached. The other two Freundlich isotherms were applicable for GO-complexes, so
possibly more than one adsorption mechanism is involved. The best performing graphene composites
for mercury removal were modified with organic compounds. The five highest capacities reported all
utilizes organic compounds in preparation of the adsorbents [36,44,47,76,129,130].

All studies were on batch experiments. The most common synthesis methods were hydrothermal,
solvothermal, and diffusion methods. Some adsorbents were fabricated through a mechanical route
whether ultra-sonication [35], electrospinning [50], or drop-wise formation [98]. There was no evident
relation between surface area and maximum capacity.

High adsorption capacities of mercury in the range of 168–700 mg/g have been obtained with
different graphene composites [34,36,47,129–134].
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Table 6. Adsorption properties of multiple GO-based adsorbents used in Hg (II) removal.

Modification Adsorbent
Surface

Area
(m2/g)

G/Hg
Ratio
(g/g)

pH
Max

Hg Conc.
(mg/L)

Capacity
(mg/g)

Max
Removal

(%)

Ads.
Isotherm Ref.

Polymer
Magnetic PPy–GO 1737.6 0.9 7 100 400 99 L [35]

GOCA - 2 5 50 374 97 L [98]
Fe3O4-GS 62.4 2 7 5 23.0 93 F [77]

Inorganic
Ag/graphene 251 1 5 100 91.7 98.8 F [129]
GO-OMS-20 872.9 1 - 100 49 98.5 L [53]
GO/Fe-Mn 153.4 12 7 5 32.9 89 S [130]

Organic +
Inorganic

GMA-1 - - - - 719 - - [135]
Cellulose-GNC 14.9 12 6 50 410 77 F [136]

GCS 157 - 6 0.89 299.4 80 F [50]
SGO/Fe-Mn - 0.5 6 100 233.4 95.6 BET [132]

Organic

IT-PRGO - 0.4 5 900 624 96 L [47]
GO/2-PTSC with US - 0.3 5 90 555 >85 L [36]

EDTA-mGO 49.9 1.2 4.1 100 508.4 94.9 F /T [76]
Phytic acid induced

GO - - 7.2 - 361 97 L [133]

SeCA-GH - 0.9 3 100 331 99 L [137]
GO-f - 16.6 8.3 20 227.3 100 L [44]

rGO-PDTC/Fe3O4 194.8 0.3 6 - 158.7 - L [68]
HT-rGO-N 386 0.2 5 11 63.8 98 F [138]

L: Langmuir, F: Freundlich, T: Temkin, S: Sips, BET: Brunauer–Emmett–Teller.

The Hg (II) capacities on conventional adsorbents are frequently much lower with adsorption
capacities ranging from single digit values to over 200 mg/g. Other reported capacities on conventional
adsorbents include walnut shell derived activated carbon—151 mg/g [139].

Utilization of the magnetic properties of Fe3O4 to facilitate the decontamination process by
simplifying the separation process described in Figure 12.
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Composite adsorbents have higher adsorption capacities than pure graphene oxide. A novel
adsorbent was designed by chemically modifying graphene oxide (GO) with 2-pyridinecarboxaldehyde
thiosemicarbazone (2-PTSC) as ligand for removing Hg (II) from aqueous solutions with capacity
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reaching 555 mg/g. During this experiment the effect of pH, mercury concentrations and time on
adsorption capacity were investigated. Moreover, EDTA-mGO, Ag/graphene, GO/2-PTSC, GO/2-PTSC
with US, GO-f were identified as reusable adsorbents. Almost half of the studies investigated the
regeneration of the adsorbents. Some studies reported excellent regeneration after 6 cycles but had
lower maximum capacities in comparison to the rest of the adsorbents [129,137]. Reusability studies on
Ag/graphene indicated that the removal efficiency was more than 95% after 6 cycles [129]. Studies on
EDTA-mGO showed that removal capacity remained at 85.9% after five cycles showing best recycling
properties amongst all [76]. GO/2-PTSC and GO/2-PTSC with US were found to have similar desorption
results to all reusable adsorbents in literature with 87% after 3 cycles [36]. Finally, the adsorption
efficiency of GO-f was found to only decrease 21% after five cycles [44].

4.6. Chromium Removal

The adsorption capacities of Cr (III) and Cr (VI) on various GO-based adsorbents are presented
in Table 7. The equilibrium adsorption results for most of the graphene adsorbents followed the
Langmuir model with a few exceptions that followed Freundlich model and were attributed to a low
initial chromium solution concentration or the fact that Fe3O4 was a component additive and the
resulting adsorbent material had more than one active surface adsorption site. On the other hand,
the kinetic data are well represented by the pseudo-2nd order model with two exceptions where the
double-exponential and intraparticle diffusion models were followed [140].

The double exponential kinetic model assumes the adsorption reaction occurs in two steps
comprising a fast stage step 1 and a slow stage step 2, with first order rate constants, kA and kB, for
each step respectively. This model is represented by Equation (4):

qt = qe – (dA/m) exp (−kAt) – (dB/m) exp (−kBt) (4)

where qt—amount of chromium adsorbed at time t, qe—amount of chromium adsorbed at equilibrium
e. dA and dB—amounts of rapidly and slowly adsorbed fraction of chromium (mg/L), respectively,
m—mass of adsorbent.

G-PDAP is a sulfuric acid doped diaminopyridine polymer prepared in-situ on the surface of GO
through mutual oxidation-reduction process as detailed in Figure 13. At the first step, graphene oxide is
prepared from graphite through modified Hummer’s method like in most cases and diaminopyridine
is then added in the presence of H2SO4 which introduces more active sites on the surface of the
adsorbents [37].
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Figure 13. Synthesis process of G-PDAP composite (Reproduced or adapted from ref. [37], with
permission from Elsevier, 2020).

Ultrasonication was a popular synthesis route with organic graphene composites with competitive
results [38,80,141]. Nevertheless, the most common synthesis route is hydrothermal. Polymer/graphene
composites showed the best performance. Surface areas of the adsorbents were not always reported in
the studies, yet when comparing the results, no relation was detected with capacity.
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Table 7. Adsorption properties of different GO-based adsorbents used in removal of Cr (IV) removal.

Modification Adsorbent
Surface

Area
(m2/g)

G/Cr
Ratio
(g/g)

pH
Max

Cr Conc.
(mg/L)

Capacity
(mg/g)

Max
Removal

(%)

Ads.
Isotherm Ref.

Inorganic

rGO-NiFerrite NC 167.3 40 4 10 126.6 99 L [142]
G-Fe-Pb 201.3 0.5 6 22 100 100 L [80]

PG-C 154.5 - 6 0.5 68.9 100 L [85]
GO-OMS-20 872.9 1 - 100 45.5 96 L [53]

GONF 136 0.5 5.5 1000 9.3 99.6 L [88]

Metal
Oxide

GOF/Fe3O4 574.2 2.5 2 200 258.6 99.97 F [143]
G−ZnO - 100 6 10 46.3 90 L [90]

NPG/Fe3O4 850 0.9 3 1000 43.5 80 F [144]
HR-M-GO/Fe3O4 182 1.6 7 300 31.8 100 L [145]

MGC 97 0.03 6.6 60 5.5 - L [146]

Metal
Oxide +
Organic

f-Fe3O4/G 60 0.07 3–4 600 280.6 - L [147]
GCF 74.4 10 2 50 270.3 96 L [72]

CoFe2O4 -TETA-GO - 4.4 2 100 180.1 - L [148]
MCGO-IL - 5 3 200 145.4 - L [149]

Organic

DAP–RGO 46.7 2 1 500 393.7 96 F [150]
Chitosan/GO - 0.5 6 1000 310.4 >90 R–P [38]
Cs/CDTA-GO - - 3.5 25 167.0 90 L [31]

GEC - 8 2 50 86.2 92.5 F [141]
GOSB - 0.03 3 100 76.9 - L [151]
GAD 37.6 0.001 4 200 72.7 - L [152]

IT-PRGO - 4 5 250 63 96 L [47]
MGNC 42.1 3000 2 1 1.0 100 - [153]

Polymer

G-PDAP 327.8 4 1 500 609.8 100 L [37]
PmPD/rGO/NFO - 0.4 3 - 502.5 - L [154]

GO-PEI 1.2 - - - 436.2 - L [155]
P(TA-TEPA)-PAM-RGO - - 6 - 387.5 - L [156]

Fe3O4-GS 62.4 2.6 7.5 3 17.3 95 F [77]
Fe3O4/SiO2-GO-PEI - 1 6 4 0.3 - L [140]

L: Langmuir, F: Freundlich, R–P: Redlich–Peterson.

All these high capacities have the initial adsorbate concentration greater than 200 mg/L. The ability
to regenerate and reuse the GO-based adsorbents has been reported. In a few cases, Fe3O4/SiO2-GO-PEI
was recycled several times without a significant decrease in its adsorption capacity [140]. GONF was
reusable effectively for 4 cycles for the adsorption of Cr (III) [88] and rGO-NiFerrite NC could be easily
reused and recycled for 4 cycles [30]. The most cycles of regeneration done was reported on GCF to
achieve 90% of the capacity after 10 iterations. This shows the superior stability of GCF over the other
adsorbents [72,149].

GEC’s adsorption capacity decreased slightly from 92.5% to 87.5% after 7 cycles, indicating it is
suitable adsorbent for Cr (VI) removal [141]. For chitosan/GO, more than 90% of the total adsorption
uptake in the first cycle is retained after the 5th cycle of Cr (VI) removal [38]. Moreover, MCGO-IL
retained 78% of the initial adsorption capacity after 5 cycles of Cr (VI) [148]. DAP–RGO was also
recycled for five cycles and the maximum removal efficiency was reduced from 96% in the first cycle to
84% after the 5th cycle, indicating the good reusability [150]. The regeneration studies for PG-C and
CNF-C revealed that the adsorbents had the potential to be reused for multiple cycles in the adsorption
of Cr (VI) [85]. Upon analysis of regeneration studies and maximum capacities achieved, G-PDAP is
recommended as a cost-effective adsorbent for the removal of chromium from aqueous solutions [37].

4.7. Copper Removal

Removal of copper ions or copper complexes from water are most widely studied among all
other metal ions due to its extensive occurrence especially in the microelectronics industry effluents.
Table 8 summarizes the results for the adsorption of Cu (II) onto GO and GO composites. Similar
to the case of other metal ions, the isotherm results of Cu removal using graphene materials are
mostly well described by the Langmuir isotherm, but with several exceptions where Tempkin or
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Freundlich isotherms provide the best fit for the equilibrium data. The results that follow the multilayer
heterogeneous adsorption isotherms may be attributed to the tendency of the copper ions to adsorb by
complexation with oxygen lone pair electrons on different oxygenated functional groups present on the
surfaces of the adsorbents. On the other hand, the kinetic data are well described by the pseudo-2nd

order model. Only one study followed the Double Exponential kinetic model [38].
The highest copper uptake capacities shown in Table 7 are for A-Mgo (301 mg/g), β-CD/GPTMS/GO

352.7 mg/g, FA-mGO 283.29 mg/g, EDTA-MCS/GO (207.26 mg/g) [46], Chitosan/GO (423.8 mg/g),
Cu(tpa).GO (235 mg/g), graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel
microspheres (247.61 mg/g) <80%, GCAM10 (457.5 mg/g) and mGO (353.59 mg/g). Other
graphene-based materials used for the removal of copper ions showed lower capacity including
crumpled graphene balls (22.56 mg/g), Magnetic dithiocarbamate/rGO (113.64 mg/g), β-Cyclodextrin
conjugated graphene oxide (117.07 mg/g), and dialdehyde cellulose grafted graphene oxide composite
(65.1 mg/g).

In addition to high adsorption capacity, it is important for the expensive GO derived adsorbents
to have the ability to be regenerated and reused many times, whilst retaining a high capacity. In this
regard EDTA-mGO, FA-mGO, EDTA-MCS/GO, DTPA/MGO, GO-DPA, chitosan/GO, GO-CTPy, Fe3O4,
Fe3O4/TiO2, CS-IIP and Fe3O4/HAP/GQDs were found to be reusable. EDTA-mGO retained a 97.6%
removal efficiency after five cycles [83] and FA-mGO held 86.5% removal efficiency after six cycles,
indicating that it is an efficient and economic adsorbent that can be easily retrieved and recycled due to
it magnetic properties as shown in Figure 14 [134].
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Magnetic graphene oxide is prepared through the Impregnation Method (mGOi), simple emulsion
and Co-precipitation (mGOp) [21,50,61,71,134]. After synthesis, the adsorbent is characterized using
various methods (SEM, FTIR, XRD, DTA, DTG, VSM) with results that show many possible interactions
with the surface of this composite and its ability to remove copper [71].

Various methods were used to fabricate or synthesize the graphene composites used for the
removal of copper. The three most common were solvothermal, hydrothermal and dispersion methods.
In some cases, a combination of the methods was used to synthesize different components of the
adsorbents [68,70]. The most common additive to graphene was organic, showing the most promise
with regards to maximum capacities. Amino-MGO [118] reported the highest maximum capacity,
although upon further analysis Chitosan/GO [38] is the recommended graphene composite for the
removal of copper. It showed the best overall performance with regards to removal efficiency,
regeneration properties, and adsorbent to adsorbate ratio. Furthermore, given that chitosan and
graphene are abundant and not expensive compared to the other composites, it is the economical
choice too.
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EDTA-MCS/GO showed high magnetic sensitivity in the presence of an external magnetic field
after 4 cycles, which indicated good reusability status [46]. DTPA/MGO’s total adsorption capacity for
Cu (II) decreased by only 8.2% after 6 cycles [39]. The removal efficiency of GO-DPA reduced with the
number of cycles but was still above 80% after 3 cycles, indicating reasonably good reusability [40].
More than 90% of the total adsorption in the first cycle takes place in the 5th cycle for metal ions [38].
The adsorption capacity of GO-CTPy was still high enough after seven cycles to indicate that it has
good reusability performance [157]. It also had the best regeneration properties of all studied graphene
composites for copper removal. The decline of adsorption capacities in Fe3O4 and FTG were 9% and
7.4% after 5 cycles [50]. CS-IIP’s adsorption capacity decreased slightly after 5 cycles, showing that
CS-IIP has good stability and could be used repeatedly [86].

The adsorption capacities for copper using the more conventional adsorbents are generally much
lower than the high values reported in Table 7. For example the adsorption capacity for chitosan
(85 mg/g) [73], DTPA-chitosan/alginate composite beads (107 mg/g) [32], iminodiacetate ion exchanger
(145 mg/g) [158], mixed adsorbents (238 mg/g) [159], poly-dopamine coated natural zeolite (28 mg/g) all
with lower capacities than the 300+ mg/g capacity of the majority of graphene-based adsorbents shown
in Table 7. The exception is the “superadsorbent” PAMAM CNT-dendrimers with a super-capacity of
3333 mg/g [160].

Table 8. Adsorption properties of different GO-based adsorbents used in Cu (II) removal.

Modification Adsorbent
Surface

Area
(m2/g)

G/Cu
Ratio
(g/g)

pH
Max Cu

Conc.
(mg/L)

Capacity
(mg/g)

Max.
Removal

(%)

Adsorption
Isotherm Ref.

Inorganic

GO –COOH 39.8 0.159 6–7 700 357.1 99.4 L [161]
BY-GO 34.2 0.674 5 493.3 349.5 - L [162]

Cu(tpa).GO - 0.04 7 228.1 235 - L [86]
Graphene balls - - 3.5 249.7 224.6 99 F [163]
ZnO NR-rGO - 5 8 98.6 67.4 100 L [164]

Metal
Oxide

GO-MO 383.9 0.02 6 500 240 99 F [117]
FTG 422.8 - - - 87.4 72.1 L [165]

SMGO 92.8 8.35 4.7 73.7 62.7 - L [166]
G−ZnO - 100 6 10 37.5 96.56 L [90]

Organic

GCAM10 - 0.4 4.9 500 457.5 >85 F [167]
Chitosan/GO - 0.5 6 1000 423.8 >90 R–P [38]

GO-DPA - 0.4 5 100 358.8 >85 L [40]
β-CD/GPTMS/GO - 1.25 7 200 352.7 - L [168]

MWCNT-PDA 356.1 0.167 6 400 318.5 - L [91]
SA/PVA/GO - - 8 - 247.7 >80 L [159]

EDTA-MCS/GO 49.9 6.6 7 50 207.3 86.8 L [46]
CS/GO10 - 0.1 5 100 202.5 - F [32]

GAD 37.6 0.01 4 200 169.5 - L [152]
GO-CTPy 57.3 16.7 6 90 119.6 - L [157]

GOSB - 0.3 3 100 111.11 - L [151]
GO-TETA-DAC 445 - 5 - 65.1 77 L [67]

IT-PRGO - 4 5 150 37 100 L [47]

Organic +
Metal
Oxide

amino-MGO - - 5.5 - 578.1 - L [118]
EDTA-mGO 49.9 1 4.1 100 301.2 95.7 T [76]

FA-mGO - 2 5 2000 283.3 96.8 T [134]
Fe3O4@GO 169.7 0.05 5 1000 32.5 - F [169]

O+P
rGO-PDTC/Fe3O4 194.8 0.33 5 - 113.6 - L [68]

g-C-EN-GO 0.26 7 959.2 46.4 43.1 L [96]

Polymer

mGO/PAMAM2.0 - - 7 30 353.6 99.9 F [70]
DTPA/MGO - 0.033 3 300 131.4 - L [39]
EDA-RGO 28 0.5 7 200 55.3 - L [99]

MGO/β-CD - 1.4 5.5 100 30.98 - F [170]

P + MO
GO/ Fe3O4/PEI 323.5 1 5 1000 157 97.1 L [171]

MCGON 132.9 0.167 7 100 217.4 - L [172]
CS/GO/Fe3O4-IIP - 0.6 6 500 132 - F [46]

L: Langmuir, F: Freundlich, R–P: Redlich–Peterson, T: Temkin, MO: Metal Oxide, P: Polymer, O: Organic.
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4.8. Other Metals

Table 9 summarized the adsorption capacity, kinetics and experimental conditions for the
adsorption of several important and toxic metals using GO and GO-based composites. All studies
followed the pseudo second order kinetic model except PAA-MGA in the removal of selenium, which
followed Intra-Particle Diffusion model [81]. These metals include radioactive materials. U, Th, Sc,
Nd; catalytic materials such as Pd, Pt; emerging materials in waste streams including Se and Mn.
For the adsorption of U (VI), GO-BSA showed good regeneration efficiency showing the potential
for reusability [173]. Additionally, rGO/LDH’s adsorption capacity remained at 97.2% after three
cycles [174]. While GO has high reusability, as its desorption percentages reached 95.45% for Au(III),
94.64% for Pd (II) and 99.37% for Pt(IV) [175]. MGO’s adsorption values can be compared to those for
adsorbents that have been reported before, suggesting that it could be reusable [176]. The desorption
percentage of CSGO5 remained about 95% with both Au(III) and Pd(II) after 3 cycles, showing that it is
possible to successfully reuse CSGO5 for the adsorption of both metals [177].

Table 9. Adsorption properties of different GO-based adsorbents used for removal of various metals.

Metal Adsorbent
Surface

Area
(m2/g)

Adsorbent/
Adsorbate

(g/g)
pH

Max.
Adsorbate

Conc.
(mg/L)

Capacity
(mg/g)

Max.
Removal

(%)

Ads.
Isotherm Ref.

Ag (III) TEOA-GO-PC - 0.02 - 1000 850 - L [175]
Ag (III) CNTs/GO - 0.167 5.9 - 534.8 86.42 L [77]
Au (III) CSGO5 4.2 0.4 4 500 1077 - L [133]
Au (III) GO - 0.033 6 90 108.3 - L [133]
Ca (II) pAMPS-g-GT - 0.3 7 1000 114.2 53.45 L [178]
Co (II) GO 2.8 0.01 5.5 1000 21.3 93 F [159]
Co (II) M–GO - 40 6.5 50 17.1 100 L [176]
Co (II) zero-valent FeNP-G - 0.67 5.7 600 134.3 90 F [109]
Co (II) GO - 10 5 10 43.6 - S [179]
Co (II) ZnO NR-rGO - 5 8 90.1 36.4 10 L [164]
Co (II) TRG 10 2 6 700 733 90 L [81]
Fe (II) MGO - 0.36 5.5 84 43.2 100 F [176]
Fe (III) Cu(tpa).GO - 0.14 7 73.7 78 - L [86]
Fe (III) GO-PAMAM 2.0 - - - - 29.7 - - [39]
Fe (III) GO 330.7 0.6 - 20 133.3 90.5 L [180]
Fe (III) GO - - 4 25 27.3 - L [71]
Gd (III) CNT/GO - 4 5.9 12 427.7 - L [181]
Mn (II) Cu(tpa).GO - 0.09 7 112.4 150 - L [86]
Mn (II) MGO - 0.364 5.5 82.5 16.5 100 F [176]
Mn (II) EDA-RGO 28 0.5 7 200 42.5 - L [99]
Nd (III) GO-C4 372 - 7 - 232.6 - F [135]
Nd (III) GO-C6 518 - 7 - 220 - F [135]
Nd (III) GO-C8 62.4 - 7 - 312 - F [135]
Pd (II) CSGO5 4.2 2 3 100 216.9 - L [133]
Pd (II) GO - 0.06 6 50 80.8 - L [133]
Pt (IV) GO - 0.06 6 50 71.4 - L [133]

Re (VII) ZrO2@rGO 272.73 - 4 - 43.6 - L [88]
Se (IV) PAA-MGO - 0.38 5.8 4 120.1 99.3 F [42]
Se (IV) PAA-MGO - - 3.1 0.4 156 99.3 F [81]
Se (VI) PAA-MGO - 0.38 5.8 4 83.7 99.7 F [159]
Sr (II) GO–Hap ZEA 91.9 10 7 300 702.2 95 L [29]

Th (IV) a-GOM2 2001 0.25 3.8 1000 408.8 - L [98]
U (VI) GO-BSA - - 6 200 389 98 L [72]
U (VI) a-GOM2 2001 0.5 3.8 1000 66.8 - L [98]
U (VI) PA–GO - 6.25 5.5 80 124.3 - L [182]
U (VI) rGO/LDH 256.8 3.84 4 130 277.8 99 L [72]
Zn(II) GO - 1.67 5 40 246 99.3 L [183]
Zn (II) GO - - 6 2439.1 - 94 L [184]
Zn (II) GOSOxR@TiO2 208 - - - 285 - R-L [83]
Zn (II) GO - 14.9 6.2 0.5 243 93.1 L [185]
Zn (II) Cu(tpa).GO - 0.11 7 91.7 89 - F [86]
Zn (II) GO-PANI - 0.5 7 100 - 84.8 L [184]
Zn (II) GO-PAMAM 2.0 - - - - 64.6 - - [39]

L: Langmuir, F: Freundlich, R–P: Redlich–Peterson, S: Sips.
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5. Conclusions

GO provides an economically viable and efficient method to treat wastewater containing harmful
heavy metals. Various methods are available for synthesizing composite GO materials providing
materials that are tailored for removal of specific species. The carboxyl, hydroxyl, and epoxy functional
oxygen groups on GO facilitate the adsorption of ions by providing active binding sites. This review
analyzes the metal adsorption results from over one hundred and eighty recent studies using GO
and GO-derived materials for the removal of more than 10 metal ions. The adsorption capacities of
different metals are analyzed and compared with the capacity of conventional adsorbents. In almost
every case, the metal adsorption capacity using GO materials are considerably higher. Although the
production of GOs is expensive at present, these high capacities may lead to lower cost for treatment
of wastewater streams polluted with metal ions as not only is the required adsorbent amount lower,
but also the size of adsorption equipment will be less and hence the plant capital cost will be less.
There are no studies that have considered how to recover the valuable metals for re-use which is an
important topic that needs further research.

New research directions started in the last few years for GO hybridizations with different organics
to enhance the metal uptake and speed the adsorption kinetics. More detailed mechanistic studies
have been utilizing UV and ultrasound to facilitate the adsorption process.

More research is required on new functional groups and composites that increase the maximum
adsorption capacity of GO and improve its reusability. More fixed bed column studies are required and
both testing of the graphene materials for selective removal of metals is still absent from the current
literature as the current studies focus on testing single metals. Moreover, the effect of water salinity
on the adsorption of heavy metals is important for treatment of oil- and gas-produced water, where
high concentrations of monovalent salts exist. Another key issue is the ability to regenerate and retain
the adsorption capacity of the GO-based adsorbent in an economic manner and recover the desorbed
metal (in most cases as a precipitated pure salt) for reuse. There are almost no studies which have
utilized the use of fixed bed columns experiments as almost all studies have been on batch experiments.
Further studies in this area and scale-up are also required with estimation of the cost of the material
and its impact on the economic viability of large-scale adsorption processes.
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