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Abstract. An accumulation of driver mutations is important 
for cancer formation and progression, and leads to the disrup-
tion of genes and signaling pathways. The identification of 
driver mutations and genes has been the subject of numerous 
previous studies. The present study was performed to identify 
cancer‑driving mutations and genes in renal cell carcinoma 
(RCC), prioritizing noncoding variants with a high functional 
impact, in order to analyze the most informative features. 
Sorting Intolerant From Tolerant (SIFT), Polymorphism 
Phenotyping version 2 (Polyphen2) and MutationAssessor 
were applied to predict deleterious mutations in the coding 
genome. OncodriveFM and OncodriveCLUST were used to 
detect potential driver genes and signaling pathways. The 
functional impact of noncoding variants was evaluated using 
Combined Annotation Dependent Depletion, FunSeq2 and 
Genome‑Wide Annotation of Variants. Noncoding features 
were analyzed with respect to their enrichment of high‑scoring 
variants. A total of 1,327 coding mutations in clear cell RCC, 
258 in chromophobe RCC and 1,186 in papillary RCC were 
predicted to be deleterious by all three of MutationAssessor, 
Polyphen2 and SIFT. In total, 77 genes were positively selected 
by OncodriveFM and 1 by OncodriveCLUST, 45 of which 
were recurrently mutated genes. In addition, 10  signaling 
pathways were recurrently mutated and had a high functional 
impact bias (FM bias), and 31 novel signaling pathways with 
high FM bias were identified. Furthermore, noncoding regu-
latory features and conserved regions contained numerous 
high‑scoring variants, and expression, replication time, GC 

content and recombination rate were positively correlated 
with the densities of high‑scoring variants. In conclusion, 
the present study identified a list of cancer‑driving genes 
and signaling pathways, features like regulatory elements, 
conserved regions, replication time, expression, GC content 
and recombination rate are major factors that affect the distri-
bution of high‑scoring non‑coding mutations in kidney cancer.

Introduction

Rapid advancements in sequencing technology and its wide 
applications have identified hundreds of thousands of muta-
tions in cancer genomes; a small fraction of these mutations, 
termed drivers, are critical for carcinogenesis and are able to 
confer a growth advantage to tumor cells by affecting driver 
genes (1,2). The detection of these cancer‑driving mutations 
and genes has been the focus of numerous cancer genomic 
studies (3‑6). Various computational approaches have been 
developed to prioritize deleterious cancer mutations, including 
the Sorting Intolerant From Tolerant (SIFT) algorithm (7), 
Polymorphism Phenotyping version 2 (PolyPhen2) tool (8) and 
MutationAssessor (9). The majority of these programs rely on 
the assumption that coding mutations that affect functionally 
important residues, as inferred from evolutionary conservation 
and protein domain analysis, are more likely to be delete-
rious (10). With regard to the identification of cancer‑driving 
genes, common approaches search for genes that are recurrently 
mutated relative to the background mutation rate in a cohort 
of cancer cases, and include MutSigCV (2) and MuSiC (11). 
Whereas few driver genes are recurrently mutated in cancer 
tissue samples, other cancer drivers are mutated in a small 
fraction (<1%) of tumors (12). Therefore, methods that are able 
to classify driver genes independently of mutation frequency 
are required. OncodriveFM detects genes with a bias towards 
the accumulation of variants with high functional impacts, 
as evaluated by SIFT, PolyPhen2 and MutationAssessor (13). 
Another program, OncodriveCLUST, identifies genes with a 
significant bias towards gain‑of‑function mutations that are 
clustered within the protein‑coding sequence, based on the 
knowledge that the clustering of gain‑of‑function mutations 
in specific protein regions provides an adaptive advantage to 
cancer cells, and is consequently positively selected for during 
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tumoral evolution  (14). At present, 547  cancer‑associated 
genes are annotated in the Catalogue of Somatic Mutations in 
Cancer (COSMIC) database (15).

Although cancer mutations in the coding genome have been 
well studied, the majority of those in noncoding regions, which 
comprise 98% of the genome, remain poorly understood due to 
lack of functional information (16). An increasing number of 
noncoding pathogenic variants have been detected and anno-
tated, including a large number of disease‑ or trait‑associated 
single nucleotide polymorphisms detected in genome‑wide 
association studies, preferentially within enhancers, exons and 
mRNA promoters (17). Therefore, it is important to develop 
reliable and efficient computational tools for evaluating the 
functional effects of noncoding variants. The completion of 
high‑throughput projects, including the Encyclopedia of DNA 
Elements (ENCODE), has provided genome‑wide mapping of 
histone modification and DNase I hypersensitive sites, formal-
dehyde‑assisted isolation of regulatory elements, transcription 
factor binding sites (TFBS), and RNA sequencing and replica-
tion timing data for several cell lines, which has enabled the 
functional annotation of variants in the noncoding portion of 
the human genome (18). Various studies have utilized these data 
to predict and score the functionalities of noncoding variants. 
For example, in a study by Kircher et al (19), the annotations 
of fixed or almost fixed derived alleles observed in humans 
were contrasted with those of simulated de novo variants, and 
the Combined Annotation Dependent Depletion (CADD) tool 
was developed using a support vector machine. The applica-
tion of CADD was able to effectively differentiate 14.7 million 
high‑frequency human‑derived alleles from 14.7  million 
simulated variants. Fu  et  al  (20) developed the computa-
tional framework FunSeq2, which has processed large‑scale 
genomic data (including 1000 Genomes and ENCODE data) 
and cancer resources, and used a high‑throughput variant 
prioritization pipeline to annotate and prioritize somatic muta-
tions. Genome‑Wide Annotation of Variants (GWAVA) uses 
the regulatory mutations annotated in the Human Gene Muta-
tion Database (21) and a combination of regulatory features, 
genic context and genome‑wide properties to construct three 
random forest classifiers to score noncoding variants (22).

The current study was conducted to analyze the somatic 
mutations detected by whole‑genome sequencing of 
14 clear‑cell renal cell carcinoma (ccRCC) tissue samples 
and exome sequencing of 106 ccRCC tissue specimens (23), 
65 paired chromophobe renal cell carcinoma (chRCC) tissue 
samples and 100 paired papillary renal cell carcinoma (PRCC) 
tissue samples. OncodriveFM and OncodriveCLUST were 
used to identify the driver genes and signaling pathways that 
exhibited positive selection in kidney cancer. In addition, the 
scoring systems CADD, FunSeq2 and GWAVA were imple-
mented in order to functionally annotate somatic variants in 
the noncoding genome. The enrichment of high‑scoring vari-
ants for a wide range of noncoding features was also examined 
to identify the features that most contribute to the functional-
ities of noncoding cancer mutations.

Materials and methods

Cancer mutation data. Somatic mutations that had been 
detected using whole‑genome sequencing of 14  pairs of 

ccRCC and normal tissue specimens and exome sequencing 
of 106 paired ccRCC tissue samples were obtained from the 
supplementary data of the study by Sato et al (23). Data for 
chRCC and PRCC mutations that had been identified using 
exome‑sequencing of 65 and 100 paired chRCC and PRCC 
tissue samples by Lawrence et al (2) were also obtained.

Prediction of the functional effects of somatic mutations on 
cancer genes and signaling pathways. The functional impacts 
of somatic mutations in the coding genome were predicted 
using SIFT, Polyphen2 and MutationAssessor version  3. 
Variants were considered deleterious based on the following 
criteria: SIFT score <0.05; the presence of non‑benign vari-
ants in the HumDiv and HumVar predictions of Polyphen2; 
and a MutationAssessor score >1.9. Cancer genes and 
signaling pathways were predicted using OncodriveFM 0.0.1 
and OncodriveCLUST 0.4.1 (http://www.intogen.org/analysis/
mutations), respectively, with all parameters set to default. 
Genes and signaling pathways in which P<0.05 were regarded 
as cancer gene and signaling pathway candidates. Gene 
Ontology (GO) enrichment analysis was performed for all the 
driver candidates (http://geneontology.org/) (24).

Genome‑wide data resources. Human genome annotation 
data were obtained from Gencode V21, including protein 
coding genes, exons, introns, untranslated regions (UTRs) 
and noncoding exons (25). Evolutionarily conserved bases 
were identified using the recently published analysis of 
46 mammalian genomes (26). The evolutionarily conserved 
secondary RNA structures were obtained from the study by 
Smith et al (27), in which they were predicted using compara-
tive structure algorithms based on numerous genomes. 
Promoters, which are defined as regions 2.5 Kb from tran-
scription start sites, were generated by the Gerstein lab (28). 
Histone acetylation and methylation data of cluster of differen-
tiation (CD)4+ T cell lines were acquired from Wang et al (29) 
and Barski et al (30), respectively, and all coordinates from 
human genome (hg)18 assembly were converted into hg19 
using the University of California, Santa Cruz (UCSC) Lift-
Over program (26). Conserved TFBS from in the human/
mouse/rat alignment were obtained from UCSC directly (26). 
A wavelet‑smoothed, weighted average signal with high and 
low values that indicate early and late replication during the 
S phase, respectively (http://genome.ucsc.edu/; ENCODE, 
Repli‑seq track), was utilized (18). Genome‑wide replication 
timing of the HepG2 cell line (26), which was used as there is 
no replication time data for kidney cancer cell line was mapped 
to protein coding genes and long noncoding RNAs (lncRNA), 
and an early‑to‑late ratio was calculated as (G1b+S1)/(S4+G2), 
in which G1b, S1, S4 and G2 refer to replication timing values 
of the cell cycle fractions of G1b, S1, S4 and G2, respectively. 
If this ratio was >1, genes were considered to be replicated 
early, while late‑replicated genes exhibited an early‑to‑late 
ratio <1. Recombination rates were obtained from The Inter-
national HapMap Project (http://hapmap.ncbi.nlm. nih.gov/) 
and averaged over 1‑Kb non‑overlapping windows across the 
genome (31). Those windows with recombination rate >4.0 
were considered high and those with a recombination rate <0.5 
were considered low. The GC content refers to the fraction of 
G or C residues per 1‑Kb window, and 1‑Kb windows with a 
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GC fraction >50% or <30% were regarded as high or low GC 
regions, respectively (26).

RNA‑seq data (GEO accession no.  GSE55572) from  
6 human embryonic kidney (HEK)293 T cells were obtained 
from the study by Schwartz et al (32) and reads were aligned 
to the hg19 genome using TopHat2 version 2.0.13 (33). Read 
counts were calculated using bedtools version 2.22.1 for each 
lncRNA and protein‑coding gene  (34). Expression levels 
were calculated by counting the number of reads per Kb per 
million reads (RPKM) and averaged from the 6 HEK293T cell 
lines for each protein coding gene and lncRNA. Genes with 
a RPKM >20 or <0.25 were defined as having high and low 
levels of gene expression, respectively.

Cancer lncRNAs containing 25  lncRNAs are a collec-
tion of mammalian long noncoding RNAs that have been 
experimentally demonstrated to be associated with a variety 
of cancer types. A list of cancer census genes was obtained 
from COSMIC version 71 (15).

Analysis of noncoding variants. In total, 70,659 noncoding 
variants detected by whole‑genome sequencing of 14 paired 
ccRCC tissue samples were scored for deleteriousness using 
CADD  v1.0 (http://cadd.gs.washington.edu), FunSeq2.1.2 
(http://funseq2.gersteinlab.org) and GWAVA v1.0 (https://
www.sanger.ac.uk/sanger/StatGen_Gwava), and all parameters 
were set to default. A total of 10,000 high‑scoring noncoding 
variants predicted by CADD, FunSeq2 and GWAVA were inter-
sected, and 1,454 variants (14.54%) that were scored as high by 
all three approaches were obtained. Next, 1,454 high‑scoring 
variants identified by CADD, FunSeq2, GWAVA individually 
and in combination were selected and mapped onto various 
noncoding features. The density of high‑scoring noncoding 
variants was calculated as variants/Mb for each feature.

Correlation analyses were performed to examine the 
associations between the densities of high‑scoring noncoding 
variants and expression levels, replication time, GC content 
and recombination rate. Genes and lncRNAs with expression 
and replication times, as well as the 1‑Kb windows with GC 
content and average recombination rates, were sorted and 
divided into non‑overlapping 100  Mb intervals based on 
expression levels, replication times, GC content and average 
recombination rate respectively. The density of high‑scoring 
noncoding variants was computed for each interval, the 
correlations between the average expression levels, replication 
time, GC content and recombination rate, and the densities of 
high‑scoring noncoding variants were evaluated using Pearson 
correlation in R 3.2.0.

Statistical analysis. Data were presented as the mean. Varia-
tion between groups was examined using the Fisher's exact test. 
Correlation analysis was conducted with Pearson correlation 
in R 3.2.0 and P<0.05 was considered to indicate a statistically 
significant difference.

Results

Catalogue of somatic mutations. In total, 76,595  somatic 
mutations were obtained from Sato et al  (23), comprising 
71,424 mutations generated by whole‑genome sequencing of 
14 ccRCC tissue samples and 5,171 mutations detected by 

whole‑exome sequencing of 106 ccRCC specimens. Among 
these, 72,871  were single‑nucleotide variants (SNVs) and 
3,724 were small insertions or deletions (indels). A total of 
1,381 mutations detected by exome sequencing of 65 paired 
chRCC tissue samples included 1,287 SNVs and 94 indels; 
whereas 6,349 mutations were detected by exome sequencing 
of the 100 paired PRCC specimens, consisting of 5,489 SNVs, 
677 indels and 180 dinitropyrenes. The fraction of mutations 
that were predicted to be deleterious varied greatly across 
cancer subtypes and prediction tools. The percentages of 
predicted deleterious mutations were as follows: 44.52% 
(2673/6004; SIFT), 50.45% (2393/4743; Polyphen2) and 39.18% 
(1941/4954; MutationAssessor) in ccRCC; 41.04% (2464/6330; 
SIFT), 55.91% (2110/3774; Polyphen2) and 44.47% (390/877; 
MutationAssessor) in chRCC; and 37.58% (519/1381; SIFT), 
57.26% (469/819; Polyphen2) and 44.33% (1752/3952; Muta-
tionAssessor) in PRCC. In total, 1,327, 258 and 1,186 common 
SNVs were predicted to be deleterious by all three tools in 
ccRCC, chRCC and PRCC, respectively (Fig. 1A‑C), and 838, 
45 and 414 small indels introduced translational frameshifts, 
respectively, as predicted by SIFT. T>C/A>G, C>T/G>A 
and C>A/G>T accounted for 24.96, 23.16 and 17.86% of the 
variants in ccRCC, 9.34, 57.13 and 12.53% of the variants in 
chRCC and 17.31, 28.29 and 12.24% of the variants in PRCC, 
respectively. T>C/A>G, C>T/G>A and C>A/G>T were there-
fore the three most common transitions identified in kidney 
cancer tissues (Fig. 1D).

Cancer driver genes in kidney cancer. Predicted deleterious 
mutations were mapped onto established cancer genes that 
had been annotated in the COSMIC database, revealing that 
the coding regions of cancer genes had a significantly higher 
enrichment of deleterious mutations, in comparison with those 
of non‑cancer genes in ccRCC (259.68 vs. 95.06 variants/Mb; 
P<2.2x10‑16), chRCC (46.23 vs. 18.93 variants/Mb; P=4.15x10‑6) 
and PRCC (195.78 vs. 87.69 variants/Mb; P<2.2x10‑16; Fisher's 
exact test; Fig. 1E). OncodriveFM and OncodriveCLUST were 
applied to identify the driver genes in ccRCC, chRCC and 
PRCC. In total, 44 genes were determined as driver candidates 
by OncodriveFM and 1 by OncodriveCLUST in ccRCC, 5 by 
OncodriveFM in chRCC and 33 by OncodriveFM in PRCC.

Cancer genes are usually subtype‑specific in kidney cancer, 
and only 4 candidates, SET domain‑containing 2 (SETD2), 
BRCA1‑associated protein 1 (BAP1), GRB10‑interacting GYF 
protein 2 (GIGYF2) and ubiquitin protein ligase E3 component 
N‑recognin 4 (UBR4), exhibited overlap between ccRCC and 
PRCC. These results were compared with the 777 recurrently 
mutated genes identified by Sato et al using the ccRCC data, 
revealing that 45 cancer gene candidates were recurrently 
mutated. Certain genes among these are established cancer 
genes in ccRCC, including polybromo  1 (PBRM1), Von 
Hippel‑Lindau tumor suppressor (VHL), SETD2, BAP1 and 
lysine demethylase 5C (KDM5C); however, 4 cancer genes 
originally established in other cancer types were identified as 
drivers in ccRCC, including the following: AT‑rich interaction 
domain 1A (ARID1A) of clear cell ovarian carcinoma; lysine 
methyltransferase 2C (MLL3) of medulloblastoma; BCR, 
RhoGEF and GTPase‑activating protein (BCR) of chronic 
myeloid leukemia, acute lymphoblastic leukemia and acute 
myeloid leukemia; and A‑Kinase anchoring protein 9 (AKAP9) 
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of papillary thyroid carcinoma (15). In addition, an important 
gene, transcription elongation factor B subunit 1 (TCEB1), 
was positively selected by all three algorithms. A total of 
32 non‑recurrently mutated genes were identified by Onco-
driveFM, including adaptor‑related protein complex 5 mu 1 
subunit (AP5M1), chromodomain helicase DNA‑binding 
protein 1 (CHD1), myosin heavy chain  11 (MYH11) and 
shugoshin‑like 2 (SGOL2). CHD1 and MYH11 have been 
demonstrated to be involved in various cancer types (35‑40).

Enrichment analysis of GO terms was performed for the 
77 recurrently mutated cancer gene candidates, and 59 GO 
terms were determined with significant statistical evidence 
of P<0.05, including the regulation of metabolic processes  
(51 genes), positive regulation of metabolic processes (35 genes), 
positive regulation of macromolecular metabolic processes  
(29  genes), regulation of macromolecular metabolic 
processes (43 genes), positive regulation of cellular metabolic 
processes (29 genes), regulation of cellular processes (60 genes), 
chromosome organization (17 genes), regulation of biological 
processes (61 genes), negative regulation of biological processes  
(37  genes), regulation of cellular metabolic processes  
(43 genes), negative regulation of cellular processes (35 genes), 
positive regulation of biological processes (40 genes), chro-
matin modification (13 genes) and chromatin organization  
(14 genes).

Cancer‑driving pathways in ccRCC. OncodriveFM analysis 
revealed 41 pathways with high FM bias in kidney cancer 
(Table I), including the following: Oxidative phosphorylation, 
spliceosome, RNA degradation, phagosome, legionellosis, 
HIF‑1 signaling, leukocyte transendothelial migration, renal 
cell carcinoma, Wnt signaling and MAPK signaling pathways; 

ubiquitin‑mediated proteolysis pathway (UMPP); and path-
ways in cancer. Cancer pathways varied between kidney cancer 
subtypes, with 10 cancer pathways in ccRCC, 28 in chRCC 
and 5 in PRCC; only the Wnt signaling pathway and pathways 
in cancer exhibited overlap between PRCC and chRCC, and 
ccRCC and chRCC, respectively. The enriched mutational 
pathways obtained from Sato et al were compared with the 
results of the present study, revealing that 10 signaling path-
ways were positively selected by the two studies, including 
the following: UMPP, pathways in cancer, HIF‑1 signaling 
pathway and the renal cell carcinoma pathway in ccRCC; and 
small cell lung cancer, P53 signaling pathway, mTOR pathway, 
prostate cancer, melanoma and PI3K‑AKT pathway in chRCC. 
The remaining 31 pathways were novel signaling pathways 
with a high FM bias in kidney cancer.

Characterization of high‑scoring variants and influential 
features in the noncoding genome. Previous studies have 
identified and annotated a number of noncoding pathogenic 
mutations (17,28). The present study therefore utilized three 
approaches (CADD, FunSeq2 and GWAVA) to functionally 
annotate noncoding variants that were detected by whole 
genome sequencing of 14 paired ccRCC tissue samples. Fig. 2A 
presents the density plots of the scores of all the noncoding 
variants predicted by CADD, FunSeq2 and GWAVA. The 
distribution of the scores differed between the three scoring 
systems. A total of 10,000 high‑scoring noncoding vari-
ants were examined for intersections among them, and 
1,454 (14.54%) variants were scored as high using all three 
approaches (Fig. 2B). Subsequently, the 1,454 high‑scoring 
variants were selected from CADD, FunSeq2 and GWAVA 
analysis along with 1,454 common variants, in order to analyze 

Figure 1. Venn diagram revealing the number of variants with deleterious effects predicted by SIFT, MutationAssesor and Polyphen2, and (A) the overlap 
between variants in clear cell renal cell carcinoma, (B) the overlap between variants in chromophobe renal cell carcinoma and (C) the overlap between variants 
in papillary renal cell carcinoma. (D) Mutation signatures in kidney cancer. (E) Densities of deleterious mutations in the coding regions of cancer genes and 
non‑cancer genes. SIFT, Sorting Intolerant From Tolerant; polyphen2, Polymorphism Phenotyping version 2.
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Table I. Cancer‑driving signaling pathways as detected by OncodriveFM in kidney cancer.

A, Clear cell renal cell carcinoma

	 Pathway Identification
Pathway name	 number	 Gene number	 FM_Z score	 P‑value	 Q‑value

Oxidative phosphorylation	 hsa00190	 121	 3.82	 6.80x10‑5	 1.90x10‑3

Spliceosome	 hsa03040	 125	 3.54	 1.97x10‑4	 3.44x10‑3

RNA degradation	 hsa03018	 70	 4.14	 1.74x10‑5	 7.98x10‑4

Ubiquitin‑mediated proteolysis	 hsa04120	 137	 6.64	 1.60x10‑11	 2.24x10‑9

Phagosome	 hsa04145	 147	 3.08	 1.05x10‑3	 1.63x10‑2

Legionellosis	 hsa05134	 53	 2.71	 3.36x10‑3	 4.71x10‑2

Pathways in cancer	 hsa05200	 326	 4.08	 2.28x10‑5	 7.98x10‑4

HIF‑1 signaling	 hsa04066	 110	 3.59	 1.67x10‑4	 3.44x10‑3

Leukocyte transendothelial migration	 hsa04670	 114	 3.55	 1.94x10‑4	 3.44x10‑3

Renal cell carcinoma	 hsa05211	 70	 5.57	 1.24x10‑8	 8.69x10‑7

B, Papillary renal cell carcinoma

	 Pathway Identification
Pathway name	 number	 Gene number	 FM_Z score	 P‑value	 Q‑value

Wnt signaling pathway	 hsa04310	 152	 2.88	 1.97x10‑3	 8.94x10‑52
Metabolic pathways	 hsa01100	 1160	 2.81	 2.46x10‑3	 0.09
Pyrimidine metabolism	 hsa00240	 101	 1.69	 4.56x10‑2	 0.98
Citrate cycle	 hsa00020	 30	 2.44	 7.30x10‑3	 0.20
Viral myocarditis	 hsa05416	 68	 3.60	 1.57x10‑4	 1.71x10‑2

C, Chromophobe renal cell carcinoma

	 Pathway Identification
Pathway name	 number	 Gene number	 FM_Z score	 P‑value	 Q‑value

Neurotrophin signaling pathway	 hsa04722	 119	 5.38	 3.63x10‑8	 4.23x10‑8

Herpes simplex infection	 hsa05168	 182	 6.96	 1.71x10‑12	 4.27x10‑12

Epstein‑Barr virus infection	 hsa05169	 199	 7.18	 3.58x10‑13	 1.25x10‑12

HTLV‑I infection	 hsa05166	 260	 6.01	 9.02x10‑10	 1.17x10‑9

Hepatitis C	 hsa05160	 131	 6.71	 9.80x10‑12	 1.91x10‑11

Hepatitis B	 hsa05161	 147	 7.39	 7.34x10‑14	 3.67x10‑13

Measles	 hsa05162	 134	 6.83	 4.18x10‑12	 9.15x10‑12

Wnt signaling pathway	 hsa04310	 152	 6.02	 8.93x10‑10	 1.17x10‑9

MAPK signaling pathway	 hsa04010	 257	 7.41	 6.15x10‑14	 3.59x10‑13

Chronic myeloid leukemia	 hsa05220	 73	 7.57	 1.94x10‑14	 1.70x10‑13

Non‑small cell lung cancer	 hsa05223	 54	 7.09	 6.48x10‑13	 2.06x10‑12

Small cell lung cancer	 hsa05222	 85	 7.23	 2.49x10‑13	 9.68x10‑13

Focal adhesion	 hsa04510	 204	 2.96	 1.56x10‑3	 1.71x10‑3

Cell cycle	 hsa04110	 124	 6.96	 1.71x10‑12	 4.27x10‑12

Apoptosis	 hsa04210	 87	 6.57	 2.54x10‑11	 4.67x10‑11

p53 signaling pathway	 hsa04115	 68	 6.35	 1.08x10‑10	 1.79x10‑10

Transcriptional misregulation in cancer	 hsa05202	 180	 5.78	 3.69x10‑9	 4.46x10‑9

Viral carcinogenesis	 hsa05203	 203	 6.92	 2.32x10‑12	 5.41x10‑12

Pathways in cancer	 hsa05200	 326	 8.17	 1.53x10‑16	 5.34x10‑15

Amyotrophic lateral sclerosis 	 hsa05014	 53	 6.24	 2.22x10‑10	 3.53x10‑10

Bladder cancer	 hsa05219	 42	 6.15	 3.84x10‑10	 5.37x10‑10

mTOR signaling pathway 	 hsa04150	 64	 3.92	 4.47x10‑5	 5.05x10‑5
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Figure 2. (A) Density plots of the scores of all noncoding variants, as predicted by CADD, FunSeq2 and GWAVA. (B) The highest 10,000 scoring noncoding 
variants, as predicted by each method, and the overlap between them. (C) Barplot presenting the densities of the 1,454 overlapping high‑scoring noncoding 
variants, as predicted by each of the methods individually as well as in combination, in various noncoding features. CADD, Combined Annotation Dependent 
Depletion; GWAVA, Genome‑Wide Annotation of Variants; GCL, GC content low in 1‑Kb windows; lncRNA, long noncoding RNA; LE, low expression 
levels; LR, late replicated; PCgene, protein‑coding gene; RRL, replication rate low in 1‑Kb windows; Intron L, introns of lncRNAs; ncExon, non coding exon; 
Intron P, introns of PCgenes; Exon L, exons of lncRNAs; Exon P, exons of PCgenes; ER, early replicated; UTR, untranslated region; RRH, replication rate high 
in 1‑Kb windows; HE, high expression levels; GCH, GC content high in 1‑Kb windows; cTFBS, conserved transcription factor binding sites; CR, conserved 
region.

Table I. Continued.

	 Pathway identification
Pathway name	 number	 Gene number	 FM_Z score	 P‑value	 Q‑value

Huntington's disease	 hsa05016	 180	 7.03	 1.01x10‑12	 2.94x10‑12

Thyroid cancer	 hsa05216	   29	 6.17	 3.37x10‑10	 4.92x10‑10

Prostate cancer	 hsa05215	   88	 7.98	 7.14x10‑16	 8.33x10‑15

Melanoma	 hsa05218	   71	 7.46	 4.40x10‑14	 3.08x10‑13

Basal cell carcinoma	 hsa05217	   55	 6.17	 3.37x10‑10	 4.92x10‑10

PI3K‑Akt signaling pathway	 hsa04151	 338	 5.90	 1.81x10‑9	 2.26x10‑9

Pancreatic cancer	 hsa05212	   70	 7.35	 9.55x10‑14	 4.18x10‑13

Endometrial cancer	 hsa05213	   52	 6.81	 4.92x10‑12	 1.01x10‑11

Glioma	 hsa05214	   65	 8.07	 3.60x10‑16	 6.30x10‑15

Colorectal cancer	 hsa05210	   62	 6.56	 2.69x10‑11	 4.70x10‑11

HIF‑1, hypoxia‑inducible factor 1; HTLV‑I, human T‑lymphotropic virus I; MAPK, mitogen‑activated protein kinase; p53, tumor protein 53; 
mTOR, mechanistic target of rapamycin; PI3K‑Akt, phosphoinositide 3‑kinase‑protein kinase B.
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the distribution of these variants and evaluate the most impor-
tant noncoding features for their formation. Fig. 2C shows 
that conserved regions and regulatory elements contained 
higher densities of high‑scoring variants, as predicted by all 
scoring methods individually and in combination, including 
conserved regions, conserved TFBS, promoters, H3K27ac, 
H2BK5ac, H4K91ac, PolII, H3K18ac, H2BK120ac, H3K4me2 
and H3K4me3. By contrast, repressive histone modifications, 
including H3K9me3 and H3K9me2, evolutionarily conserved 
structures, noncoding exons and UTRs ranked low with 
respect to the enrichment of high‑scoring noncoding variants. 
In general, cancer genes contained a 1‑ to 3‑fold significant 
enrichment of high‑scoring regions in comparison with 
protein coding genes (common variants, P=1.669x10‑9; CADD, 
P=4.055x10‑5; FunSeq2, P=2.148x10‑12; GWAVA, P=0.033; 
Fisher's exact test).

The present study also identified that features including 
expression levels, replication time, GC content and recom-
bination rate are important for the densities of high‑scoring 
mutations in the noncoding genome. For instance, highly 
expressed protein coding genes and lncRNAs are significantly 

more enriched with high‑scoring variants, compared 
with those that are expressed at low levels for common 
variants (protein coding genes, P=4.293x10‑13; lncRNA, 
P=4.414x20‑6), CADD (protein coding genes, P=10x3.777‑3; 
lncRNA, P=0.3501), Funseq2 (protein coding genes, 
P=2.2x10‑16; lncRNA, P=6.576x10‑8) and GWAVA (protein 
coding genes, 2.2x10‑16; lncRNA, P=2.302x10‑9; Fisher's exact 
test). Early‑replicated protein coding genes and lncRNAs 
were significantly more enriched with high‑scoring variants 
relative to late‑replicated protein coding genes and lncRNAs, 
for common variants (protein coding genes, P=5.84x10‑6; 
lncRNA P=4.684x10‑4), CADD (protein coding genes, 
P=0.3822; lncRNA, P=0.07757), FunSeq2 (protein coding 
genes, P=2.2x10‑16; lncRNA, P=1.602x10‑12) and GWAVA 
(protein coding genes, P=2.2x10‑16; lncRNA, P=3.171x10‑9; 
Fisher's exact test). GC‑rich regions that contained a high 
fraction of GC content possessed a significantly higher density 
of high‑scoring variants as compared with low GC regions 
for common variants (P<2.2x10‑16), CADD (P=1.328x10‑6), 
FunSeq2 (P=2.2x10‑16) and GWAVA (P=2.2x10‑16; Fisher's 
exact test). Regions with a high average recombination rate 

Figure 3. (A) Correlation between gene expression levels (RPKM) and the densities of high‑scoring variants. (B) Correlation between replication time calcu-
lated as (G1b+S1)/(S4+G2) and the densities of high‑scoring variants. (C) Correlation between GC content (representing the fraction of GC bases in 1‑Kb 
windows) and the densities of high‑scoring variants. (D) Correlation between average recombination rate and the densities of high‑scoring variants. CADD, 
Combined Annotation Dependent Depletion; GWAVA, Genome‑Wide Annotation of Variants; RPKM, reads per Kb per million reads.
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possessed a higher density of high‑scoring variants compared 
with regions with a low average recombination rate for 
common variants (P=1.357x10‑5), CADD (P=2.583x10‑3), 
FunSeq2 (P=2.063x10‑3) and GWAVA (P=3.834x10‑6; Fisher's 
exact test). In addition, the expression levels, replication time, 
GC content and recombination rate exhibited positive correla-
tions with the densities of high‑scoring variants (Fig. 3A‑D). 
For example, there was a positive correlation between gene 
expression levels (RPKM) and the density of high‑scoring 
variants for CADD (r=0.69; P=0.0021), FunSeq2 (r=0.78; 
P=2x10‑4), GWAVA (r=0.69; P=0.0022) and the three methods 
combined (r=0.65; P=0.0048; Fig. 3A). Replication time was 
also correlated with the densities of high‑scoring noncoding 
variants, as predicted by CADD (r=0.12; P=0.6539), FunSeq2 
(r=0.93, P=8.32x10‑8), GWAVA (r=0.95; P=3.369x10‑9) and 
the three methods combined (r=0.91; P=3.519x10‑7; Fig. 3B). 
All these findings suggest that conserved regions, regula-
tory elements, high expression levels, early replication time, 
high GC content and high recombination rate are important 
features that affect the functionalities of noncoding variants 
in kidney cancer.

Discussion

The current study performed a full analysis of the somatic 
mutations generated by whole‑genome and ‑exome 
sequencing of kidney cancer samples, revealing 1,327, 258 
and 1,186  deleterious coding variants in ccRCC, chRCC 
and PRCC, respectively, predicted by SIFT, Polyphen2 and 
MutationAssessor. Implementation of OncodriveFM and 
OncodriveCluster enabled the identification of 77 cancer gene 
candidates and 41 cancer signaling pathways. Among them 
are established kidney cancer genes, including PBRM1, VHL, 
SETD2, BAP1 and KDM5C (41,42). The majority of candi-
dates (45/77, 58.44%) were recurrently mutated genes; however,  
32 driver gene candidates were not frequently mutated in 
kidney cancer tissue samples. An important gene, transcrip-
tion elongation factor B subunit 1 (TCEB1), was positively 
selected by all three algorithms. TCEB1 encodes elongin C, 
which is a subunit of the heterotrimeric RNA polymerase II 
elongation factor complex that potently induces mRNA elon-
gation (43). TCEB1 is overexpressed and amplified in prostate 
cancer, enhancing the cellular growth rate, whereas TCEB1 
silencing decreases the invasion and growth of prostate cancer 
cells (44). The oncogenic role of TCEBI has been reported in 
ccRCC tumors containing TCEB1 mutations, which exhib-
ited increased expression levels of hypoxia‑inducible factor 
(HIF)‑1α, a gene that is implicated to be dysregulated in 
various cancer‑associated processes, including vasculariza-
tion, angiogenesis, energy metabolism, cell survival and tumor 
invasion (23). The present study also identified RB transcrip-
tional corepressor  1 (RB1), mechanistic target of rapamycin 
(MTOR), phosphatase and tensin homolog (PTEN) and tumor 
protein P53 (TP53) as specifically predicted cancer genes in 
chRCC. RB1, TP53 and PTEN are established cancer genes and 
may drive the formation and development of chRCC (45‑47). In 
addition, GO term analysis of these 77 genes revealed that they 
are enriched in GO terms, including the regulation of meta-
bolic process, regulation of cellular processes, chromosome 
organization, regulation of biological processes, chromatin 

modification and organization, all of which are involved in the 
pathogenesis of ccRCC (48‑50).

In addition, 41 cancer‑associated signaling pathways with 
high FM bias were identified, 10 of which are significant 
mutational pathways, including UMPP, pathways in cancer, 
and HIF‑1 signaling and renal cell carcinoma pathways. 
Alterations in UMPP are associated with the overexpression of 
HIF‑1α and HIF‑2α, which are two crucial hypoxia regulatory 
factors in the HIF‑1 signaling pathway; therefore, alterations 
in UMPP may contribute to the pathogenesis of ccRCC via 
the activation of the HIF‑1 signaling pathway, which is impor-
tant role in ccRCC tumorigenesis (42,51). Cancer signaling 
pathways were also positively selected by OncodriveFM in 
the present study, including pathways in cancer and renal 
cell carcinoma pathway, primarily consisting of the VHL, 
TCEB1, TCEB2 and HIF‑1α pathways (52). In addition, 31 
novel signaling pathways were identified to be associated with 
kidney cancer in the current study. An advantage of Onco-
driveFM and OncodriveCluster is that these two tools identify 
those genes and signaling pathways that accumulate variants 
with a high functional impact independently of cancer muta-
tion frequency, enabling the identification of potential cancer 
genes and signaling pathways that are not highly mutated in 
cancer (13,14).

Application of the CADD, FunSeq2 and GWAVA scoring 
systems enables the quantitative evaluation of the functional 
effects of noncoding variants, and further analysis of the 
features that are important for their formation. The present 
study revealed that conserved regions, promoters and TFBS 
as well as numerous histone modifications were enriched 
with high‑scoring variants, and that certain histone modi-
fications were hallmarks of regulatory elements that are 
enriched with high‑scoring variants. These histone markers 
included H3K4ac, H3K9ac, H2BK20ac, H2BK120ac, 
H3K18ac, H4K91ac and H2BK5ac, which are associated with 
transcription start sites as well as H3K27ac, H3K4me2 and 
H3K4me3, which mark active enhancers or promoters (29). 
By contrast, repressive histone markers, including H3K9me2 
and H3K9me3, were characterized as markers of transcrip-
tional repression, which accounts for their low enrichment of 
high‑scoring variants (29).

In addition, the present study demonstrated that the 
density of high‑scoring noncoding variants was strongly 
correlated with expression levels, replication time, GC content 
and recombination rate. Replication timing is an important 
epigenetic factor, and refers to the order in which segments of 
DNA along the length of a chromosome are duplicated (53). 
Regions of constant early replication are associated with 
high gene density and gene expression levels, GC content and 
cytosine‑phosphate‑guanine density, as well as vertebrate 
non‑exonic conservation (54). GC‑rich regions contain a high 
density of oncogenes or tumor suppressor genes (55). Recom-
bination between homologous DNA sequences may lead to 
rearrangements, including a loss of heterozygosity, deletions, 
duplications, inversions and gene fusion; therefore, a higher 
recombination rate may be an important cause of the devel-
opment of harmful mutations in the noncoding genome and 
predisposition to cancer (56). This supports the hypothesis that 
high expression levels, early replication time, high GC content 
and high recombination rate characterize cancer‑implicated 
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regions within the noncoding genome, in which variants are 
more likely to be pathogenic.

In conclusion, the present study identified a set of 
cancer‑associated genes and signaling pathways in data from 
kidney cancer tissue samples. Features including conservation, 
regulatory elements, replication time, expression levels, GC 
content and recombination rate may be important for the func-
tional impact of noncoding mutations in renal cell carcinoma.
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