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ABSTRACT Staphylococcus aureus is an important human pathogen that infects
nearly every human tissue. Like most organisms, the acquisition of nutrient iron is
necessary for its survival. One route by which it obtains this metal is through the
iron-regulated surface determinant (Isd) system that scavenges iron from the hemo-
globin of the host. We show that the heavy chain variable region IGHV1-69 gene
commonly encodes human monoclonal antibodies (mAbs) targeting IsdB-NEAT2. Re-
markably, these antibodies bind to multiple antigenic sites. One class of IGHV1-69-
encoded mAbs blocks S. aureus heme acquisition by binding to the heme-binding
site of NEAT2, while two additional classes reduce the bacterial burden in vivo by an
alternative Fc receptor-mediated mechanism. We further identified clonal lineages of
IGHV1-69-encoded mAbs using donor samples, showing that each lineage diversifies
during infection by somatic hypermutation. These studies reveal that IGHV1-69-
encoded antibodies contribute to a protective immune response, furthering our un-
derstanding of the correlates of protection against S. aureus infection.

IMPORTANCE The human pathogen Staphylococcus aureus causes a wide range of
infections, including skin abscesses and sepsis. There is currently no licensed vac-
cine to prevent S. aureus infection, and its treatment has become increasingly
difficult due to antibiotic resistance. One potential way to inhibit S. aureus
pathogenesis is to prevent iron acquisition. The iron-regulated surface determi-
nant (Isd) system has evolved in S. aureus to acquire hemoglobin from the hu-
man host as a source of heme-iron. In this study, we investigated the molecular
and structural basis for antibody-mediated correlates against a member of the
Isd system, IsdB. The association of immunoglobulin heavy chain variable region
IGHV1-69 gene-encoded human monoclonal antibodies with the response against
S. aureus IsdB is described using structural and functional studies to define the
importance of this antibody class. We also determine that somatic hypermuta-
tion in the development of these antibodies hinders rather than fine-tunes the
immune response to IsdB.
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Staphylococcus aureus is a Gram-positive pathogen that can cause illnesses ranging
from skin and soft tissue infection to sepsis. The importance of understanding S.

aureus pathogenesis is compounded because this pathogen persistently colonizes 20
to 50% of the population on the skin or in the nares (1). Because S. aureus is one of the
leading causes of morbidity and mortality as well as a significant financial burden to the
health care system (1), there is considerable effort invested into developing a vaccine
or alternative immunotherapy drug. To be successful, the immune factors that protect
individuals from initial or reoccurring S. aureus infection (2) need to be reliably
identified and defined. To address this, we investigated the molecular and structural
basis for antibody-mediated correlates against a member of the Isd system that is a
known antibody target, IsdB (3–6). IsdB is part of the S. aureus iron-regulated surface
determinant (Isd) system, which plays an important role in the acquisition of iron from
the human host (7, 8). Almost all organisms, including S. aureus, need iron, as it serves
as a cofactor for enzymes in metabolism and redox (9). The Isd system enables S. aureus
to capture hemoproteins at the bacterial surface through two receptors, IsdB and IsdH
(10, 11). IsdB removes heme from hemoglobin and transports it to downstream Isd
proteins, where heme is transported into the cell and degraded so that iron is released
for use in fundamental cellular processes (12). IsdB binds hemoglobin and heme using
widely conserved NEAr iron transport (NEAT) domains (13, 14). IsdB has two NEAT
domains: NEAT1 binds to hemoglobin, and NEAT2 is important for the transport and
binding of heme (11, 15–17).

Some antibody repertoire studies have shown an association of certain human
antibody variable genes with antigen-specific responses, such as the use of IGHV1*02
for HIV-specific VRC01-like antibodies to human CD4 (18) or certain IGHV1-69 alleles and
influenza virus hemagglutinin (HA) stem epitopes (19–22). IGHV1-69 is one of the most
common antibody variable genes with target-specific associations, as it encodes a
hydrophobic heavy chain complementarity-determining region 2 (CDR-H2) motif that is
optimal for engaging many recessed hydrophobic pocket regions (23). It has been
observed previously for S. aureus that IGHV1-69 encodes antibodies that preferentially
bind to IsdB-NEAT2 (24), due to the hydrophobic CDR-H2 encoding a loop that has
the capacity to bind to the heme-binding site on IsdB-NEAT2. Here, we show that
IGHV1-69 encodes not only IsdB-NEAT2 heme-binding-site antibodies but also
antibodies that bind to at least two other antigenic sites on IsdB-NEAT2, likely using
a heavy chain complementarity-determining region 3 (CDR-H3)-dominant mode of
binding that does not depend critically on the hydrophobic nature of the encoded
CDR-H2. Aside from their unique structural features, these alternate classes of
IGHV1-69-encoded antibodies exhibited functional differences in inhibition of S.
aureus growth, binding, kinetics, and pathogenesis in vivo. Deep sequencing of
antibody gene repertoires revealed robust diversification of IGHV1-69-encoded
antibody lineages by somatic hypermutation.

RESULTS
Structures of three IGHV1-69-encoded antibodies reveal three different modes

of binding to NEAT2. We previously described the isolation of a large panel of human
monoclonal antibodies (mAbs) specific for binding to the NEAT2 domain of IsdB
(IsdB-NEAT2) from two human subjects (5). Seven of the antibodies were encoded by
the IGHV1-69 antibody variable gene, which encodes hydrophobic residues in CDR-H2
in the germ line configuration. To determine if all these antibodies used the canonical
hydrophobic PIF loop (amino acid positions 52 to 54) to interact directly with the
heme-binding pocket on NEAT2, we determined the antigen-antibody complex struc-
tures for three representative IGHV1-69-encoded NEAT2-specific mAbs and compared
their modes of interaction. We determined the crystal structure of mAb STAU-281 in
complex with NEAT2, and for the other two mAbs, we used a hybrid structural method
incorporating Fab crystallography, epitope mapping via hydrogen-deuterium exchange
mass spectrometry (HDX-MS), and Rosetta modeling to obtain equivalent antigen-
antibody complex structures (25, 26).
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We determined the crystal structure of human antibody STAU-281 Fab in complex
with the NEAT2 domain of IsdB (Protein Data Bank [PDB] accession number 6P9H). The
complex was crystallized in the space group of P21 with a diffraction limit of 3.00 Å (see
Table S1 in the supplemental material), and there are two copies of the complexed
structures in the asymmetric unit. The two copies of the complexed structures are
superimposable, with a root mean square distance (RMSD) of 0.345 Å for C� atoms.
Complex formation buries an �1,011-Å2 surface area, and the heavy chain makes up
more than 80% of the antigen-antibody interface (Fig. 1a). The search models used for
the STAU-281 Fab-IsdB complex were the NEAT2 structure under PDB accession num-
ber 5D1X and the Fab under PDB accession number 5JRP.

STAU-281 binds to the heme-binding pocket of NEAT2 and thus is expected to
inhibit S. aureus growth by preventing heme from binding to IsdB (Fig. 1a). The
structure revealed a major epitope, which we designate here IsdB antigenic site 1,
where the hydrophobic CDR-H2 protrudes into the similarly hydrophobic heme-
binding site on NEAT2. The footprint of the heme interaction with NEAT2 and the
contact region of STAU-281 Phe-54 (Kabat numbering) of germ line-encoded CDR-H2
have highly overlapping binding sites (Fig. 1b), showing that this antibody inhibits S.
aureus at least in part by blocking the acquisition of heme. We compared this crystal
structure with those of two previously reported anti-NEAT2 antibodies (24), D2-06
(PDB accession number 5D1Q) and D4-30 (PDB accession number 5D1X) (Fig. 2). In
general, the antigenic site recognized by STAU-281 was similar to those of D2-06 and
D4-30. All three mAbs have a heavy chain encoded by the IGHV1-69 variable gene and
pair with a kappa light chain. The antibodies interact using three features: (i) the
CDR-H2 loop, (ii) the CDR-H3 loop, and (iii) the light chain CDR-L3 loop. The binding of
STAU-281 on NEAT2 differs in important details from those of the antibodies in the
D2-06/NEAT2 and D4-30/NEAT2 complexes. The CDR-H2 interactions are nearly iden-
tical in all three complexes, while deviations were observed for the other loop inter-
actions.

CDR-H2 of STAU-281 includes the sequence motif PIF (residues Pro-52A, Ile-53, and
Phe-54 [Kabat numbering]) encoded by the IGHV1-69 germ line sequence (Fig. 1a and
b and Fig. 2a). The CDR-H2 residue F54 side chain of STAU-281 is inserted into the

FIG 1 Crystal structure of STAU-281 Fab in complex with the IsdB-NEAT2 domain. (a) The STAU-281 heavy chain and light chain and the IsdB
NEAT2 domain are shown in magenta, cyan, and green, respectively. The heme-binding site of the IsdB-NEAT2 domain is marked with broken
ovals. Side chains of residues I53 and F54 (Kabat numbering) from CDR-H2 are shown in salmon in a stick representation. (b) Surface
representation (green) of the NEAT2 domain in the STAU-281/NEAT2 complex crystal structure. The STAU-281 CDR-H2 residue F54 interaction site
of the NEAT2 domain is in salmon. Equivalent atoms of the heme-binding site in the heme-bound NEAT2 structure (PDB accession number 3RTL)
are mapped onto the NEAT2 domain in the STAU-281/NEAT complex structure as blue mesh.
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heme-binding pocket of the NEAT2 domain, forming extensive aromatic stacking
interactions and hydrophobic interactions with surrounding aromatic and hydrophobic
residues (valine and methionine residues) from the NEAT2 domain. The adjacent
CDR-H2 residue I53 interacts with residues M362 and F366 of the NEAT2 heme-binding
pocket (Fig. 2a). The residues in the NEAT2 domain interacting with CDR-H3 residues I53
and F54 overlap those of the NEAT2 heme-binding site (Fig. 1b).

In contrast to the stereotypical interaction of the CDR-H2s of the three heme-
blocking antibodies described above, more variation was observed for the contact
region and orientation of the CDR-H3 and CDR-H1 loops of STAU-281 and the two
previously reported antibodies (Fig. 2b). In the STAU-281/NEAT2 and D4-30/NEAT2
complexes, the NEAT2 residue Y391 side chain forms an H bond with the CDR-H1
residue T31 main-chain oxygen, while in the D2-60/NEAT2 complex, the Y391 side chain
forms H bonds with the side chains of T33 from CDR-H1 and D95 from CDR-H3. There
is a salt bridge between NEAT2 D390 and STAU-281 CDR-H3 K95. In the D2-60/NEAT2
complex, residue R32 in CDR-H1, instead of residues from CDR-H3, forms a salt bridge
with NEAT2 D390. However, the D4-30/NEAT2 complex lacks this cognate salt bridge.
In the STAU-281/NEAT2 complex, NEAT2 residue N388 forms H bonds with STAU-281
CDR-H1 R31 and Y32 side chains. Moreover, STAU-281 has a longer CDR-H3, and
CDR-H3 has extensive van der Waals interactions with NEAT2 loops. There is no contact
between CDR-H3 and NEAT2 loops in the D4-30/NEAT2 complex, while CDR-H3 of
D2-60 makes contacts with NEAT2 loops different from those in the STAU-281/NEAT2
complex.

The biased pairing of the kappa light chain with an IGHV1-69-encoded heavy chain
in all three of these heme-blocking antibodies can be explained in part by the shape

FIG 2 Overlay of crystal structures of STAU-281, D4-30 (PDB accession number 5D1X), and D2-06 (PDB accession number 5D1Q) Fabs in complex
with the IsdB-NEAT2 domain. For the STAU-281/NEAT2 complex, the NEAT2 domain is in green. For the D4-30/NEAT2 complex, NEAT2 is in light
blue. For the D2-06/NEAT2 complex, NEAT2 is in gray. (a) Residues I53 and F54 (Kabat numbering) of the conserved sequence motif of CDR-H2
encoded by the heavy chain gene IGHV1-69 interact with the heme-binding site of the NEAT2 domain, including residues M362, M363, Y391, V435,
Y440, V433, and Y444, via �-� stacking and hydrophobic interactions. (b) Variations in interactions between CDR-H1/CDR-H3 and NEAT2 S3/S4
and S5/S6 loops shown in the three complex structures. In the D4-30/NEAT2 complex, a main-chain oxygen at position 31 of D4-30 CDR-H1 forms
an H bond with the NEAT2 S3/S4 loop Y391 side chain, and its CDR-H3 has little interaction with NEAT2. In the D2-60/NEAT2 complex, Y391 forms
two H bonds with the main-chain nitrogen and the side chain of T33 of D2-60 CDR-H1, and there is a salt bridge between S3/S4 loop D390 and
R32 of D2-60 CDR-H1. CDR-H3 of D2-60 also interacts extensively with NEAT2 loops. In the STAU-281/NEAT2 complex, besides the H bond
between side chain Y391 and the main-chain oxygen of R31 at STAU-281 CDR-H1, two additional H bonds are found between the NEAT2 residue
N388 side chain and the R31 side chain and the Y32 side chain of STAU-281 CDR-H1. A salt bridge is formed between NEAT2 D390 and STAU-281
CDR-H3 K95 instead of a residue from CDR-H1. Due to its longer CDR-H3, STAU-281 has extensive van der Waals interactions with the NEAT2 S5/S6
loop. (c) Shape complementarity between the NEAT2 domain S7/S8 loop and CDR-L3 of the kappa light chain of the three antibodies. Aromatic
residues at positions 94 and 96 of CDR-L3 interact with the S7/S8 loop via van der Waals interactions in addition to hydrogen bonds (shown as
broken lines). STAU-281/NEAT2 H bonds are in green, D4-30/NEAT2 H bonds are in gray, and D2-60/NEAT2 H bonds are in blue. The side chain
of K436 of NEAT2 forms H bonds with main-chain oxygen atoms of CDR-L3 position 91 in all three complexes.
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complementarity between the elongated �-turn of strand S7/S8 in the NEAT2 domain
and the CDR-L3s of these kappa chains (Fig. 2c). In addition, there are two H bonds
between the �-turns and the CDR-L3s. In the STAU-281/NEAT2 complex, an H bond
forms between the W94 side chain NE1 atom in CDR-L3 and the T437 main-chain
oxygen, and another bond forms between the Y91 main-chain oxygen in CDR-L3 and
the K436 side chain in NEAT2.

Recognition of alternate antigenic sites by IGHV1-69-encoded antibodies. We
next sought to determine the antigenic sites recognized by STAU-399 and STAU-229.
Despite their common IGHV1-69 germ line usage and protein target, we found that
mAbs STAU-399 and STAU-229 bind to IsdB-NEAT2 at epitopes distal from the heme-
binding site and rely mostly on CDR-H3 (specified by diverse VH-N1-DH-N2-JH junctions
formed during VDJ recombination) as the principal interacting antibody loop, instead
of the IGHV1-69 germ line gene-encoded hydrophobic CDR-H2. We generated high-
resolution models of the interactions using crystallography and HDX-MS.

Efforts to crystallize NEAT2 in complex with STAU-399 or STAU-229 were unsuccess-
ful. We were, however, successful in obtaining crystal structures of Fab fragments for
the mAbs STAU-399 (2.4-Å resolution) (PDB accession number 6P9I) and STAU-229
(2.1-Å resolution) (PDB accession number 6P9J). The search model used was the Fab
under PDB accession number 5JRP. Both STAU-399 and STAU-229 contain longer
CDR-H3 loops than those of STAU-281. We also noted that the CDR-L3 loop of
STAU-281, which sits opposite the binding cavity on NEAT2, is shorter for STAU-281
than for STAU-399 or STAU-229, leaving more space for the engagement of the
NEAT2 domain. Taken together, the structures suggest that in heme-blocking
IGHV1-69-encoded antibodies, the hydrophobic patch in the IGHV1-69-encoded
CDR-H2 should be combined with a shorter CDR-H3 loop and a light chain that can
accommodate the tip of the domain to bind the NEAT2 domain at the heme-
binding pocket. The STAU-399 and STAU-229 antibodies fail to satisfy these struc-
tural requirements.

To determine the binding sites for STAU-399 and STAU-229 using HDX-MS, we
identified peptides on the surface of NEAT2 recognized by STAU-399 (Fig. 3 and Fig. S1)
or STAU-229 (Fig. 3 and Fig. S2). The reduction of deuterium exchange in the presence
of Fab suggested NEAT2 peptides that interact with Fab. For STAU-399, we found that
labeling of the NEAT2 peptides QVKSAITEF (residues 324 to 332) and MVEGQRVR

HFNNKEEKYDYTLMEFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELNKIQD
 

KLPEKLKAEYKKKLEDTKKALDEQVKSAITEFQNVQPTNEKMTDLQDTKYVVYESVENN

ESMMDTFVKHPIKTGMLNGKKYMVMETTNDDYWKDFMVEGQRVRTISKDAKNNTRTIIF

PYVEGKTLYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKKEQQDNSAKKEATP
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FIG 3 Epitopes for two IGHV1-69-encoded antibodies on NEAT2. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) was used to map the
binding sites of STAU-229 (orange) or STAU-399 (red). (a) Peptides participating in the two epitopes were determined by reduced labeling in the presence
of antibody and visualized on the surface of the IsdB-NEAT2 domain (PDB accession number 3RTL), shown in yellow ribbon and surface projection. The
binding site of STAU-281 as determined by X-ray crystallography of a complex of STAU-281 Fab and recombinant NEAT2 is indicated in blue for reference.
(b) Peptides in epitopes for STAU-229 (orange) or STAU-399 (red) in the amino acid sequence of IsdB and contact residues in the cocrystal structure for
STAU-281/NEAT2 (blue).
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(residues 396 to 403) reduced deuterium incorporation in the presence of Fab. We
projected this epitope onto the surface of NEAT2 and designated this region
antigenic site 2. For STAU-229, we found that the NEAT2 peptide MTDLQDTKY
(residues 342 to 350) showed reduced deuterium incorporation in the presence of
Fab. We projected this epitope onto the surface of NEAT2 and designated this
region antigenic site 3.

Next, we built high-resolution models of the antigen-antibody complexes using a
hybrid-method approach by combining the information from the experimental Fab
structures and from the HDX-MS experiments. The interaction of Fab and antigen for
each antibody was determined by docking the apo Fab and apo IsdB crystal structures
(PDB accession number 5VMM) (17) using the Rosetta modeling software suite (25),
with restrictions to the HDX-MS data (Fig. 4). These experiments revealed that the three
antibodies bind to NEAT2 in very distinct sites and poses. The interaction with antigenic
site 2 (defined by STAU-399 binding) showed that the long CDR-H3 of STAU-399 plays
a key role in the recognition of this site, interacting near �-helix 3 of NEAT2 (Fig. 4). The
canonical F54 residue on CDR-H2 of STAU-399 still interacts with IsdB but is removed
from the heme-binding site. The interaction of STAU-299 with antigenic site 3 shows
recognition of Isd-NEAT2 near �-helix 3, using STAU-299 CDR-H3 as the predominant
interacting loop (Fig. 4).

In vitro blocking of heme binding mediated by IGHV1-69-encoded mAbs. The
biological significance of the antigenic sites for blocking the interaction of heme or
hemoglobin with IsdB was tested using two separate in vitro assays. First, each
IGHV1-69-encoded mAb was tested for its ability to block heme or hemoglobin binding
to IsdB using a biolayer interferometry biosensor. Biotinylated hemoglobin was loaded
onto streptavidin sensors and then associated with IsdB alone, mAb alone, IsdB plus
mAb, or buffer (Fig. 5a to c). The only antibody that significantly blocked the IsdB-
hemoglobin binding interaction was STAU-281. Conversely, when STAU-229 and STAU-

STAU-399 FabSTAU-229 Fab

STAU-281 Fab

Light 
chain

Light 
chain

Light 
chain

Heavy
chain

Heavy
chain

Heavy
chain

NEAT2

FIG 4 Overlay model of the structures of three IGHV1-69-encoded antibodies reveals three modes of binding to
NEAT2. The structures of the apo forms of Fabs STAU-229 (2.1 Å) and STAU-399 (2.4 Å) were determined by
crystallography. These two Fabs were docked onto the STAU-281/NEAT2 complex structure using the Rosetta
modeling suite, restricting docking to their binding sites (orange and red, respectively) predicted by HDX-MS
studies of NEAT2 and the Fabs (Fig. 2). Heavy chains are shown as cyan ribbons, and light chains are shown in
green.
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399 were incubated with IsdB and associated with hemoglobin, we did not detect a
difference in the binding signal compared to those for IsdB and hemoglobin binding
alone. STAU-281 not only directly binds to the heme-binding pocket but also prevents
binding of hemoglobin to IsdB. This mode of action is similar to that of the previously
described mAbs D2-06-N2 and D4-30-N2 (24).

In vitro inhibition of growth mediated by IGHV1-69-encoded mAbs. Next, the
mAbs were tested for their ability to inhibit in vitro replication of S. aureus when grown
in the presence of heme as a sole iron source. S. aureus strain Newman (wild type [WT])
or the protein A- and isdB-deficient Δspa ΔisdB strain was grown overnight and then
subcultured into 96-well plates containing RPMI medium plus ethylenediamine-N,N=-
bis(2-hydroxyphenylacetic acid) (EDDHA) to reduce the amount of available iron. When
heme was added to wells containing the Δspa ΔisdB strain, there was no increase in
growth due to a lack of functional isdB (11). In contrast, the addition of heme led to an
increase in the growth of wild-type S. aureus to an optical density at 600 nm (OD600) of
�1.5 (Fig. 5d to f). STAU-281 reduced growth when added to the medium, while an
inhibitory effect was not detected for the STAU-399- or STAU-229-treated groups, in
which the OD values did not differ from those of the group treated with heme alone.
These data show that representative mAbs that bind to antigenic site 2 or 3 on NEAT2
do not prevent heme or hemoglobin binding and do not inhibit wild-type strain growth
using heme as a sole iron source in vitro, in contrast to STAU-281, which inhibits S.
aureus growth.

All three classes of IGHV1-69-encoded mAbs reduce bacterial burdens during
infection. Next, these mAbs were tested in a murine septic model of S. aureus infection
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normalized to an OD600 of 1.0. Error bars represent standard deviations. Data shown are representative of results from 3 independent
experiments.
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to determine whether mAb binding to any of the three major antigenic sites on NEAT2
mediates a protective effect in vivo. Two variant forms of IGHV1-69-encoded mAbs were
tested in this infection model, full-length IgG1 with a wild-type Fc region or IgG1 Fc
variant antibodies with L234A/L235A (LALA) mutations in the CH2 domain, which
reduces antibody binding to Fc�R receptors (27, 28). The interaction between Fc�R
receptors and the Fc portion of an antibody mediates secondary functions such as
phagocytosis and antibody-dependent cytotoxicity. Therefore, mutating these critical
residues can reveal whether Fc effector functions are an important part of the inhibitory
effect of antibodies in vivo (29).

Seven-week-old BALB/c mice were given one of three IGHV1-69-encoded mAbs by
intraperitoneal injection and then inoculated retro-orbitally with 107 CFU of wild-type
S. aureus. Tissues were harvested after 96 h, and the bacterial burden was enumerated
by serial dilution plating (Fig. 6). Treatment with the IgG1 form of mAb STAU-281
caused a significant reduction in the bacterial burden compared to those for isotype-
control-treated animals in all three organs tested, including a �100-fold reduction in
the bacterial burden in the heart and kidneys and a 60-fold reduction in the liver. While
STAU-399 did not block binding of hemoglobin or heme in vitro, it significantly reduced
the burden in the kidneys, liver, and heart. STAU-229 significantly reduced the burden
in the kidneys. In contrast, we did not detect a significant reduction in bacterial burden
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FIG 6 IGHV1-69-encoded mAbs reduce bacterial burden in vivo. Seven-week-old female BALB/c mice
were inoculated retro-orbitally with a suspension of S. aureus strain Newman at an OD600 of 0.4. Mice
were given IGHV1-69-encoded full-length wild-type IgG LALA Fc variant (L234A/L235A) IgG antibodies by
the intraperitoneal route. The hearts, livers, and kidneys of the infected mice were harvested after 96 h.
Statistical significance was evaluated by analysis of variance (ANOVA) using multiple comparisons. All
other comparisons, including comparison of LALA mAbs to the isotype control, were not significant.
Experiments were performed two independent times, and the pooled data are shown. P values of
�0.0001 were considered significant. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ns, not significant.
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in any tissue for any of the LALA mutant IgGs, compared to those in mice treated with
isotype control IgG. Therefore, binding of the full-length IGHV1-69-encoded IgG mAbs
to Fc�R contributes to the protective mechanism of these mAbs.

Antibody repertoire analysis reveals clonal lineages of IGHV1-69-encoded
mAbs containing clones with diverse patterns of somatic mutations. We next
identified somatic variants of the mAbs to determine if clonal lineages developed and
if affinity maturation of the clonotypes affected the function of the protective IGHV1-
69-encoded antibodies. We used an additional aliquot of cryopreserved peripheral
blood mononuclear cells (PBMCs) collected in the convalescent period from subject 924
and performed antibody heavy chain repertoire sequencing. We obtained 3,395,084
unique and productive heavy chain variable gene sequences from approximately 1.1
million PBMCs (estimated by taking 7% of the total number of PBMCs). To minimize the
influence of potential sequencing errors, we employed the concept of a V3J clonotype,
which uses the variable (V) and joining (J) germ line genes (ignoring allelic distinction)
along with the CDR3-H3 amino acid sequence (30). The reduction of the total pool of
unique and productive heavy chain reads according to the clonotype definition re-
sulted in the identification of a total of 1,047,493 unique V3J clonotypes.

Because STAU-399 and STAU-229 were isolated from the same donor for which we
performed deep-sequencing analysis, we were able to search for somatic variants that
were also IGHV1-69-encoded antibody sequences in that donor. The phylogenies of the
somatic variants associated with the clonotypes from repertoire sequencing were then
analyzed to infer a possible maturation pathway (Fig. 7a and b). Point mutations were
identified in the VH region, and we synthesized and tested these variant antibodies for
differences in binding to IsdB (Fig. 7c and d).
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Ten sequences of the STAU-399 clonotype (encoded by VH1-69/JH6) were identified,
with 3 of them (variants 2, 8, and 9) being identical. Somatic variants within a lineage
(“siblings”) clustered into 3 groups (Fig. 7a). STAU-399 IgG and variants 3 and 4 grouped
together in cluster 1, based on their conservation of the germ line gene sequence
encoding the CDR-H2 loop, which has a threonine at position 56 (Fig. S3). This finding
is in contrast to those for all other variants that shared a T56A mutation in the CDR-H2
loop. Threonine likely participates in important hydrogen bonds with surrounding side
chains and water, and the T56A mutation may alter the CDR-H2 loop interactions,
making them more hydrophobic. The largest cluster of this clonotype is cluster 3,
encoding 6 variants. Most of the mutations in this cluster did not lead to noticeable
changes in the binding affinity of these variants, with the exception of variant 6, which
has three mutations to glycine (V23G in framework region 1 [FR1], S30G in CDR1, and
V36G in FR2), making this clone the most distant genetically from the germ line gene
sequence. Correspondingly, this mAb exhibited the lowest affinity for binding (27-fold
lower than for the hybridoma IgG) and the lowest 50% inhibitory concentration (EC50)
value for binding in an enzyme-linked immunosorbent assay (ELISA) (18-fold lower than
for the hybridoma IgG) (Fig. 7c). An additional IGHV1-69*01-encoded mAb, STAU-307,
was found to have clonal variants within the donor sample and behaved similarly to
STAU-399 (Fig. S4 and Fig. S5).

We identified nine sequences within the STAU-229 clonotype and three clusters of
variants (encoded by VH1-69-2*01/JH6*02) with some common mutations noted (Fig. 7b
and Fig. S6). Because STAU-229 is encoded by the IGHV1-69-2*01 allele, this mAb has a
different inferred germ line gene sequence than that of STAU-399. The residues in
positions 52 to 54, encoding the key amino acid motif PIF that was conserved in all of
the IGHV1-69*01-encoded antibodies, are changed to PED. These alleles represent two
distinct gene sequences. In the STAU-229 mAb heavy chain variable gene sequence and
all 1,047,493 clonotype variants identified by repertoire sequencing, the PED motif was
maintained. The I53E and F54D alternate residues encoded by the IGHV1-69-2*01 gene
make this germ line-encoded CDR-H2 loop more polar and hydrophilic than that
encoded by IGHV1-69*01. Interestingly, STAU-229 IgG is the only mAb isolated with a
mutation in CDR-H2 (V50I), which is the same residue encoded by the germ line
IGHV1-69*01, suggesting that these canonical hydrophobic isoleucine residues facilitate
optimal binding to NEAT2. A number of STAU-229 variant sequences were shared
within cluster 3, so we tested the representative sequences for variants 1 and 3 after
recombinant expression. Variant 3 differs from variant 1 only by an S20P substitution in
FR1; however, this difference was sufficient to alter the KD (equilibrium dissociation
constant) of this antibody to 1.44 nM, a nearly 7-times-lower avidity than that of the
hybridoma cell line-expressed IgG, making it the antibody with the worst KD with this
clonotype (Fig. 7d).

DISCUSSION

S. aureus has proven to be a formidable pathogen for vaccine design. With multiple
virulence strategies, redundant nutrient acquisition pathways, and a list of failed
vaccines, it is critical to obtain a more thorough understanding of how to better target
the relevant factors. A large body of work has shown that iron acquisition pathways are
crucial for many living organisms to survive and that heme is necessary for full virulence
in S. aureus. Moving forward, strategies to fully exploit this pathway for heme-iron
acquisition may improve the efficiency and success of S. aureus vaccine design. This
work not only contributes to a broader understanding of a biologically important
antigen, IsdB, but also describes a panel of protective mAbs that exhibit therapeutic
efficacy in S. aureus infection in mice.

In this study, we characterized three antigenic sites on IsdB-NEAT2 and their
biological importance in vitro and in vivo. Although IGHV1-69-encoded antibodies bind
principally by hydrophobic CDR-H2-mediated binding interactions (24), some antibod-
ies to IsdB-NEAT2 do not use CDR-H2 as the primary binding loop. This observation is
interesting, as key antibody-antigen interactions have been described for a number of
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pathogens using IGHV1-69-encoded antibodies, whether mediated by CDR-H2, CDR-H3,
or both. For example, in influenza virus, the IGHV1-69-encoded antibody 27F3 broadly
targets influenza group 1 and 2 viruses at the HA stem using the IFY motif on CDR-H2
(21). In hepatitis C virus (HCV), the IGHV1-69-encoded antibody AR3A-D broadly neu-
tralizes HCV strains by binding to the E2 domain of HCV using a VH-encoded hydro-
phobic CDR-H2 and a long CDR-H3 formed during VDJ recombination (31). For HIV,
investigators have identified IGHV1-69-encoded antibodies that predominantly use
CDR-H2 or some that use both CDR-H2 and CDR-H3. mAb HK20 uses the traditional
hydrophobic IF motif on CDR-H2 to target gp41 of HIV (32). In contrast, the IGHV1-69-
encoded antibody VRC13 uses a CDR-H3-mediated mechanism to broadly neutralize
HIV by recognizing and blocking gp120 function (33).

Genetic polymorphisms in IGHV1-69 gene alleles could limit or affect the human
antibody responses to the antigenic sites that were identified here. Thirteen IGHV1-69
alleles have been described that possess F54L, T56I, and G49R polymorphisms, which
are located in or near CDR-H2 (34). Seven alleles encode a phenylalanine at position 54
of the germ line gene sequence that mediates the canonical interaction with the
heme-binding site, but six alleles encode a leucine at this position (L54). A substantial
proportion of the general population is homozygous for alleles with L54, suggesting
that these individuals may not be able to make IGHV1-69-encoded heme-blocking
antibodies (35). Also, the number of IGHV1-69 germ line copies per diploid human
genome varies (35). If heme blocking of NEAT2 on IsdB is an important component of
protective immunity, one might observe variability in the functional immune responses
in recipients of experimental vaccine candidates due to the need to use a subset of
IGHV1-69 alleles. Similar to the studies that we describe here, repertoire studies with
human antibody responses to the influenza virus hemagglutinin stem region show
both canonical CDR-H2-mediated IGHV1-69*01 allele (F54 residue)-encoded interactions
(36, 37) and noncanonical IGHV1-69*09 allele (non-F54)-encoded interactions mediated
by CDR-H3 (38). It was interesting that the STAU-229 mAb described here is encoded
by IGHV1-69-2*01, which lacks the F residue needed for heme-binding-site recognition,
and indeed, this mAb recognizes an alternate antigenic site. Interactions with IGHV1-
69-encoded antibodies are complex and depend on the allele, somatic mutations, the
dominant interaction using CDR-H2 or CDR-H3, and the antigenic site recognized.
Combinations or interactions of these antibodies could affect their performance in vivo.
We tested STAU-281 (the heme-blocking mAb) in combination with multiple other
antibodies, including VH1-69-encoded antibodies; however, the combinations that we
tested did not lead to a reduction in bacterial burden greater than that with STAU-281
alone.

The discovery of diverse IGHV1-69-encoded antibodies that recognize distinct anti-
genic sites on an immunodominant gene target in S. aureus is intriguing. Identification
of common germ line-encoded antibodies for a pathogen, as we have done here,
represents a unique opportunity to use vaccination to shape a targeted antibody
response. The increased understanding of structure-function aspects of IGHV1-69-
encoded antibodies recognizing S. aureus that contribute to a protective immune
response informs rational vaccine design efforts and enables a better understanding of
the correlates of protection against S. aureus infection.

MATERIALS AND METHODS
Human subjects. Human blood was collected from patients at Vanderbilt University Medical Center

after written informed consent and subject assent. The studies were approved by the Institutional Review
Board of Vanderbilt University Medical Center.

Generation of human monoclonal antibodies. Peripheral blood mononuclear cells (PBMCs) were
isolated from deidentified blood samples by Ficoll density gradient centrifugation. Human hybridomas
were generated by transforming PBMCs with medium containing Epstein-Barr virus, CpG (Life Technol-
ogies), a Chk2 inhibitor (Sigma), and cyclosporine (Sigma). Cells were expanded using a feeder layer of
irradiated heterologous human PBMCs. Supernatants from expanded cells were screened by an ELISA
using recombinant IsdB protein to identify wells containing B cells secreting antibodies reactive with
IsdB. Transformed B cells in wells with a positive signal were fused with HMMA2.5 myeloma cells by
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electrofusion. Monoclonal hybridoma lines were obtained using single-cell sorting on a FACSAria III
instrument.

Bacterial strains. S. aureus strain Newman was grown at 37°C for 12 to 18 h on tryptic soy agar plates
or in tryptic soy broth. Isogenic knockouts were made in a Newman background by using allelic
replacement of the coding sequence with ermC (7, 39, 40). PCR fragments were assembled into the
pCR2.1 DNA plasmid vector and then recombined into the pKOR1 plasmid to inactivate the gene.

Generation of recombinant IsdB and IsdB-NEAT2 proteins. A cDNA of the sequence encoding
IsdB, excluding the sorting signal and signal peptide, was cloned into the pET15b vector and expressed
using Escherichia coli BL21(DE3) cells. For IsdB-NEAT2, only the NEAT2-encoding sequence was cloned
into a pET15b vector. For both proteins, bacteria were grown in Luria-Bertani (LB) broth for 36 h total and
induced after 6 h at 30°C with 1 mM isopropyl-�-D-thiogalactopyranoside (IPTG). The culture was
harvested by centrifugation and resuspended in 50 mM Na2HPO4 plus 500 mM NaCl before disruption by
homogenization (LM20 microfluidizer). The protein was purified using a HiTrap Talon column, and the His
tag was cleaved with thrombin.

Growth curves in the presence of heme. S. aureus strain Newman or the ΔisdB Δspa strain was
grown overnight in RPMI medium containing 0.1 Casamino Acids and 0.5 mM EDDHA. The OD600 was
normalized to a value of 1, and the bacteria were subcultured in 200 �l of RPMI medium plus EDDHA
with 20 nM heme and 2 �g/ml mAb. Bacteria in 96-well plates were grown at 37°C, and OD600 values
were recorded at 3, 7, 24, and 36 h using path-length correction in Gen5 microtiter plate software
(Bio-Tek).

Biolayer interferometry assays. KD and blocking studies were performed using an Octet red
biosensor (Pall FortéBio). For KD studies, individual antibodies were loaded onto anti-human Fc biosen-
sors. Biosensor tips were first washed and then immersed into wells containing mAb (5 �g/ml), followed
by an additional wash step, before association with wells containing 2-fold dilutions of IsdB protein. The
initial IsdB concentration was converted from micrograms per milliliter to nanomolar units with a starting
molarity of 150 nM. The kon and koff values for interactions were determined by global fitting of the
curves in Octet software. Blocking studies were performed by first washing streptavidin biosensors and
then associating them with biotinylated hemoglobin.

Mouse experiments. A murine septic model was used (5). Seven-week-old female BALB/cJ mice
were injected with 10 mg/kg of body weight of mAb via the intraperitoneal route. Mice were anesthe-
tized and injected retro-orbitally with 107 CFU S. aureus strain Newman. After 96 h, mice were euthanized
by CO2 inhalation, and organs were collected and homogenized in phosphate-buffered saline (PBS)
before serial dilution for colony enumeration. Mouse experiments were approved and performed
according to the guidelines of the Vanderbilt University School of Medicine Institutional Animal Care and
Use Committee (IACUC).

Hydrogen-deuterium exchange mass spectrometry. IsdB and Fab proteins were prepared at
10 pmol/�l. Labeling occurred in PBS (pH 7.4) in D2O at 20°C for 30 s or 4 h. The reaction was quenched
with a solution containing PBS, 4 M guanidinium-HCl, and 100 mM tris(2-carboxyethyl)phosphine to pH
2.3 at 0°C. Samples were injected into a nano-Acquity ultraperformance liquid chromatography (UPLC)
system with HDX technology. Digestion was performed at 15°C with a flow rate of 134 �l/min of 0.1%
formic acid using a pepsin column. Peptides were simultaneously trapped at 0°C on a VanGuard ethylene
bridged hybrid (BEH) C18 1.7-�m column. Peptides were separated on an Acquity UPLC BEH C18 1.7-�m,
1-mm by 100-mm column; eluted using 5 to 35% acetonitrile and 0.1% formic acid in H2O; and
analyzed using a Xevo G2-XS mass spectrometer in MSE mode. Identification was performed using
Waters ProteinLynx global server 3.0.3, and deuterium uptake was calculated using DynamX 3.0.
Results were averaged across replicate analyses, at a given time point, and the standard deviation
was determined.

X-ray crystallography. The IsdB-NEAT2 protein was run on size exclusion chromatography (SEC)
columns (HiLoad 16/600, Superdex 75 pg; GE Healthcare Life Sciences) in buffer containing 20 mM Tris
and 50 mM NaCl. The antigen was concentrated to 10 mg/ml and incubated at room temperature with
Fab at a 1:2 ratio. The incubated complex was run on an SEC column and concentrated to 10 mg/ml. All
crystals were obtained using Hampton Research screens under various conditions. X-ray diffraction data
were collected at Advanced Photon Source LS-CAT beamline 21-ID-G or -F. STAU-281 in complex with
IsdB-NEAT2 was crystallized in a solution containing 0.1 M sodium citrate tribasic dehydrate (pH 5.5) and
16% polyethylene glycol 8000 (PEG 8000). STAU-399 Fab was crystallized in a solution containing 10%
PEG 200, 18% PEG 8000, and 0.1 M Bis-Tris propane (pH 9.0). STAU-229 Fab was crystallized in a solution
containing 0.1 M ammonium acetate, 0.1 M Bis-Tris (pH 5.5), and 17% PEG 10000. Images were indexed
and scaled with X-ray Detector software (41), and molecular replacement was performed in Phaser (42),
followed by manual refinement using subsequent rounds of COOT (43) and Phenix (42).

Constraint-guided docking using Rosetta. Rigid-body docking was performed individually for
both mAb-IsdB pairs by generating a starting ensemble, running the docking protocol with the
applied constraints and filtering by overall energy, binding energy as calculated with the Rosetta
InterfaceAnalyzer, and the ability to satisfy the constraints derived from HDX data (25, 26, 44). After a
first round of docking, the best 500 models were selected by binding energy (interface energy) and
underwent the protocol again, resulting in improved binding and energy scores. In total, 6,000 models
were generated, and an ensemble of 25 best-scoring models by binding energy, which fulfilled the
constraints derived from HDX data, were selected.

Statistical analysis. All data were analyzed in Prism v 7.0 (GraphPad Software Inc.). Individual
statistical analyses are described in the legends of the figures.
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Data availability. Crystal structures have been deposited in the PDB under accession numbers 6P9H
for Fab STAU-281 in complex with the NEAT2 domain of IsdB, 6P9I for Fab STAU-399, and 6P9J for FAb
STAU-229.
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