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Fully Closed Genome Sequences of Five Type Strains of the
Genus Cronobacter and One Cronobacter sakazakii Strain
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Cronobacter is associated with infant infections and the consumption of reconstituted infant formula. Here we sequenced and
closed six genomes of C. condimenti®, C. muytjensii®, C. universalis®, C. malonaticus®, C. dublinensis™, and C. sakazakii that
can be used as reference genomes in single nucleotide polymorphism (SNP)-based next-generation sequencing (NGS) analysis

for source tracking investigations.
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ronobacter (formerly Enterobacter sakazakii) is a foodborne

pathogen that has been identified as the causative agent of
severe clinical complications in neonates and infants, such as
meningitis, necrotizing enterocolitis, and septicemia (1, 2). The
origin of this pathogen is not clear, but Cronobacter has been iso-
lated from a wide range of foods, among which powdered infant
formula (PIF) has been identified as the dominant vehicle of
transmission (3, 4). Cronobacter is also often isolated from the
environment and can be found in soil samples, domestic kitchens,
and predominantly PIF manufacturing facilities (5, 6). The genus
Cronobacter represents E. sakazakii, which was reclassified in 2007
as a result of biotyping and genotyping studies (7, 8).

Reliable identification and discrimination of Cronobacter
strains is of importance due to the severe illness and ubiquitous
occurrence in the environment and food. A multilocus sequence
typing (MLST) scheme (9) has been shown to enable differentia-
tion of closely related Cronobacter strains. The high discrimina-
tory power and the drop in the cost of the next-generation se-
quencing (NGS) technologies favor the use of NGS as a routine
diagnostic tool in public health reference laboratories in the near
future (10). Clustering of Cronobacter isolates based on NGS data
will allow a powerful source-tracking analysis. The clustering and
the creation of phylogenic trees based on single nucleotide poly-
morphism (SNP) analysis of the NGS data are carried out by map-
ping short read sequences of Cronobacter isolates to a reference

genome. The identification of reference genomes is essential for a
reliable SNP-based analysis. Only a few complete genomes of
Cronobater are available in public databases and the pool of refer-
ence genomes needs to be extended. Therefore, an effort was done
to sequence and close genomes of Cronobacter spp. that can be
used in SNP-based NGS analysis to support detailed source track-
ing investigations.

Genomic DNA was extracted from midexponential cultures
using a Gentra DNA Purgene kit (Qiagen), and then 20-kb librar-
ies were prepared following Pacific Biosciences (PacBio) protocol
and Blupippin size selection. Sequencing was performed on the
PacBio RSII platform using P4/C2 chemistry (P6/C4 for C. ma-
lonaticus) and three to four single-molecule real-time (SMRT)
cells were used per strain with a 180-min (240 min for C. malonati-
cus) collection protocol. The subreads were de novo assembled
using the PacBio Hierarchical Genome Assembly Process (HGAP)/
Quiver software package (11), followed by minimus2 for genome
circularization (12) and final polishing with Quiver. All the strains
were assembled into a single contig corresponding to the chromo-
some. For some strains one to four circular plasmids were also
obtained. The nucleotide sequences have been deposited at NCBI.
The results of the sequencing and assemblies are summarized
in Table 1. The genomes were annotated using the NCBI Prokary-
otic Genomes Automatic Annotation Pipeline (PGAAP) and have
been deposited at GenBank (NCBI).

TABLE 1 Summary of genome sequencing and nucleotide accession numbers

No. of plasmids Plasmid size (bp) Accession no.

Organism Chromosome size (bp)
C. condimenti LMG 26250, CECT 7863T 4,366,820
C. muytjensii ATCC 51329" 4,385,738
C. sakazakii NCTC 8155 4,348,995
C. universalis NCTC 95297 4,323,715
C. malonaticus LMG 23826, DSMZ 18702T 4,294,640
C. dublinensis LMG 23823, DSMZ 187057 4,444,709

— N WO =

164,790

NA“
124,048/117,750/53,771
136,454

126,501/52,758
203,534

CP012264 to CP012265
CP012268

CP012253 to CP012256
CP012257 to CP012258
CP013940 to CP013942
CP012266 to CP012267

2 NA, not applicable.
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During sequencing, epigenetic modifications of each nucleo-
tide position were measured as kinetic variations (KVs) in nucle-
otide incorporation rates. Motifs were deduced from the KV data
(13). Analysis were done using SMRT portal RS_Modification_
and_Motif_Analysis Protocol.

Nucleotide sequence accession numbers. Sequences have
been deposited in GenBank under the accession numbers listed in
Table 1. Raw reads and motif summaries are deposited at SRA:
C. condimenti® SRR2154341, C. muytjensii* SRR2154340, C. saka-
zakii SRR2154342, C. universalis® SRR2154343, C. malonaticus®
SRR3112550, and C. dublinensis™ SRR2154345.
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