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Artemisinin and its derivatives (ARTs) are known as conventional antimalarial drugs with
clinical safety and efficacy. Youyou Tu was awarded a Nobel Prize in Physiology and
Medicine due to her discovery of artemisinin and its therapeutic effects on malaria. Apart
from antimalarial effects, mounting evidence has demonstrated that ARTs exert
therapeutic effects on inflammation and autoimmune disorders because of their anti-
inflammatory and immunoregulatory properties. In this aspect, tremendous progress has
been made during the past five to seven years. Therefore, the present review summarizes
recent studies that have explored the anti-inflammatory and immunomodulatory effects of
ARTs on autoimmune diseases and transplant rejection. In this review, we also discuss the
cellular and molecular mechanisms underlying the immunomodulatory effects of ARTs.
Recent preclinical studies will help lay the groundwork for clinical trials using ARTs to treat
various immune-based disorders, especially autoimmune diseases.

Keywords: artemisinin, adaptive immunity, innate immunity, autoimmune disease, immunoregulation,
cellular signaling
INTRODUCTION

Artemisinin, originally extracted from Artemisia annua or Qinghao, is a safe and effective drug for the
treatment of malaria (1). In 1972, artemisinin was first discovered by Youyou Tu (2) who was then
awarded a Nobel Prize in Physiology and Medicine in 2015. The chemical structure of artemisinin was
determined to be a sesquiterpene endoperoxide, which is totally different from that of other conventional
antimalarial drugs (3). Subsequently, some artemisinin-based derivatives with better bioactivity or
solubility have been synthesized, including dihydroartemisinin, artesunate, artemether, SM934, DC32
and ADART (9,10-Anhydrodehydroartemisin) (4). Later, artemisinin-based combination therapies were
recommended by the World Health Organization (WHO) for the treatment of malaria, although
artemisinin and its derivatives (ARTs) were considered as the first-line antimalarial drugs. Long known
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for their antimalarial effects, ARTs have recently exhibited other
pharmacological properties, such as antitumor (5), antiviral (6),
anti-fibrotic (7, 8) and anti-inflammatory effects (9, 10). The
mechanisms underlying the effects of ARTs on inflammation
have been briefly described in a review by An et al., with a focus
on the impacts of quinoline- and acridine-based antimalarial drugs
on innate immunity and autoimmune diseases (9). Meanwhile,
immunosuppressive features of ARTs have also been briefly
reviewed based on earlier studies on autoimmune diseases (10).
However, in terms of immunomodulatory effects of ARTs,
tremendous progress has been made during the last five to six
years. We have recently demonstrated that dihydroartemisinin, an
artemisinin derivative, ameliorates psoriatic skin inflammation and
its relapse by selectively diminishing memory CD8+ T cells (11). In
this review, we summarize recent studies that have explored the
anti-inflammatory and immunomodulatory effects of ARTs on
autoimmune diseases and allograft rejection as well as the
mechanisms underlying their actions. We also briefly discuss the
potential application of ARTs in clinic.
Frontiers in Immunology | www.frontiersin.org 2
ARTEMISININ FAMILY DRUGS EXERT
IMMUNOREGULATORY EFFECTS ON
IMMUNE-MEDIATED INFLAMMATION OR
AUTOIMMUNE DISEASES AS WELL AS
ALLOGRAFT REJECTION

Immune-mediated inflammatory diseases (IMIDs) are a group of
common and chronic disorders characterized by dysregulation of
the immune system, resulting in inflammation and damage to
target organs (12, 13). Examples of IMIDs include inflammatory
bowel disease (IBD), psoriasis, rheumatoid arthritis, multiple
sclerosis and systemic lupus erythematosus (SLE) (14), most of
which are known to be autoimmune diseases. On the other hand,
allograft rejection mediated by innate and adaptive immunity
remains a main cause of graft failure after transplantation, posing
a challenge to transplant patients’ quality of life and survival.
Artemisinin and its derivatives (ARTs) have been shown to
impact immune cells (Figure 1) and exert therapeutic effects
FIGURE 1 | Artemisinin and its derivatives on both adaptive and innate immune cells. Artemisinin and its derivatives have the capacity to regulate expressions of
proinflammatory and anti-inflammatory cytokines, the frequency and activation of T helper and B cells, and the responsiveness of macrophages, DCs, neutrophils,
mast cells and MDSCs. “↓“ denotes “enhancing” while “⊥“ indicates “suppressing”. (Th1, T helper 1 cell; Th2, T helper 2 cell; Th9, T helper 9 cell; Th17, T helper 17
cell; Treg, regulatory T cells; Tfh, follicular helper T cells; Tfr, follicular regulatory T cells; MDSC, myeloid-derived suppressor cells).
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on allograft rejection and IMIDs, including rheumatoid arthritis,
psoriatic skin inflammation, IBD, multiple sclerosis, SLE and
IgA nephropathy.
RHEUMATOID ARTHRITIS

RA is a chronic inflammatory disease with the feature of Treg/
Th17 imbalance, resulting in cartilage degradation and bone
erosion within both small and large joints (15). The exact cause
of RA remains unknown, posing a challenge to the diagnosis and
treatment for RA (16). Accumulating evidence based on animal
models has pointed to the efficacy of ARTs in RA treatment. In
type II collagen-induced arthritis (CIA) in rats, artesunate
treatment not only alleviated inflammation, decreased the
frequency of Th17 cells and increased Treg cells in the
synovium and spleen (17), but also stimulated apoptosis or
autophagy in cartilage tissue and inhibited chondrocyte
proliferation through the PI3K/AKT/mTOR signaling pathway
(18). Moreover, artesunate exerted a suppressive effect on
osteoclastogenesis and improved arthritic bone erosion in CIA
rats via inhibiting the production of ROS and activating
antioxidant enzyme as well as p62/Nrf2 signaling (19). In
addition, artesunate significantly inhibited the migration and
invasion offibroblast-like synoviocytes (FLS) in patients with RA
by suppressing PDK1-induced activation of AKT and RSK2
phosphorylation as well as MMP-2 and MMP-9 production
(20). Similarly, DC32 [(9a,12a-dihydroartemisinyl)bis(2’-
chlorocinnmate)], a dihydroartemisinin derivative, remarkably
dampened footpad inflammation, reduced cartilage degradation
through the Nrf2-p62-Keap1 feedback loop in DBA/1 mice with
CIA (21), and impeded cellular infiltration and inflammation via
restoration of Treg/Th17 balance and downregulation of the
expression of IL-6, resulting in ultimate attenuation of RA (22).
These data have suggested that ATRs can effectively alleviate RA
by regulating Th17/Treg balance, FLS mobility and oxidative
stress via suppressing PI3K/AKT/mTOR and AKT/RSK2
signaling pathways while activating p62/Nrf2 signaling.
IMMUNE-MEDIATED SKIN DISEASES:
PSORIASIS AND ATOPIC DERMATITIS

Psoriasis, which affects over 60 million people worldwide, is an
inflammatory or autoimmune skin disease (23). An important
role for T cells in the pathogenesis of psoriasis was confirmed by
several clinical trials (24, 25), while tissue-resident memory T
cells (TRM) reportedly led to the recurrence of psoriasis at sites of
previously involved skin (26). We recently found that
dihydroartemisinin is more effective than methotrexate in
suppressing psoriasis relapse. Dihydroartemisinin not only
reduced acute skin lesions and recurrence of psoriasis in
imiquimod (IMQ)-induced psoriasis-like mice, but also
ameliorated psoriatic human skin lesions in humanized NSG
Frontiers in Immunology | www.frontiersin.org 3
mice receiving lesional skin from patients with psoriasis (11),
mainly by diminishing CD8+ central memory T (TCM)
and resident memory T (TRM) cells (11). Furthermore,
artesunate was also reported to inhibit epidermal thickening
and systemic inflammation in IMQ-induced psoriatic mice by
reducing gd T cells in the draining lymph nodes (27).

Atopic dermatitis (AD) is a common and chronic
inflammatory skin disease with severe pruritus, cutaneous and
systemic immune dysfunction, and skin lesions. Although the
exact pathogenesis of AD remains unclear, it likely results from
interactions of genetic and environmental factors (28, 29). It was
reported that dihydroartemisinin could ameliorate AD
symptoms and skin lesions in DNCB-induced AD mouse
models. At high doses, dihydroartemisinin significantly
alleviated mast cell infiltration into the skin lesions (30),
indicating that it exerts therapeutic effects on AD by targeting
mast cells in the skin. Similarly, artesunate relieved AD
symptoms and mast cell infiltration, mainly by decreasing the
expression of proinflammatory cytokines, including IL-6, IL-17
and IL-23, and suppressing RORgt and STAT3 phosphorylation
(31). Taken together, these studies have indicated that ARTs
attenuate both psoriasis and AD through inhibition of CD8+
memory T cells, Th17/gd T cells and mast cells.
INFLAMMATORY BOWEL DISEASE

IBD is a chronic inflammatory bowel disorder mediated by
autoimmunity, leading to the injury of gastrointestinal tracts
(32, 33). IBD mainly includes ulcerative colitis (UC) and
Crohn’s disease (34). In a dextran sulfate sodium (DSS)-induced
mouse colitis model, artemisinin was shown to downregulate
LYVE-1+ lymphatic vessel density and ameliorate the intestinal
inflammation by inhibiting VEGF-C/VEGFR-3-mediated
lymphangiogenesis and infiltration of macrophages and
neutrophils in colon tissue (35), promoting macrophage
polarization toward an M2 phenotype and/or suppressing the
process of epithelial-mesenchymal transition (36). Besides,
dihydroartemisinin and artesunate have been reported to
effectively alleviate colitis symptoms in mice via different cellular
and molecular mechanisms. For example, treatment with
dihydroartemisinin suppressed activation of PI3K/AKT and NF-
kB signaling pathways (37), promoted CD4+ T cell apoptosis and
restored Th1/Treg cell balance through enhancing heme
oxygenase-1 (HO-1) production (38). Dihydroartemisinin also
regulated the expression of proinflammatory genes and cell
junction-associated genes and normalized the abundance of the
gut bacteria that was altered in colitis mice (39). Furthermore,
artesunate reportedly reduced expression of IFN-g, IL-17, and
TNF-a in experimental colitis (40), inhibited TLR4-NF-kB
signaling pathway (41), promoted apoptosis of macrophages and
DCs, and reduced TNF-a and IL-12 production in vivo and in
vitro (42) while suppressing excessive ER stress (43), cell apoptosis
and inflammatory responses via the NF-kB pathway (44, 45).
Thus, ARTs exert immunoregulatory effects on various immune
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cells, including T helper cells, Tregs, macrophages, neutrophils
and DCs, by modulating NF-kB and PI3K/AKT signaling
pathways, resulting in an improvement of colitis symptoms.
MULTIPLE SCLEROSIS

MS is a chronic immune-mediated disease of the central nervous
system, resulting in the destruction of oligodendrocytes and myelin
sheaths and impairment of mobility and cognitive processing (46).
Although MS etiology is complex and not completely elucidated, it
seems to result from a combination of environmental, genetic and
epigenetic factors (47). The therapeutic efficacy of artemisinin
family drugs on MS was investigated using a mouse model of
experimental autoimmune encephalomyelitis (EAE). It was found
that artemisinin ameliorated EAE and reduced plaque formation in
the brain with a decrease in IFN-g expression and an increase in IL-
4 production (48). Administration of artesunate attenuated the
clinical signs and symptoms of EAE via preventing migration of
pathogenic T cells to the central nervous system (49). Furthermore,
Lv found that 9,10-Anhydrodehydroartemisin (ADART), a
compound derived from artemisinin, effectively reduced
inflammation in the central nervous system by inhibiting Th1
and Th17 cells (50). Therefore, the therapeutic effects of ARTs on
MS may be attributed to their suppression of Th1 and Th17 cells.
SYSTEMIC LUPUS ERYTHEMATOSUS

As a chronic and systemic autoimmune disease, SLE is
characterized by the dysfunction of immune cells, the
production of a wide range of autoantibodies and the formation
of immune complexes (51, 52). It was reported that
dihydroartemisinin suppressed LPS-induced activation and
proliferation of spleen cells from lupus-prone MRL/lpr mice
possibly through inhibiting TLR4 expression and IRF3
phosphorylation (53). Li et al. showed that senescence of
myeloid-derived suppressor cells (MDSCs) promoted the
pathogenesis of SLE, while dihydroartemisinin alleviated the
manifestation of SLE by attenuating MDSC senescence via
regulating Nrf2/HO-1 pathway (54). Subsequently, it was
demonstrated that dihydroartemisinin alone, or in combination
with prednisone treatment, significantly ameliorated the signs and
symptoms of murine SLE through restoring the Treg/Th17
balance by reducing transcription of RORgt and increasing
expression of Foxp3 in T cells (55). Serum levels of Macrophage
migration inhibitory factor (MIF) in SLE patients were positively
associated with the disease activity. Artesunate was shown to
decrease MIF level in HUVEC culture with IFNa stimulation
and in SLE patient-derived PBMC culture, partly through
attenuating STAT1 phosphorylation, indicating a potential
therapeutic effect of artesunate on SLE-associated atherosclerosis
(56). Another study in vivo revealed that artesunate ameliorated
the symptoms of lupus nephritis, decreased renal deposition of
anti-dsDNA antibodies and suppressed the production of
Frontiers in Immunology | www.frontiersin.org 4
pathogenic cytokines through a reduction of follicular T helper
cells (Tfh) and enhancement of follicular regulatory T cells (Tfr) as
well as suppression of Jak2-Stat3 signaling pathway (57). Besides,
SM934, an artemisinin derivative, extended the lifespan of MRL/
lpr mice, relieved the lymphadenopathy symptoms, and
suppressed B cell activation and plasma cell formation in vivo
(58). Thus, ARTs appear to exert therapeutic effects on SLE, and
the mechanisms underlying their effects were likely dependent on
their regulation of MDSC senescence, Treg/Th17 balance and/or
Tfh/T f r ra t i o through Nfr2 /HO-1 and Jak /STAT
signaling pathways.
IgA NEPHROPATHY

IgA nephropathy (IgAN) is a common glomerular disease and
one of the leading causes of end-stage renal diseases (59). IgAN is
an autoimmune disease characterized by IgA immunodeposits
within the mesangium of the glomeruli, usually resulting in
hematuria and renal functional insufficiency (60). An animal
study performed by Bai and his colleagues demonstrated that in
combination with hydroxychloroquine (AH), artemisinin
significantly improved renal function, decreased IgA and IgG
depositions, and reduced the expression of nuclear NF-kB and
NLRP3 inflammasome-related proteins while elevating the
secretion of exosomes in the kidney. They revealed that
increased exosomes from HK-2 cells could inhibit the NF-kB
signal pathway and NLRP3 inflammasome activation (61). On
the other hand, the authors also found that artemisinin in
combination with hydroxychloroquine ameliorated IgAN by
reducing Th2 and Th17 cells while increasing Treg cells (62).
Subsequently, it was also shown that dihydroartemisinin
downregulated the mTOR/S6K1 signaling pathway in human
mesangial cells (HMCs), promoted cell autophagy and
suppressed cell proliferation in IgA1-stimulated HMCs,
suggesting that dihydroartemisinin is a novel mTOR inhibitor
and can exert an anti-proliferative effect on HMCs in IgAN (63).
TRANSPLANT REJECTION

Allograft rejection represents an immune process in which the
donor alloantigens evoke a vigorous immune response of a
recipient against a transplant, contributing to graft loss (64).
Therefore, more effective therapies need to be explored to
improve transplant outcomes as current immunosuppressive
agents may cause various side effects. An important study by
Yang et al. revealed that artemisinin alleviated not only T cell-
mediated but also antibody-mediated rejection in a cardiac
transplant rat model by regulating the balance of T effector
and Treg (Teff/Treg), impeding B cell activation and antibody
production, and decreasing macrophage infiltration in an
allograft, resulting in prolongation of graft survival. Moreover,
they reported that artemisinin inhibited the activation or
function of T cells, B cells and macrophages in vitro (65).
Another study indicated that artemisinin remarkably extended
September 2021 | Volume 12 | Article 751772
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survival time of murine skin allografts without significant
changes of CD4+CD44hiCD62Lhi T cells in vivo. However,
artemisinin reduced OX40+ T cell frequency and IL-6 secretion
in vitro (66). Thus, artemisinin can exert immunosuppressive
effects on alloimmunity or allograft rejection and may be
implicated in clinical transplantation.
THE EFFECTS OF ARTEMISININ AND
ITS DERIVATIVES ON CELLULAR
SIGNALING PATHWAYS

NF-kB
The nuclear factor-kappa B (NF-kB) signaling plays a vital role in
both immunity and inflammation (67). Upon stimulation, NF-kB
translocates into the nucleus and promotes the transcription of
numerous genes critical for dendritic cell function, T cell
activation and sustainment of secondary lymphoid organs. In a
study performed byWang et al., TNF-a induced phosphorylation
of IkBa and production of P65 in Hep3 B cells. Artemisinin
suppressed the activation of NF-kB pathway induced by TNF-a
via attenuating IkBa phosphorylation and activation of P65,
resulting in a decrease in expression of NF-kB target genes and
two adaptor proteins, RAF2 and RIP1, which in turn exerted their
effects on upstream of IKK signaling (68). Dihydroartemisinin
Frontiers in Immunology | www.frontiersin.org 5
and artesunate also inhibited NF-kB signaling, leading to
alleviation of colitis. Dihydroartemisinin significantly inhibited
phosphorylation of IKKa, IkBa, and NF-kB (p65) in DSS-
induced murine colitis and IEC-6 cells treated with LPS (37)
while artesunate remarkably suppressed the NF-kB activation
with a reduction in mRNA expression of IL-1b, IL-6 and TNF-a
and an increase in IL-10 gene expression (41, 44, 45). Taken
together, ARTs can hinder activation of NF-kB pathway and
therefore suppress inflammatory responses in vivo and in
vitro (Figure 2).

Nrf2
Transcription factor Nrf2, which is negatively regulated by Keap1,
plays an important role in controlling the expression of antioxidant
enzymes and suppressing inflammation via regulating
transcription of anti-inflammatory genes (69, 70) while P62-
mediated Keap1 degradation contributes to nuclear translocation
of Nrf2 and related gene transcriptions. Dihydroartemisinin
treatment elevated the expression of Nrf2 and its target gene HO-
1 in MDSCs from SLE mice and attenuated the senescence of
MDSCs (54). It was also found that artesunate activated Nrf2 by
augmenting p62 expression inmurine bonemarrowmacrophages,
resulting in an increase in the expression of HO-1 or NQO1 (19).
Similarly, DC32 strengthened Nrf2/HO-1 signaling and promoted
p62 transcription or Keap1 degradation in DBA/1 mice as well as
FIGURE 2 | The signaling mechanisms underlying effects of artemisinin and its derivatives. Artemisinin and its derivatives exert immunoregulatory and anti-
inflammatory effects via interfering with NF-kB, Nrf2, Jak/STAT and mTOR signaling pathways, resulting in downregulation of proinflammatory genes and
upregulation of anti-inflammatory and antioxidant genes. Red downward arrows indicate suppressive effects, while blue upward arrows denote stimulating effects.
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NIH-3T3 cells (21). Collectively, ARTs promote the activation of
Nrf2 signaling, resulting in elevated expression of anti-
inflammatory genes and a reduction in inflammation (Figure 2).

JAK/STAT
Janus kinase (JAK) and signal transducer and activator of
transcription (STAT) proteins control signal transduction of
many cytokines and growth factors associated with cellular
growth, survival and differentiation (71). Artesunate reportedly
attenuated STAT1 phosphorylation in cultured HUVECs
stimulated with IFNa (56) and suppressed phosphorylation of
JAK2 and STAT3 in the kidney of MRL/lpr mice, resulting in an
amelioration of the symptoms of lupus nephritis (57).

mTOR
Mammalian or mechanistic target of rapamycin (mTOR) is a
protein kinase that regulates eukaryotic signaling networks and
diverse cellular processes upon environmental changes (72).
Previous studies demonstrated that artesunate not only
downregulated the mRNA and protein expressions of PI3K,
AKT and mTOR, but also inhibited phosphorylation of these
proteins in the cartilage tissue of RA mice and chondrocytes in
vitro (18), while dihydroartemisinin suppressed phosphorylation
of mTOR and S6K in human mesangial cells in the presence of
IgA1 stimulation (63). Thus, ARTs may serve as a novel inhibitor
of mTOR.
CONCLUSIONS AND PERSPECTIVES

The number of patients treated with immunosuppressive drugs
for immune-mediated inflammatory diseases (IMIDs) and
transplant rejection has gradually increased over the last
decades (73). IMIDs or autoimmune diseases affect 5-7% of the
population in western countries (12), resulting in substantial
personal and societal costs due to disease chronicity. Lifelong
administration of conventional immunosuppressive agents poses
a huge economic burden to patients with autoimmune diseases
or organ transplantation, accompanied by some complications,
such as infections, tumors and lymphoproliferative diseases. In
spite of advances in remedies, IMIDs and allograft rejection
remain linked to a high risk of morbidity and mortality (74).
Thus, finding a cost-effective and efficacious treatment with few
side effects is warranted.

ARTs have been widely used in humans for treating malaria
with only mild side effects (75). Other clinical trials showed that
artesunate was safe and well-tolerated in patients with breast
cancer (76, 77), while artemisinin treatment in pregnant women
did not elevate the risk of miscarriage, stillbirth or congenital
malformation (78). Collectively, ARTs are generally considered
to be safe and effective in clinical practice.
Frontiers in Immunology | www.frontiersin.org 6
In this review, we summarize the latest studies demonstrating
the efficacy of ARTs in the treatment of IMIDs or autoimmune
diseases and allograft rejection. ARTs mainly regulate adaptive
and innate immune cells, including subsets of CD4+ T cells
(Th1/Th2/Th9/Th17/Tfh/Tfr/Treg), CD8+ memory T cells, gd T
cells, B cells, dendritic cells, neutrophils, mast cells, macrophages,
and MDSCs, through altering cellular apoptosis and
differentiation, pro-inflammatory and anti-inflammatory
cytokine secretion, and signal transduction. So far, systematic
researches into ARTs for their efficacy in IMIDs and allograft
rejection have been largely confined to animal models due to the
lack of large randomized and controlled clinical trials, although
previous clinical evidence has indicated that ARTs may have
been immunosuppressive in lupus patients (79–81). Therefore,
more clinical studies are warranted to evaluate their doses,
efficacy and side effects in the treatment of IMIDs and allograft
rejection. ARTs may present a promising therapeutic alternative
for treating IMIDs and allograft rejection in the near future.
Alternatively, they could be used in combination with an
immunosuppressant to either enhance therapeutic efficacy or
reduce side effects.
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