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Abstract: Suicide is a leading cause of death that defies prediction and challenges prevention efforts
worldwide. Artificial intelligence (AI) and machine learning (ML) have emerged as a means of
investigating large datasets to enhance risk detection. A systematic review of ML investigations
evaluating suicidal behaviors was conducted using PubMed/MEDLINE, PsychInfo, Web-of-Science,
and EMBASE, employing search strings and MeSH terms relevant to suicide and AI. Databases were
supplemented by hand-search techniques and Google Scholar. Inclusion criteria: (1) journal article,
available in English, (2) original investigation, (3) employment of AI/ML, (4) evaluation of a suicide
risk outcome. N = 594 records were identified based on abstract search, and 25 hand-searched reports.
N = 461 reports remained after duplicates were removed, n = 316 were excluded after abstract
screening. Of n = 149 full-text articles assessed for eligibility, n = 87 were included for quantitative
synthesis, grouped according to suicide behavior outcome. Reports varied widely in methodology
and outcomes. Results suggest high levels of risk classification accuracy (>90%) and Area Under
the Curve (AUC) in the prediction of suicidal behaviors. We report key findings and central limitations
in the use of AI/ML frameworks to guide additional research, which hold the potential to impact
suicide on broad scale.
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1. Introduction

Suicide is a complex, but preventable public health problem that challenges prediction due
to its transdiagnostic, yet rare occurrence at the population-level. Beyond the inestimable costs at
the individual, family, and community level, suicide currently outnumbers homicide and motor vehicle
accident collisions [1,2], representing a public health emergency and resulting in an estimated cost
of $93.5 billion to the U.S. economy [3]. Despite unprecedented strategies to advance awareness and
treatment [4–6], suicide rates have remained intractable over time and recently increased in some
cases, rising by approximately 24% in the U.S. (10.5 to 13/100,000) from 1999–2014 [7]. Alarmingly,
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the majority of suicide decedents consult with their physician in the days and weeks prior to death [8,9],
suggesting missed detection of risk despite intervention opportunity. Moreover, known risk factors
currently show relatively poor sensitivity and clinical utility in predicting suicide occurrence [10,11].
Recent research suggests that youth may disclose risk factors for suicide on Facebook or Twitter
that they may fail to disclose to physicians, indicating a unique interplay of risk factors that may
likewise vary according to age [12]. As a transdiagnostic outcome of medical illness, suicide rates
are impacted by a unique interplay of risk factors that may change substantially over time. This
includes differences in suicide risk according to age, gender, and ethnicity, which may furthermore
vary according to region, suicide method, and access to health care [13,14]. This underscores need for
rigorously-designed, population-based investigations of suicide risk, which may face significant cost,
clinical, and infrastructural barriers.

As a form of artificial intelligence (AI), machine learning (ML) methods enable computer learning
of advanced classifiers that may improve the accuracy of prediction using large-scale datasets. Given
challenges inherent in traditional research methods, including cost and clinical barriers, risk of bias, and
restricted generalizability, researchers have begun leveraging large datasets using advanced predictive
modeling techniques [15–18]. This includes the application of ML to electronic medical records (EMR)
within modern clinical informatics to advance risk prediction [19]. Risk models learned, using such
data, have been developed to predict preterm infant morbidity [20], early warning signs of sepsis [21],
and risk for rare outcomes (e.g., first-onset cancers, congestive heart failure, and schizophrenia)
with a high degree (i.e., >90%) of accuracy [22]. Such studies indicate that ML approaches can be
used to derive appropriate variable weights to produce models that can outperform corresponding,
expert-derived scoring systems. On an organizational level, such models have also been used to predict
demand for emergency department (ED) beds and elective surgery case volume to inform hospital
staffing decisions [23–25] and enhance clinical care.

As such, the use of artificial intelligence and machine learning offers new possibilities to
significantly guide risk prediction and advance suicide prevention frameworks. Though recent
studies yield promising findings [15,26–29], ML investigations for suicide prevention span diverse
medical and computer science fields—challenging ease of review, dissemination, and impact. We
therefore conducted a systematic review of empirical reports in this area, with a primary focus on the use
of AI in suicide prevention. Our aim was to identify and summarize original reports employing use of
an AI/ML framework to predict suicidal behaviors as an outcome of risk according to systematic review.

2. Methods

2.1. Search Strategy

A web-based systematic literature search was performed for articles published from inception
through November 30, 2018 on PubMed/MEDLINE, EMBASE, PsycINFO, and Web of Science,
using search strings pertaining to suicide and ML. Database searches were supplemented by
hand-search techniques.

Key words were used by search engine and designated filters according to PRISMA guidelines:

(A). PubMed: (“Artificial Intelligence"[Mesh] OR machine learning[tw] OR natural language
processing[tw] OR artificial intelligence[tw]) AND ("Suicide"[Mesh] OR suicid*[tw])

(B). EMBASE: (’artificial intelligence’:ti,ab,kw OR ’machine learning’:ti,ab,kw OR ’natural language
processing’:ti,ab,kw) AND (’mood disorder’:ti,ab,kw OR ’depression’:ti,ab,kw OR ’bipolar
disorder’:ti,ab,kw OR ’suicidal behavior’:ti,ab,kw OR ’suicide’:ti,ab,kw OR suicid*)

(C). Web of Science: TS = (“artificial intelligence" OR "machine learning" OR "natural language
processing") AND TS = ("mood disorder" OR depress* OR bipolar OR suicid*)

(D). PsycINFO: ((“artificial intelligence" or "machine learning" or "natural language processing") and
("mood disorder" or bipolar or depress* or suicid*)).ab,hw,id,ot,ti.
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2.2. Study Selection

This review was performed according to the EQUATOR/PRISMA guidelines (Enhancing
the Quality and Transparency of Health Research/Preferred Reporting Items for Systematic Reviews
and Meta-Analyses), which serves as an evidence-based protocol for selecting and reporting for
systematic reviews and meta-analyses [30]. Given that suicidal behaviors exist across all ages and
diverse medical conditions, diagnostic or age-related variables were not a basis for exclusion.

2.3. Data Collection Process

Reviewers (R.A.B., A.M.H.) independently reviewed abstracts, followed by full-text articles. A
third reviewer (R.M.) made a final decision, if there was a lack of consensus. Source documents were
assessed according to the following inclusion criteria: (1) Journal article (Available in English), (2)
original investigation (non-review/commentary), (3) employment of AI/ML methodology, and (4)
evaluation of a suicide risk outcome (i.e., defined using CDC-derived guidelines [31] for suicidal
self-directed violence; non-suicidal self-injury was excluded), grouped and labeled by suicidal behavior
type (e.g., suicide ideation, suicide attempts, suicide death, or other). Studies identified by the above
search strategy were managed using Endnote X8. Reports failing to meet inclusion criteria were
systematically excluded with reasons. A PRISMA flow chart [30] was created to graphically depict
inclusion/exclusion of studies by level of (1) identification, (2) screening, (3) eligibility, and (4) inclusion,
and reports were coded with established quality ratings [32]. Reports were further grouped according
to suicidal behavior type, sample characteristics, and AI/ML methodology. The latter included use
of supervised learning, which aims to predict outcomes based on a set of input values, used to train
a classifier; whereas, in unsupervised learning, no labels are provided and the aim is to instead describe
data patterns, often by way of clustering, based on input measures. Studies were also coded for use of
natural language processing (NLP)—which uses a computer to automatically or semi-automatically
process human-generated language—and summarized by other study characteristics, including
evaluation of biological markers of suicide risk.

2.4. Data Analysis

Descriptive analyses were employed to analyze study findings by key design characteristics
according to suicide risk outcome, where ML parameters (e.g., area under the curve (AUC), accuracy,
sensitivity, specificity) were reported. The data collated was not amenable to synthesis and meta-analysis
was therefore not possible for evaluation.

3. Results

3.1. Data Extraction

A total of n = 594 records were identified according to the above search methods. An additional
25 records were identified through handsearch and Google Scholar articles. Of n = 461 unique articles,
a further n = 316 were excluded according to abstract screening. Full text review was performed for n
= 149 articles according to study inclusion criteria. Forty-nine reports failed to meet stated inclusion
criteria. This included failure to: represent an original report (i.e., vs. a review/commentary), employ
AI/ML methodology, or evaluate a suicide risk outcome (i.e., according to CDC-defined suicidal
behaviors). N = 87 studies were included for qualitative synthesis; a subsample of reports (n = 13) met
criteria as a subset of this review (see Figure 1). These evaluated emotional content among suicide
decedent notes using natural language processing (NLP), and will be discussed separately. A total of n
= 87 studies were included in a quantitative analysis. For reports meeting primary review inclusion,
this represented an aggregate total number of n = 5,986,238 patients. Sample size was unreported or
unavailable in n = 7 studies.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.

3.2. Broad Outcome Groupings

For broad outcome groupings in the quantitative synthesis, a total of n = 42 reports assessed
suicide attempt (n = 28) or suicide death (n = 14) as a primary outcome. A total of n = 45 studies
evaluated suicidal ideation (i.e., history and current symptoms) (n = 9), multiple risk outcomes (n =

18), and other-social media (n = 10) or other-undifferentiated (n = 8) risk outcomes.

3.3. ML Techniques and Learning Methods

ML methodology varied widely across reports and included both supervised and unsupervised
learning algorithms. The majority of studies employed supervised learning techniques, which included
ensemble learning methods (e.g., especially random forests), naïve Bayes classification, decision trees,
logistic/least squares regression, and support vector machines (SVM). In comparison, n = 7 studies
used unsupervised learning techniques, which included clustering algorithms, neural networks,
self-organizing maps (SOM), principal component analysis (PCA), and decision trees. Only three
studies used both supervised and unsupervised learning methods. Cross-validation techniques, or
methods for splitting the data into training and test sets for model performance testing, were variably
reported, with few investigations using distinct datasets, separated in time, for training and test models.
(See Table 1 for all studies (n = 87). See Table 2 for a subset of reports (n = 13) in this review).
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Table 1. Investigations by broad outcome groupings and ML parameters.

Author Year Journal Quality
Rating

Clinical
Sample Outcome Biomarker NLP a Classification Specificity Sensitivity Accuracy AUC b N

Kessler et
al. [33] 2017

Int. J.
Methods
Psychiatr.

Res.

2 x 1 x 0.28 6360

McCoy et
al. [27] 2016 JAMA

Psychiatry 3 x 1 x x 458,053

Kessler et
al. [34] 2017 Mol.

Psychiatry 2 x 1 x 0.95 0.46 0.70 0.70 975,057

Kessler et
al. [15] 2015 JAMA

Psychiatry 3 x 1 0.89 53,769

Poulin et al.
[35] 2014 PLoS One 4 x 1 x x x 0.65 210

Pestian et
al. [36] 2008

AMIA
Annu.
Symp.
Proc.

3 1 x x 0.74 66

Pamer et al.
[37] 2008

AMIA
Annu.
Symp.
Proc.

3 1 x 1204

Haerian et
al. [38] 2012

AMIA
Annu.
Symp.
Proc.

3 x 1 x x 280

Ilgen et al.
[39] 2009 J Clin.

Psychiatry 3 x 1 887,859

Adamou et
al. [40] 2019 Crisis 3 x 1 x x 0.70 130

Rossellini
[41] 2018 Depress.

Anxiety 3 x 1 x 0.86 9488
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Table 1. Cont.

Author Year Journal Quality
Rating

Clinical
Sample Outcome Biomarker NLP a Classification Specificity Sensitivity Accuracy AUC b N

De Avila
Berni [42] 2018 PLOS One 5 1 x 0.91 0.69 0.80

Metzger et
al. [43] 2017

Int. J.
Methods
Psychiatr.

Res.

3 2 x x 444

Passos et al.
[44] 2016 J. Affect.

Disord. 4 x 2 0.71 0.72 0.77 144

Kessler et
al. [45] 2016 Mol.

Psychiatry 2 2 x 0.70 0.76 1056

Modai et al.
[46] 2004 J. Nerv.

Ment. Dis. 2 x 2 0.85 0.94 987

Modai et al.
[47] 2002 JMIR Med.

Inform. 3 x 2 0.85 1.00 0.82 197

Modai et al.
[48] 1999

Med.
Inform.
Internet

Med.

3 2 0.94 0.94 0.94 198

Modai et al.
[49] 2002 Crisis 2 x 2 250

Modai et al.
[50] 1998 Med.

Inform. 4 x 2 x 0.97 0.83 161

Hettige et
al. [51] 2017 Gen. Hosp.

Psychiatry 3 x 2 x x 0.8 0.65 0.67 0.71 345

Walsh et al.
[52] 2017

Clin.
Psychol.

Sci.
3 x 2 x 0.96 0.84 5167

Venek et al.
[53] 2017

IEEE Trans.
Affect.

Comput.
3 x 2 x 0.90 60
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Table 1. Cont.

Author Year Journal Quality
Rating

Clinical
Sample Outcome Biomarker NLP a Classification Specificity Sensitivity Accuracy AUC b N

Baca-Garcia
et al. [54] 2007

Prog.
Neuropsych..

Biol
Psychiatry

4 x 2 x x 0.99 0.99 0.97 0.99 539

Tiet et al.
[55] 2006

Alcohol
Clin. Exp.

Res.
3 x 2 x x x 0.87 0.89 0.88 34,251

Baca-Garcia
et al. [56] 2010

Am. J. Med.
Genet. B
Genet.

3 x 2 x x 0.82 0.50 0.67 0.66 277

Lopez-
Castroman
et al. [57]

2011
J.

Psychiatry
Res.

4 x 2 x x 0.97 0.76 0.71 1349

Modai et al.
[58] 2004

Med.
Inform.
Internet

Med.

3 x 2 0.70 0.83 0.77 612

Mann et al.
[59] 2008 J. Clin.

Psychiatry 3 x 2 x 0.92 0.89 0.80 408

Bae et al.
[60] 2015 Neuropsychiatr.

Dis. Treat. 3 2 x 2754

Choo et al.
[61] 2014 Asian J.

Psychiatr. 3 x 2 0.90 418

Oh et al.
[62] 2017 Front.

Psychol. 3 x 2 x 0.99 0.78 0.97 573

Benton et
al. [63] 2017

Proc. 15th
Conf.
EACL

3 x 2 x 9611

Ruderfer et
al. [64] 2019 Mol.

Psychiatry 3 2 x 0.82 0.92 0.94 512,639
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Table 1. Cont.

Author Year Journal Quality
Rating

Clinical
Sample Outcome Biomarker NLP a Classification Specificity Sensitivity Accuracy AUC b N

Lyu and
Zhang [65] 2019 J. Affect.

Disord. 3 x 2 0.94 0.68 0.85 1318

Coppersmith
et al. [66] 2018

Biomed.
Inform.
Insights

3 2,6 x x 0.94 418

Dargel et al.
[67] 2018

Acta
Psychiatr.

Scand.
3 x 2 x 0.84 635

Jordan et al.
[68] 2018 Psychiatry

Res. 3 x 2 x 0.69 0.79 0.72 218

Setoyama
et al. [69] 2016 PLoS One 2 x 3 x x 0.70 90

Pestian et
al. [70] 2017

Suicide
Life Threat.

Behav.
2 x 3 x x 0.93 0.85 379

Cook et al.
[71] 2016

Comput.
Math Meth.

Med.
2 x 3 x x 0.57 0.56 0.85 0.61 1453

Pestian et
al. [26] 2016

Suicide
Life Threat.

Behav.
2 x 3 x x 0.96 0.97 60

Gradus et
al. [72] 2017 J. Trauma

Stress 4 x 3 x 0.92 2240

Birjali et al.
[73] 2017

Procedia
Comput.

Sci.
3 3 x x

Just et al.
[74] 2017 Nat. Hum.

Behav. 3 x 3 x x 0.94 79

Ryu et al.
[75] 2018 Psychiatric

Invest. 3 3 x 0.81 0.84 0.80 11,628
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Table 1. Cont.

Author Year Journal Quality
Rating

Clinical
Sample Outcome Biomarker NLP a Classification Specificity Sensitivity Accuracy AUC b N

Desjardins
et al. [76] 2016 J. Clin.

Psychiatry 4 x 4 x 0.93 879

Tzeng [77] 2006
Worldview
Evid. Base.

Nurs.
2 x 4 x 63

Baca-García
et al. [78] 2006 J. Clin.

Psychiatry 3 x 4 x 1.00 0.99 509

Quan et al.
[79] 2014 PLoS One 2 4 x

Litvinova
et al. [80] 2017 Comput. y

Sistemas 3 x 4 x x 0.72 1000

Zhang et al.
[81] 2019 Health

Inform. J. 3 x 4 x x 409

McKernan
et al. [82] 2019 Arthritis

Care Res. 3 x 2,3 x 1.00 1.00 0.82 8879

DelPozo-
Banos et al.

[83]
2018 JMIR Ment.

Health 3 x 1 x 0.85 0.65 0.80 2604

Burke et al.
[84] 2018 Psychiatry

Res. 3 4 x 0.89 359

Cheng et al.
[85] 2017

J. Med.
Internet

Res.
4 5 x x 0.61 974

Braithwaite
et al. [86] 2016 JMIR Ment.

Health 4 5 x 0.97 0.53 0.91 135

Guan et al.
[87] 2015 JMIR Ment.

Health 4 5 x 909

Woo et al.
[88] 2015

Int. J.
Environ.

Res. Public
Health

4 5 x
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Table 1. Cont.

Author Year Journal Quality
Rating

Clinical
Sample Outcome Biomarker NLP a Classification Specificity Sensitivity Accuracy AUC b N

O’Dea et al.
[89] 2015 Internet

Interv. 3 5 x 0.76 14,701

Nguyen et
al. [90] 2017 Multimed.

Tools Appl. 3 x 5 x 0.88

Burnap et
al. [91] 2017

Online Soc.
Netw.
Media

3 5 x x 0.85

Vioules et
al. [92] 2018 IBM J. Res.

Dev. 3 5 x x 120

Zalar et al.
[93] 2018 Psychiatr.

Danub. 3 1, 2 x 0.91 78,625

Tran et al.
[94] 2015 J. Biomed.

Inform. 3 x 1,2 x 7578

Leiva-Murillo
et al. [95] 2013

Comput.
Math.

Methods
Med.

3 x 1,2 x 8699

Tran et al.
[96] 2014 BMC

Psychiatry 3 x 1,2 0.97 0.79 7399

Bernecker
et al. [97] 2019 Behav. Res.

Ther. 3 x 2, 3 x 0.83 27,501

Zhong et al.
[98] 2019 Euro. J.

Epidemiol. 3 2, 3 x x 0.96 0.34 0.83 275,843

Morales et
al. [99] 2017 Front.

Psychiatry 4 x 2,3 x 0.79 0.71 707

Barros et al.
[100] 2017 Braz. J.

Psychiatry 4 x 2,3 x 0.79 0.77 0.78 707

Kuroki
[101] 2015

Am. J.
Orthopsy

chiatry
3 2,3 x x 624



Int. J. Environ. Res. Public Health 2020, 17, 5929 11 of 25

Table 1. Cont.

Author Year Journal Quality
Rating

Clinical
Sample Outcome Biomarker NLP a Classification Specificity Sensitivity Accuracy AUC b N

Anderson
et al. [102] 2015

J. Am.
Board Fam.

Med.
3 x 2,3,4 x x 0.96 0.94 0.95 15,761

Levey et al.
[103] 2016 Mol.

Psychiatry 3 x 1,3,4 x 0.94 114

Colic et al.
[104] 2018

Conf. Proc.
IEEE Eng.
Med. Biol.

Soc.

3 x 3 0.84 738

Aladag et
al. [105] 2018

J. Med.
Internet

Res.
3 5 x x 0.92 785

Choi et al.
[106] 2018

S. Korean J.
Affect.

Disord.
3 1 x 0.72 819,951

Downs et
al. [107] 2018

AMIA
Annu.
Symp.
Proc.

3 x 4 x x 1906

Fahey [108] 2018 Soc. Sci.
Med. 3 5 x x 0.80 974,891

Zhong et al.
[109] 2018

BMC Med.
Inform.
Decis.
Mak.

3 x 2-4 x x 275,843

Fernandes
et al. [110] 2018 Sci. Rep. 3 2,3 x x 0.87

Jordan et al.
[111] 2018 Gen. Hosp.

Psychiatry 3 x 3 x 0.83 0.87 6805

Carson et
al. [112] 2019 PLOS one 3 x 2 x x 0.22 0.83 0.47 0.68 73
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Table 1. Cont.

Author Year Journal Quality
Rating

Clinical
Sample Outcome Biomarker NLP a Classification Specificity Sensitivity Accuracy AUC b N

McCoy et
al. [113] 2018 Depress.

Anxiety 3 1 x 444,317

Connolly et
al. [114] 2017 BMC

Bioinform. 3 x 3 x 314

Modai et al.
[115] 2002 Euro.

Psychiatry 4 x 2 0.73 0.65 250

Rossellini
et al. [116] 2017 Psychol.

Med. 3 2 x 0.74 21,832

Investigations by broad outcome groupings and ML parameters. Outcomes: 1 = suicide death, 2 = suicide attempt/medically serious suicide attempt, 3 = suicidal ideation/state, 4 =
other-undifferentiated, 5 = other-social media risk outcomes. Notes: NLP = natural language processing a; AUC = area under the curve b; empty cells indicate missing/unreported data in
articles; ML = machine learning.
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Table 2. Investigations by study subset and ML parameters.

Citation Journal Outcome Precision Quality
Rating

Liakata et al. 2012 [117] Biomed Inform Insights Death/NLP of
Suicide Notes 0.60 3

Nikfarjam et al. 2012 [118] Biomed Inform Insights Death/NLP of
Suicide Notes 0.60 3

Yeh et al. 2012 [119] Biomed Inform Insights Death/NLP of
Suicide Notes 0.77 3

Cherry et al. 2012 [120] Biomed Inform Insights Death/NLP of
Suicide Notes 1.00 3

Wang et al. 2012 [121] Biomed Inform Insights Death/NLP of
Suicide Notes 0.67 3

Desmet et al. 2012 [122] Biomed Inform Insights Death/NLP of
Suicide Notes NR 3

Kovacevic et al. 2012 [123] Biomed Inform Insights Death/NLP of
Suicide Notes 0.67 3

Pak et al. 2012 [124] Biomed Inform Insights Death/NLP of
Suicide Notes 0.62 3

Spasic, 2012 [125] Biomed Inform Insights Death/NLP of
Suicide Notes 0.55 3

McCarthy et al. 2012 [126] Biomed Inform Insights Death/NLP of
Suicide Notes 0.57 3

Wicentowski et al. 2012 [127] Biomed Inform Insights Death/NLP of
Suicide Notes 0.69 3

Sohn, 2012 [128] Biomed Inform Insights Death/NLP of
Suicide Notes 0.61 3

Yang, 2012 [129] Biomed Inform Insights Death/NLP of
Suicide Notes 0.58 3

Investigations (N = 13) by study subset and ML parameters. Outcome focused on sentiment detection of suicide
decedent notes using NLP. Notes: Quality ratings were performed according to the Oxford Centre for Evidence-Based
Medicine Protocol; ML = machine learning; NLP = natural language processing; Precision = positive predictive
value (PPV); NR = not reported.

3.4. Design Characteristics

Broadly grouped, several general approaches were visible in study design methodology: (1)
Investigations designed to explore the accuracy of diagnostic classification (i.e., using ML techniques
and a large dataset or number of variables) to identify those at risk by classifying a binary suicide risk
outcome (n = 65) (i.e., classification studies); or (2) investigations evaluating conceptual models of
suicide risk, which ranged from PCA and other clustering algorithm methods (e.g., hidden layers,
discovering patterns). Prospective designs were used in a small number of studies (n = 21), whereas
the majority of investigations used a cross-sectional study design. Several reports (n = 12) utilized
a population-based or epidemiologic design, and over half included multi-site investigations. In
general, according to the Oxford Centre for Evidence-Based Medicine Protocol [32], articles ranged
between ratings of 2–4, with most represented by a 3 rating. A 2 rating describes well-designed,
controlled trials without randomization or prospective comparative cohort trials; a 3 rating refers to
studies that employ case controls or retrospective cohort investigations; whereas a 4 rating represents
case series studies with or without intervention or use of a cross sectional design. No randomized
controlled, adequately powered trials (i.e., 1 rating) were identified in this review.
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3.5. Sample Size and High Dimensional Data

Across all investigations, samples ranged in size from 55 to 975,057 (M = 74,815, SD = 217,839;
Md n = 761 participants). While the majority of reports harnessed big data, several studies (n =

6) investigated high dimensional datasets with small sample sizes, which may increase the risk of
overfitting. These studies evaluated a large volume of variables (i.e., >400), using smaller samples (i.e.,
ranging from n = 34–135 participants) to classify and detect differences in risk outcome.

3.6. Sample Characteristics

Samples varied significantly in ages studied, with the majority evaluating adults, and a smaller
proportion investigating pediatric (n = 26), geriatric (n = 15), or all-age (n = 8) samples. A total of n
= 16 studies evaluated risk among military personnel or veterans, and across all reports, the use of
a clinical sample was observed in the majority of cases. These included participants recruited from
high-risk or triage settings, such as the emergency department (ED) (n = 15). Reports demonstrated
a primarily transdiagnostic focus, with few focusing on risk among specific psychiatric conditions,
such as mood disorders and schizophrenia (n = 13). Other studies (n = 10) included social media
investigations without diagnostic specifiers or assessed an undifferentiated outcome of suicide risk
(i.e., suicide risk stratification and clinical decision-making prediction; suicide gene marker detection;
human vs. machine learning classification testing, etc.). Finally, the number of studies utilizing
electronic medical records (EMR) or administrative chart data was high, particularly in comparison
with those using epidemiologic surveys (n = 12) or social media user data (n = 10). Use of a convenience
sample or re-evaluation of archival datasets using ML techniques was common in comparison with
a priori-designed studies.

3.7. Natural Language Processing and Biological Markers of Risk

Twenty-nine investigations employed the use of natural language processing (NLP) in association
with suicidal behaviors. These included investigations evaluating (n = 2) acoustic features of speech to
identify risk within emergency department settings, text-based applications (n = 1), or investigation
of social media user data or posts (n = 15). A few such studies generated a word map to note word
frequency in association with risk within EMR, medical discharge notes, or social media posts. A small
number of ML investigations (n = 12) evaluated a biological marker of risk, such as plasma and blood
metabolites (n = 2), genes (n = 8), and neuroimaging (n = 1), to predict risk for suicidal behaviors
and hospitalization.

3.8. Timeframe of Assessment and Predictive Modeling

Timeframe of risk detection was variable, ranging from the next 24 h to lifetime assessments of
suicide outcomes. Where reported, the majority (n = 15) investigated suicide risk prediction over
a monthly timeframe. This ranged from 1 to 24 months (n = 9.31). Two reports investigated risk
over an acute timeframe (24–72 h), and n = 12 studies evaluated lifetime risk. Four investigations
reported multiple timeframes of risk, whereas n = 21 failed to report or specify precise observation or
time-at-risk periods.

3.9. Accuracy, Area Under the Curve, Positive Predictive Value, Sensitivity/Specificity

Of N = 65 classification studies, a total of n = 41 investigations reported area under the curve
(AUC) (or provided sufficient information for this value to be derived; n = 4 cases), (M = 0.814, SD =

0.110, Mdn = 0.820, range 0.61–0.99). In comparison, n = 29 investigations reported accuracy, (M =

0.813, SD = 0.123, Mdn = 0.840, range = 0.47–0.99). Other metrics, such as positive predictive value
(PPV), were infrequently reported. PPV was reported in n = 6 cases, (SD = 0.30, Mdn = 0.88, range =

0.18–1.00). In total, n = 31 studies reported sensitivity, (M = 0.749, SD = 0.195, Mdn = 0.790, range =

0.22–1.00), and n = 32 reported specificity, (M = 0.870, SD = 0.156, Mdn = 0.870, range = 0.57–1.00).
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According to an exploratory one-way analysis of variance (ANOVA) to evaluate non-weighted accuracy
and AUC values across reports, significant mean differences were not detected according to type of
suicide-related outcome for highest accuracy (F 4,15 = 1.98, p = 0.149) or AUC (F 5,19 = 1.52, p = 0.231).
See Figures 2 and 3.
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4. Discussion

Eighty-seven reports were identified in this systematic review, which included a subset of
investigations evaluating emotional sentiment among suicide notes using ML methods. Across
reports meeting primary inclusion criteria, the majority of studies examined risk for suicide attempts,
followed by death by suicide, suicidal ideation, and multiple risk outcomes. A small proportion
of studies predicted risk of an outcome in-between these groupings, including those examining an
undifferentiated outcome (e.g., unspecified suicidal behavior, or ”suicidality”) or harnessing social
media data (e.g., suicide-related risk by Twitter or internet post content) [85–92]. Based on this
review, use of AI/ML methods for suicide risk prediction is a burgeoning area of inquiry, reflected
by the diversity of fields represented and the pace of publications. Though 1999 marked the earliest
publication, nearly half of reports were published in the past three years. This suggests an area of
rapid growth at a nascent stage of investigation, presenting opportunities to critically guide the field
forward and address key gaps in the extant literature.

Machine learning methods varied substantially across studies and ranged significantly in rigor
and model testing. Supervised learning was most commonly used compared to unsupervised
learning techniques, and few studies used both methods. In general, exploratory investigations
were overrepresented, and replication or application of a predictive model—within a new setting or
sample—was rare. Several reports tested replication in a new cohort—within the same setting—or
used a multiple-wave sampling approach [15,26,34,97]. Methodologically, these represent critical
areas of importance for future studies and warrant replication. Classification studies were most
commonly observed in this review, and excellent accuracy and area under the curve (AUC) values were
observed, despite considerable differences in design, methodology, sample, and learning methods.
Model performance metrics most frequently reported were AUC, whereas accuracy, sensitivity, and
specificity were reported in less than a third of reports. According to broad outcome groupings,
underreporting and low cell counts by outcome groupings challenge interpretation and adequately
powered comparisons.

Regarding generalizability, reports reflected a transdiagnostic focus, and primarily assessed adult
participants or patient records. A smaller number of reports examined high-risk, pediatric or geriatric
samples, as well as military veterans [15,26,33,34,53,72,97,112]. These highlight areas of elevated need,
and align with prioritized strategies and nationally-directed initiatives for technology innovation in
suicide prevention [5,6,130]. Investigations predominantly evaluated clinical samples or emergency
settings, consistent with increased risk post-hospitalization [15,26,34,43,68,131]. Regarding constraints,
archival datasets were common, with fewer studies employing prospective data elements [15,34,55,
106]. Though convenience samples present inherent limitations, this has likewise been emphasized
as a relative strength—insofar as ML may be applied to large-scale datasets that, as yet, remain
unstudied [34]. This highlights opportunity for re-analysis of existing datasets to advance early
detection and prevention methods, where prospective samples warrant prioritization. Next, though
several reports used epidemiologic surveys within nationally-representative sample [60,101,106].
Such surveys, however, frequently used a single item assessment of suicidal behaviors, which may
misclassify risk [132,133]. In general, suicide outcomes were variably defined, and validated symptom
instruments varied significantly across reports [26,56,57,59,72,78,86,95,102,103]. This aligns with calls
for increased uniformity in the assessment of suicidal behaviors to enhance research comparisons
and improve surveillance [31]. We recommend that such calls be applied to the study of suicidal
behaviors across ML investigations to enhance uniformity, comparison, and opportunity to improve
risk prediction frameworks.

In several cases, the development and testing of clinical prediction models were evaluated against
traditional statistics [6,55], showing superiority of ML in the classification of risk. Reports likewise
compared ML-guided decision tree models to clinician-based predictions (i.e., of hospitalization
following a suicide attempt (SA) or predicting likelihood of a suicide risk outcome) to guide triage [6,
55,59,76,78,96]. Importantly, ML-guided risk stratification models outperformed those relying on
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clinician-based prediction methods alone. This included model testing within acute time frames
of risk (i.e., 3–6 months) [55,96]—in one case, with performance enhanced three-fold using ML
risk stratification [96]. Such findings suggest that advanced data analytic methods, combined
with computer-guided screening, may augment clinical decision-making. Replication is warranted,
including how such models may guide triage to optimize patient care with minimal time burden
to providers.

Given that the majority of suicide decedents consult with their physician prior to death [8,9], such
methods hold promise to enhance early detection and opportunity for rapid intervention. This may be
particularly relevant to emergency settings, where medical records have been compared with manual
coding of suicide attempt encounters using machine learning with promising results [43]. This aligns
with research suggesting that brief, low-risk suicide prevention strategies targeting emergency settings
are both efficacious and cost-effective [134–136]. The way suicidal behaviors are coded within EMR
may likewise pose challenges to risk detection. Anderson and colleagues [102] used ML to evaluate
correspondence between patient notes and ICD/E-Codes (International Classification of Disease/ICD
External Cause of Injury Code) for suicidal behaviors, based on text-mining of clinical discharge notes
in a sample of n = 15,761 patient records. They observed a low level of correspondence, with only 3%
of encounters coded for suicidal ideation and 19% coded for suicide attempts. This suggests nned
for considerable caution when interpreting suicide risk using ICD/E-Codes from EMR data alone, in
comparison with discharge notes.

A subset of studies investigated NLP as a novel area of inquiry in select settings or populations.
Pestian et al. [26] investigated NLP (i.e., key words and vocal characteristics) in structured and free-text
speech responses to accurately distinguish (96.6% accuracy) n = 60 youth presenting to an ED for suicide
risk (i.e., versus those presenting for other reasons). Text-mining methods also predicted accurate
classification of those at risk for later suicidal behaviors [109,110,112,113], in some cases, generating
word maps that may aid future research. Other novel approaches included social media investigations
of microblog users and Twitter posts to detect suicide risk among users, online communities, or
posts following a natural disaster to index public emotion [66,85–89,105]. Despite a large number of
neuroimaging and neuroanatomical reports within suicide prevention, a smaller number of studies
examined a biological variable in this review. Baca-Garcia and colleagues [56] showed that an
algorithm based on three CNS (Central Nervous System) single nucleotide polymorphisms (SNPs)
correctly classified those with and without a suicide attempt history, whereas other investigations
evaluated candidate biomarkers to predict future risk for suicide [64,69,103]. Only one study used
neuroimaging—comparing youth with suicidal ideation (n = 17) to matched controls (n = 17) on fMRI
variables [74]. Based on neural representations in response to suicide and death-related scan stimuli,
this generated a high (91%) classification accuracy [74]. This signals a promising approach to biomarker
discovery, underscoring integration of biological, behavioral, and clinical variables to inform etiology
and intervention in an area with few selective treatments [137,138].

Critical Challenges and Future Directions

A number of limitations should be noted. Methods varied widely across reports, both with
respect to ML methods and study quality. Despite considerable diagnostic and methodological
heterogeneity, high levels of model performance were observed. Incomplete reporting of test statistics
(e.g., accuracy, AUC, sensitivity, specificity) and differing methods for assessing and defining risk
within diverse ML methods—highlights need for improved reporting standards and a priori-designed
studies. Key parameters, such as PPV, area under the precision curve (AUPRC), and lead-time of
the prediction—which allows for decision-making about when to potentially act and intervene—were
also underreported. Challenges inherent in retrospectively analyzing health data for administrative
and clinical purposes should also be noted, given the high number of studies using EMR. Hersh et
al. [139] raised concerns regarding biases due to EMR data being collected only at hospital visits,
incomplete records or missing data, and other considerations relevant to accurate coding that emphasize
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advanced statistical methods be used for correction. Others report similar concerns of omission in
EMR, calling for longitudinal measurements [19]. Additionally, given the way in which differences in
the splitting of training data may alter the performance of predictive modeling [140], use of multiple
methods to separate samples (i.e., for training versus testing of algorithms) is recommended. Critically,
the majority of studies were cross-sectional in nature, underscoring need for prospectively-designed
ML investigations to advance suicide risk prediction.

A lack of application to new settings or populations also highlights need for replication, particularly
according to longitudinal, well-defined outcomes of risk. Though translation of one model to a new
site poses inherent challenges, a model can be trained with data from any local site and tested using
data from the site itself [23]. Regarding future application, challenges in constructing and deploying
a statistical model within a clinical setting include access to data, availability of skilled personnel,
and need to identify ways of integrating the model into healthcare workflows [23]. Others have
emphasized associations between model complexity and predictive accuracy [141], in addition to key
limitations [142]. For example, Siddaway and colleagues [142] suggest that ML may be best harnessed
when led by clinical need, becoming machine-assisted learning similar to other statistical techniques,
cautioning against over-reliance on ML models. We recommend incorporation of these considerations
into the design of new investigations utilizing machine learning in the detection and prediction of risk
for suicidal behaviors.

5. Conclusions

In conclusion, findings of this review highlight risk factors that align with past non-ML findings
(e.g., mood/substance disorders, male gender, family history, previous hospitalization, unemployment,
comorbidity, and delinquency); whereas, newly-identified risk variables or approaches point to sleep,
circadian, and neural substrates, and NLP-derived indices of speech or user data. These findings
reflect a burgeoning literature that warrant future study in an area of prevention prioritized worldwide.
Though a leading cause of death, suicide defies prediction given its rare occurrence at the population
level, which poses important challenges to prevention. AI and ML applications hold unique promise
to enable precision medicine in the prevention of suicide, particularly given their ability to handle
large and complex datasets. We propose that such methods may crucially inform the early detection
of suicide risk, triage, and treatment development, with important methodological and statistical
cautions. The application of NLP to social media in particular, and integration of AI with real-time
suicide risk assessments, holds unique promise to impact the prevention of suicide on a broad scale.
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105. Aladağ, A.E.; Muderrisoglu, S.; Akbas, N.B.; Zahmacioglu, O.; Bingol, H.O. Detecting suicidal ideation on
forums: Proof-of-concept study. J. Med. Internet Res. 2018, 20, e215. [CrossRef]

106. Choi, S.B.; Wanhyung, L.; Jin-Ha, Y.; Wan, J.H.; Kim, D.W. Ten year prediction of suicide death using Cox
regression and ML in a nationwide retrospective cohort study in South Korea. S. Korea J. Affect. Disord. 2018,
231, 8–14. [CrossRef]

107. Downs, J.; Velupillai, S.; George, G.; Holden, R.; Kikoler, M.; Dean, H.; Fernandes, A.; Dutta, R. Detection
of suicidality in adolescents with autism spectrum disorders: Developing a natural language processing
approach for use in electronic health records. AMIA Annu. Symp. Proc. 2018, 641–649.

108. Fahey, R.A.; Matsubayashi, T.; Ueda, M. Tracking the Werther effect on social media: Emotional responses to
prominent suicide deaths on Twitter and subsequent increases in suicide. Soc. Sci. Med. 2018, 219, 19–29.
[CrossRef] [PubMed]

109. Zhong, Q.Y.; Karlson, E.W.; Gelaye, B.; Finan, S.; Avillach, P.; Smoller, J.W.; Cai, T.; Williams, M.A. Screening
pregnant women for suicidal behavior in electronic medical records: Diagnostic codes vs. clinical notes
processed by natural language processing. BMC Med. Inform. Decis. Mak. 2018, 18, 30. [CrossRef] [PubMed]

110. Fernandes, A.C.; Dutta, R.; Velupillai, S.; Sanyal, J.; Stewart, R.; Chandran, D. Identifying suicide ideation
and suicidal attempts in a psychiatric clinical research database using natural language processing. Sci. Rep.
2018, 8, 7426. [CrossRef]

111. Jordan, P.; Sheddan-Mara, M.; Lowe, B. Predicting suicidal ideation in primary care: An approach to identity
easily accessible key variables. Gen. Hosp. Psych. 2018, 51, 106–111. [CrossRef]

112. Carson, N.J.; Mullin, B.; Sanchez, M.J.; Lu, F.; Yang, K.; Menezes, M. Identification of suicidal behavior
among psychiatrically hospitalized adolescents using natural language processing and machine learning of
electronic health records. PLoS ONE 2019, 14, e0211116. [CrossRef]

113. McCoy, T.H.; Pellegrini, A.M.; Perlis, R.H. Research Domain Criteria scores estimated through natural
language processing are associated with risk for suicide and accidental death. Depress. Anxiety 2019, 36,
392–399. [CrossRef]

114. Connolly, B.; Cohen, K.B.; Bayram, U.; Pestian, J. A nonparametric Bayesian method of translating machine
learning scores to probabilities in clinical decision support. BMC Bioinform. 2017, 18, 361. [CrossRef]

115. Modai, I.; Ritsner, M.; Kurs, R.; Shalom, M.; Ponizovsky, A. Validation of the Computerized Suicide Risk
Scale - A backpropagation neural network instrument (CSRS-BP). Euro. Psychiatry 2002, 17, 75–81. [CrossRef]

116. Rosellini, A.J.; Stein, M.B.; Benedek, D.M.; Bliese, P.D.; Chiu, W.T.; Hwang, I.; Monahan, J.; Nock, M.K.;
Petukhova, M.V.; Sampson, N.A.; et al. Using self-report surveys at the beginning of service to develop
multi-outcome risk models for new soldiers in the U.S. Army. Psychol. Med. 2017, 47, 2275–2287. [CrossRef]

117. Liakata, M.; Kim, J.H.; Saha, S.; Hastings, J.; Rebholz-Schuhmann, D. Three hybrid classifiers for the detection
of emotions in suicide notes. Biomed. Inform. Insights 2012, 5, BII-S8967. [CrossRef]

118. Nikfarjam, A.; Emadzadeh, E.; Gonzalez, G. A hybrid system for emotion extraction from suicide notes.
Biomed. Inform. Insights 2012, 5, BII-S8981. [CrossRef] [PubMed]

119. Yeh, E.; Jarrold, W.; Jordan, J. Leveraging psycholinguistic resources and emotional sequence models for
suicide note emotion annotation. Biomed. Inform. Insights 2012, 5, BII-S8979. [CrossRef] [PubMed]

120. Cherry, C.; Mohammad, S.M.; De Bruijn, B. Binary classifiers and latent sequence models for emotion
detection in suicide notes. Biomed. Inform. Insights 2012, 5, BII-S8933. [CrossRef] [PubMed]

121. Wang, W.; Chen, L.; Tan, M.; Wang, S.; Sheth, A.P. Discovering fine-grained sentiment in suicide notes.
Biomed. Inform. Insights 2012, 5, BII-S8963. [CrossRef] [PubMed]

122. Desmet, B.; Hoste, V. Combining lexico-semantic features for emotion classification in suicide notes. Biomed.
Inform. Insights 2012, 5, BII-S8960. [CrossRef]
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