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Advanced knowledge in the field of stem cell biology and their ability to provide a cue for counteracting several diseases are
leading numerous researchers to focus their attention on “regenerative medicine” as possible solutions for cardiovascular diseases
(CVDs). However, the lack of consistent evidence in this arena has hampered the clinical application. The same condition affects
the research on endothelial progenitor cells (EPCs), creating more confusion than comprehension. In this review, this aspect is
discussed with particular emphasis. In particular, we describe biology and physiology of EPCs, outline their clinical relevance as
both new predictive, diagnostic, and prognostic CVD biomarkers and therapeutic agents, discuss advantages, disadvantages, and
conflicting data about their use as possible solutions for vascular impairment and clinical applications, and finally underline a very
crucial aspect of EPCs “characterization and definition,” which seems to be the real cause of large heterogeneity existing in literature

data on this topic.

1. Introduction

The most important determinant of cardiovascular health
is person’s age [1]. By 2030, approximately 20% of the
population will be aged 65 or older [2]. In this age group, car-
diovascular diseases (CVDs) will result in 40% of all deaths
and rank as the leading cause [2]. Furthermore, the cost to
treat CVDs will triple in that time [3]. Of consequence, urgent
interventions both in preventive measures and biomedicine
research are imperative. In the last years, some progresses
have been realized. For example, primordial prevention based
on healthful lifestyle (i.e., Mediterranean diet, lifestyle, and
physical activity) has been proposed as preferred preventive’s
method to lower cardiovascular risk [4]. Advances have been
achieved through percutaneous coronary intervention and
coronary artery bypass grafting in management of coronary
artery diseases, having higher prevalence and incidence in

the world [5, 6]. Despite these efforts, there are no effective
solutions until now. In addition, numerous gaps still remain
between knowledge of precise CVD cellular and molecular
mechanisms and identification of disease pathways to use as
appropriate biomarkers and targets for new and more efficient
therapeutic treatments, that is, personalized therapies.
Biomedical community is pursuing new ways in trying to
face this imposing challenge. In particular, the latest discover-
ies and advanced knowledge in the fields of stem cell biology
and their ability to provide a cue for counteracting several
diseases are leading numerous researchers to focus their
attention on “regenerative medicine” as possible solutions for
CVDs [7]. However, the lack of consistent evidence in this
arena has hampered the clinical application [8]. The same
condition affects the research on endothelial progenitor cells
(EPCs), creating more confusion than comprehension. In this
review, this aspect is discussed with particular emphasis. In
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particular, we describe biology and physiology of EPCs, out-
line their clinical relevance as both new predictive, diagnostic
and prognostic CVD biomarkers, and therapeutic agents,
discuss advantages, disadvantages, and conflicting data about
their use as possible solutions for vascular impairment and
clinical applications, and finally underline a very crucial
aspect of EPCs “characterization and definition,” which seems
to be the real cause of large heterogeneity existing in literature
data on this topic.

2. Recent Efforts of Biomedical Research
in Cardiovascular Repair: EPC Cells as
Promising Candidates

Actually, the principal purpose of scientific community is to
improve life quality and reduce and/or retard CVD onset
and progression, even if it appears to be very ambitious. Its
realization seems to be difficult for different reasons. Firstly,
CVDs have a very complex pathophysiology orchestrated by
mechanisms not completely clear and articulated in multistep
clinical events. Another limiting factor is CVD progression
generally assumed as irreversible and one-directional [9].
However, a small reverse probability has been recently sug-
gested for each step. Accordingly, some individuals, even in
the presence of potent risk factors, remain sheltered from
consequences of cardiovascular alterations. The potential
reason has been attributed to substantial ability to have an
efficient cardiovascular self-repair, which appears to be preva-
lently modulated by genetic background and environmental
factors [9]. As result, the interest on cardiovascular repair is
increasing. It has led to evidence that three major processes
drive it: (i) replacement (tissue transplant), (ii) rejuvenation
or restoration (activation of resident or not stem and progen-
itor cells via autocrine, paracrine, or endocrine mechanisms;
modulation of apoptosis, inflammation, angiogenesis, or
metabolism), and (iii) regeneration (progenitor or stem cell
engraftment forming differentiated cardiovascular cells) [10].
The three different entities may singularly function or be
interlinked [10]. However, their mechanisms remain to be
determined. Furthermore, in the regeneration, hematopoietic
stem and progenitor cells (HSCs and HPCs) seem to have
a crucial role. HSCs and HPCs are, indeed, becoming the
potential therapy’s agents for improving reparatory mecha-
nisms in the heart and vascular system. Many studies have
investigated their role in different CVDs, such as acute
coronary syndromes, stroke, limb ischemia, and cardiac
nonischemic injury. Discordant results have been obtained
[11]. Thus, their real contribution is until now uncertain.
However, it has been observed that cardiovascular risk factors
induce impairment in their circulating levels and function. In
contrast, physical exercise and statins mediate their improve-
ment [11]. Of note, it also is their contribution in physiological
endothelial and cardiac renewal, as observed in healthy
subjects [11]. However, the weight of these observations is
remarkably influenced by an essential limitation. HSCs and
HPCs have been identified only as CD34" cells. Thus, the
validity of these results needs to be confirmed.

Among the HSCs and HPCs, EPCs are the most widely
studied adult human progenitor cell subpopulation up to
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now. Here, we report a summary of literature data on
biological features of EPC cells.

3. Biological EPC Features

3.1. EPC Origins and Sources. EPC’s discovery occurred
in 1997 by Asahara and colleagues, which questioned the
paradigm of angiogenesis and vasculogenesis in adult, by
identifying H-precursor cells, defined as EPC cells able to
differentiate into an endothelial phenotype ex vivo [12]. From
then, a plethora of evidence supports EPC existence, origins,
and contribution in new blood vessel formation [13]. EPCs
have, indeed, capacity to proliferate, migrate, and differentiate
into mature endothelial cells (ECs). In 2004, Urbich and
Dimmeler defined EPCs using three biological parameters:
(1) to be nonendothelial cell, but having capacity to give rise
to ECs and (2) to show clonal ability to multiply, (3) and
stemness characteristics [14].

Concerning their origin and sources, they have been
object of a strong debate for different years. Actually, EPCs
can be divided into two categories: H-EPCs and non-H-EPCs
[13, 15, 16]. Here, we try to clarify this relevant and delicate
aspect. We also point EPC origin from cord blood, as another
relevant source.

3.1.1. H-EPCs. HSCs (expressing the classical CD34 marker
or more immature CD133 marker) are the principal EPC
source (see Table 1). They are maintained within bone mar-
row (BM) stem cell niches and released upon induced mobi-
lization (see below), as firstly demonstrated by Asahara and
colleagues [12]. This initial discovery has led to define EPCs
as CD34" or CD133" cells. HSC contribution to neovascular-
ization has been initially evaluated in animal models [16]. The
promising results obtained have led to several clinical studies
on progenitor cell therapy (in humans, see below) [13, 15, 16].

However, other BM-stem cells can generate EPCs, includ-
ing BM-myeloid cells and BM-mesenchymal stem cells
(MSC) (see Table1). BM-myeloid cells are also mobilized
from BM and derive from HSCs. Schmeisser and colleagues
evidenced that CD14"/CD34™ myeloid cells can coexpress
endothelial markers and form tubelike structure ex vivo
[17]. Thus, BM-myeloid cells within peripheral blood can
differentiate into endothelial lineage with a lower prolif-
erative capacity than HSCs or cord blood derived EPCs
[13]. Certainly, additional studies are necessary to determine
differences in incorporation and particularly to clear the
long-fate of HSCs versus monocyte derived cells [13, 15, 16].

BM also contains MSCs, which are stromal cells hav-
ing ability to self-renew and also exhibit multilineage dif-
ferentiation into both mesenchymal and nonmesenchymal
lineages. BM-MSCs can differentiate into ECs and improve
neovascularization, as demonstrated by in vitro studies. In
addition, BM-MSCs have been also isolated from periph-
eral blood. This has opened the question on possibility
of their mobilization in case of ischemia and their con-
tribution to endogenous cardiovascular repair [13, 15, 16].
Further studies are, certainly, necessary for clarifying this
question.
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3.1.2. Non-H-EPCs. Other cell populations from other
sources (i.e., adipose tissue, blood vessel wall, liver, intestine,
spleen, and kidney) can give rise to EPCs [13, 15, 16] (see
Table 1).

Adipose tissue represents an alternative source of autol-
ogous adult stem cells, which can be obtained in large quan-
tities under local anaesthesia and with minimal discomfort.
Human lipoaspirate contains stem cells able to differentiate
into several lineages. Furthermore, it has been also observed
that isolated-tissue-derived, cultured, and stromal-vascular
CD347CD31™ cell fractions can differentiate into ECs and
promote angiogenesis [13, 15, 16].

Furthermore, MSCs, originally identified in BM, have
been also detected in many other tissues, such as adipose
tissue. They are able to differentiate into EC mature cells in
an appropriate microenvironmental. In addition, they show
ability to modulate immune responses. This leads to consider
them as more attractive candidates for regenerative medicine.
Allogeneic transplant of these cells is feasible without a
substantial risk of immune rejection. MSCs secrete various
immunomodulatory molecules which provide a regenerative
microenvironment for a variety of injured tissues or organs
to limit the damage and to increase self-regulated tissue
regeneration. Autologous/allogeneic MSCs delivered via the
bloodstream augment the titers of MSCs that are drawn to
sites of tissue injury and can accelerate the tissue repair
process [17, 18]. Recently, it has been also discovered that
MSCs also derive from a perivascular location, where they
reside as pericytes or adventitial cells. This finding has
generated some momentum in the field of adult stem cell
research and provided some insights into the developmental
origins of these much exploited but little understood cells. It
is now evident that the perivasculature represents MSC niche
in vivo, where local cues coordinate the transition to progen-
itor and mature cell phenotypes. Here, MSCs can stabilize
blood vessels and contribute to tissue and immune system
homeostasis under physiological conditions and assume a
more active role in tissue repair in response to injury. The
establishment of a perivascular compartment as the MSC
niche provides a basis for the rational design of additional in
vivo therapeutic approaches [19, 20].

3.1.3. Cord Blood EPCs. A rich EPC source also is cord
blood (see Table 1). Cord blood contains higher numbers of
CDI133" and CD34" cells compared with peripheral blood
from adults CD133"/CD34" cells [13, 15, 16]. In addition, a
higher proliferation capacity and high levels of telomerase
have been evidenced in cord blood derived EPCs [13, 15, 16].
These characteristics are typical of stem cells and very low or
absent in other progenitor cell populations.

3.2. EPC Recruitment and Mobilization from BM, Their
Migration, and Adhesion to Injured Vessel Wall. The EPC
related formation of new blood vessels includes multiple
steps comprising mobilization, migration, adhesion, and
differentiation [21]. The mobilization of EPCs from BM
into the peripheral circulation is the crucial step for these
cells to participate in postnatal vasculogenesis. The precise
mechanism of EPC mobilization is not entirely elucidated and
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it is still under investigation. It has been demonstrated that
these cells are quiescent and tethered by integrins to stromal
cells in a microenvironment within the BM. They can be
converted into functional cells and released from the stem
cell niche in response to various special cytokines and factors
[21]. Mature ECs represent the crucial players in initiating
H-EPC mediated vasculogenesis, by releasing attracting EPC
factors under shear stress and hypoxia [13, 15, 16, 21, 22].
In the case of vascular occlusion, it has been observed that
ECs seem to sense altered (low or oscillatory) shear stress
and consequently improve prooxidant enzyme expression,
mediated principally by the most crucial transcription factor,
Nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-xf3) [13, 15, 16, 21, 22]. In case of hypoxia, several
signaling pathways on ECs are stimulated. They particularly
induce activation of hypoxia-inducible transcription factor
(HIF) [22]. As result, different growth factors, cytokines,
and chemokines are released mediating H-EPC mobilization.
Another crucial and specific factor associated with EPC
mobilization from BM is nitric oxide (NO), as demonstrated
in endothelial NO synthase (eNOs)™/~ mice [23] (see below)
(Table 2).

Furthermore, several types of chemokines are involved in
EPC mobilization, such as stromal cell derived factor-1 (SDF-
1), angiopoietin (Ang-1), and, probably the most important
of all, vascular endothelial growth factor (VEGF) [21]. VEGF
seems to determine a rapid EPC and HSC mobilization, as
evidenced by Fox and colleagues in burned patients [21]. This
last aspect has also consented to detect EPCs in peripheral
blood as VEGFR2" or KDR" (see below and Table 5). After
their homing, EPCs can release VEGF themselves and create
alocal angiogenetic environment. Recently, Li and colleagues
reported that SDF-1 and VEGF mediate EPC mobilization,
through their interaction with their respective receptors (C-
X-C chemokine receptor type 4 (CXCR4) and VEGFR?2). This
interaction determines the production of NO through the
activation of eNOs. NO can stimulate metalloproteinase-9,
which results in the release of sKitL from the stromal cell
membrane-bound kit ligand (mKitL). Protooncogene c-kit
(c-kit) expressed by EPCs contributes to the retention of EPCs
within the BM niches. C-Kit is also the receptor for sKitL
and can be released from BM in response to binding to sKitL,
resulting in mobilization of c-Kit" EPCs from the cell niche
into circulation [21].

Other factors as erythropoietin (EPO) can mobilize EPCs
[24]. Ang-1 seems to have a delayed and inhibitory effect, as
evidenced in a unique study performed in 1999, where EPCs
were defined as Tie"/Flk-1"/CD31" cells [25].

Adhesion of EPC cells to injured vessel wall involves
the interaction between glycoprotein ligand-1 (PSGL-1)
expressed on EPCs and P-selectin expressed on platelets, as
suggested by Li and colleagues [21]. Within minutes after
vessel injury, platelets, indeed, aggregate on the exposed
subendothelium. Adherent platelets express P-selectin on the
surface and secrete high levels of SDF-1. In this process,
circulating EPCs also upregulates PGSL-1 via the stimula-
tion of SDF-1, which interact with their ligand P-selectin,
thereby leading to EPC adhesion. Subsequently (within the
next hours and days after endothelial disruption), apoptotic
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smooth muscle cells mainly contribute to SDF-1 release,
which is required to sustain the process of vascular remod-
eling and repair [21].

3.3. Circulating EPC Levels and Their Alterations: Effects Medi-
ated by Different Factors. Augmented or reduced circulating
EPC levels, as well as their function, have been observed
in a large number of studies. Several factors have been
identified as possible causes (see Table 2 and Figure 1). Here,
we describe them and their effects on EPC number and
function.

3.3.1. Unfavourable Factors Modulating Circulating EPC Lev-
els. Different endogenous factors can also influence EPC
levels (Table 2 and Figure 1). In particular, ageing has been
associated with an altered EPC function and viability, by
determining a decreased potentiality of endothelial repair
[26, 27]. Recently, it has been suggested that age-related
inflammation and oxidative stress modulate EPC bioactivity
and determine dysfunction [28, 29]. In particular, increasing
evidence indicates EPC mobilization in case of transient
restricted inflammatory response. On the contrary, persistent
or excessive inflammatory stimuli may have deleterious
effects, by decreasing EPC circulating numbers [28, 29].
Functional EPC activity is significantly impaired in case of
high inflammatory stimulation, as in heart failure. Mecha-
nisms regulating this effect are still unclear. However, con-
vincing evidence leads to suppose that prolonged exposure
of BM to increased proinflammatory stimulation may deter-
mine EPC pool exhaustion. In this condition, a small EPC
number, prevalently immature or dysfunctional, might be
released. However, existing clinical evidence on association of
inflammation with reduced EPC levels is largely circumstan-
tial and observational [28, 29]. Thus, further clinical studies
are required.

As mentioned above, oxidative stress may also play a
crucial role in EPC mobilization from BM and functional
bioactivity. ROS exert a direct cytotoxic effect on the vas-
cular endothelium. Increased superoxide generation reduces
EPC levels and impairs EPC function, as demonstrated by
increased apoptosis and reduced EPC number after incubat-
ing with high levels of hydrogen peroxide (H,0,) [28, 29] (see
Table 2).

An increasing body of evidence also suggests that car-
diovascular risk factors (smoking, diabetes, hypertension,
lipid disorders, abdominal obesity, metabolic syndrome, etc.)
affect EPC number and proprieties [30] (see Table 2 and
Figure 1).

Endocrine disorders, such as hyperparathyroidism and
hypothyroidism, may also alter EPC levels (see Table 2) [31,
32].

3.3.2. Physiological Factors Involved in Raising Circulating EPC
Levels. An increased number of studies have demonstrated
that physiological factors influence EPC circulating levels
and function. Among physiological factors, gender appears
to modulate EPC levels, as demonstrated by Fadini and
colleagues [33]. Women have high EPC levels than men
and oestrogens are the physiological factors significantly

associated with these useful effects [31] (see Table 2 and
Figure 1). In addition, pregnancy represents the physiological
condition characterized by high EPC circulating levels [34].

3.3.3. Drug Therapies, Nutrition Interventions, and Lifestyle
Modifications as Strategies to Improve Circulating EPC Levels.
Drug therapies can also influence EPC levels and function
in a positive manner. They prevalently operate as anti-
inflammatory and antioxidant factors. In 2014, Lee and Poh
stressed the significant interaction between cardiovascular
pharmacotherapies and improvement of EPC number and
functions. In particular, they reported the effects observed in
clinical studies on EPC number and function from patients
with different CVDs and treated with different medications,
including antihypertensive, cholesterol lowering, and antidi-
abetic medications [35] (see Table 2 and Figure 1).

Recently, a growing number of studies are also evidenc-
ing an improvement of EPC number and function related
to nutrition interventions and lifestyle modifications (see
Table 2 and Figure 1). In particular, some research groups are
reporting that Mediterranean diet determines an increase in
circulating EPC levels and function [36, 37]. Similarly, physi-
cal exercise seems to induce an improvement of circulating
EPC levels (see Table2 and Figurel) [26]. This has been
evidenced in both healthy subjects and patients affected by
CVDs. Thus, even in patients, with diffuse atherosclerosis
and multiple risk factors, reparative capacity dependent on
circulating BM-derived EPC is retained and can be enhanced
in a most physiological way [26].

4. EPC in Vascular Impairment and Their
Clinical Relevance

The important role of ECs in maintaining of the entire
vessel wall (of arteries or veins) homeostasis, as well as
their recognized finite lifespan and continuous response to
different triggers responsible of endothelium dysfunction and
injury, is well recognized (see Figure 2) [38-40]. This has led
to identify a system able to replace these cells. This system has
been conventionally established and identified in mature ECs
adjacent to regions of injury [38-40]. It has been speculated
that, under influence of paracrine mediators released from
the injured segments and/or loss of contact inhibition, ECs
migrate and proliferate [38-40]. Today, it is recognized that
mature ECs possess limited regenerative capacity [41-44].
The discovery of EPCs has opened this question. EPCs seem
to be a real source of ECs in maintaining vascular home-
ostasis. Thus, they constitute a very reservoir of circulating
cells, which could home to sites of injury, restore endothelium
integrity, and consent a normal function. The contribution
of EPCs to vascularization has been demonstrated in animal
models and in humans (see below). Their crucial role in this
process has cotemporally led to hypothesize that a reduction
in EPC circulating number and/or alterations in their func-
tions associated with different factors (as the above discussed)
might have a remarkable impact on endothelium function
and CVD onset and complications and consequently in the
survival of CVD affected individuals [41-44]. Accordingly,
growing evidence is underling the clinical relevance of EPCs
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as biomarkers of vascular function and cardiovascular risk in
healthy individuals, as well as diagnostic and prognostic CVD
biomarkers. In addition, several studies report how EPC can
be used as therapeutic agents.

We below report data existing in literature about the
possible clinical applications of these cells.

4.1. EPCs as Predictive CVD Biomarkers. The relationship
between EPC circulating levels and cardiovascular risk might
be of clinical relevance, and possible new recommendations
and preventive CVD measures might be applied. Accordingly,
in 2003, Hill and colleagues showed that the number of
circulating EPCs represents a better predictor of vascular
reactivity than conventional cardiovascular risk factors [45].
In addition, a significant correlation between in vitro EPC
senescence and CVD risk profile has been also reported
in donors. Thus, EPCs might be considered as an optimal
biomarker for vascular function and cardiovascular risk.
Certainly, ulterior studies are needed.

4.2. EPCs as Diagnostic and Prognostic CVD Biomarkers.
Abnormalities in circulating EPC levels and function have
been observed in a large number of studies on different
CVDs. As result, EPCs have been suggested as diagnostic and
prognostic CVD biomarkers [35, 40]. We report a summary
of literature data in Table 1S (see Supplementary Materials
available online at http://dx.doi.org/10.1155/2015/835934).

4.3. EPCs as Therapeutic Agents. Since the successful isola-
tion of EPCs in 1997 [12], encouraging data have demon-
strated EPC presence in the sites of vascular injury and
ischemia. This has led to perform several preclinical studies
in animal models (see Table 3). Promising findings have
been obtained. In particular, a favorable improvement in left
ventricular (LV) function in a rat model of myocardial infarc-
tion (MI) after intravenous injection of ex vivo expanded
human CD34" cells has been reported [46]. Furthermore,
another study examined the effect of catheter-based intramy-
ocardial transplantation in a swine model of MI, providing
encouraging outcomes in favoring the application of EPCs
as a potential cell therapy in clinical trials [47, 48]. In
2005, Naruse and colleagues carried out a study related to
the therapeutic treatment of diabetic neuropathy by in vivo
expanded human EPCs, using streptozocin-induced diabetic
Nude rats [49]. They developed augmented conduction
velocity and ameliorated blood flow of sciatic nerve. An
increased number of microvessels were also observed on
the site of EPC injection [49]. These results led to use this
treatment for cerebrovascular disease [50]. An improvement
of neurological functions was reported in chronic cerebral
ischemic rats injected with CD34" HSC cells, including EPCs
[50] (see Table 3).

The ability of EPCs to expand in cultures under in
vitro conditions raises another hesitant vision for their
therapeutic use. Genetically modified and ex vivo expanded
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FIGURE 2: Endothelium dysfunction, injury, cardiovascular remodeling and onset of CVD diseases. Several factors (ageing, hypertension,
oxidative stress, diabetes, hyperlipemia, obesity, and unbalance of hormones) by acting as triggers determine a chronic stress on endothelium
of vascular wall and evocation of a chronic inflammatory response which cause endothelium dysfunction, injury, and cardiovascular
remodeling and the onset of several CVDs.

TABLE 4: Methods and ways for the administration of EPCs cells.

First strategy: intravenous

BM-MSCs are transfused into the left ventricular cavity. Stem cells mainly reach the

administration lungs, with significantly smaller amounts in the liver, heart, and spleen. [52]
Second strategy: intracoronary Patients are infused with BM-progenitor cells using a balloon catheter after [53-55]
infusion restoration of arterial patency

Third strategy: Transepicardial Direct transepicardial injection of BMSCs can be performed, using a surgical [59]
administration thoracotomy into the border zone of the infarct

Third strategy: transendocardial Catheter-based transendocardial injection of SCs using electromechanical voltage [59]

administration

mapping to define tissue viability

EPCs may become new promising agents, which will be able
to appropriately rescue impaired neovascularization process
under disease conditions. In Rhesus model, ex vivo CD34"
cell transfection with recombinant nonreplicative herpes
virus vector and subsequent cell transplantation resulted in
the expression of vector genes in angiogenic areas of skin
autografts of rhesus macaques. Since CD34" cells possess a
natural angiogenic tropism to injured endothelium, they may
serve as ideal candidates for the delivery of genes into areas
of angiogenesis [51] (see Table 3).

These encouraging data have led to perform clinical
trials in order to detect whether EPCs increase endothelial
integrity and vascularisation at ischemia sites in patients
with CVDs. Three different strategies have been principally

used, as reported in Table 4. The first strategy consists in
the administration of granulocyte-colony stimulating factor (G-
CSF) in the order to determine the recruitment of the patient’s
own BM resident progenitors. Using this treatment, two
preliminary studies demonstrated an increased LV function
[52]. This certainly requires a confirmation in large studies.
The second is the intracoronary infusion of BM progenitor cells
in patients with MI. It demonstrated positive effects on LV
function in three smaller studies [53-55]. Subsequently, two
prospective large trials assessed significant LV function after
4-6 months of administration of BM progenitor cells. Other
ten recent and large trials confirmed the successfulness and
the safety of this procedure with a follow-up over 1.5 years
[56, 57]. In addition, the intramyocardial and intracoronary
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TABLE 5: Surface markers used in EPC identifying.

Molecules

Biological features and relevance in EPC detection

CD34

105- to 120-kD transmembrane cell surface glycoprotein, selectively expressed (within human and murine hematopoietic
systems) on stem and progenitor cells, and initially used by Asahara and colleagues for EPC identifying. It is not specific
and expressed by mature endothelial cells as well as HSCs [76].

VEGFR2

A kinase insert domain receptor (KDR) or Flk-1, or CD309, suggested as further marker for identifying circulating EPC
cells. It is expressed mainly on EC cells, and besides EPC cells, in low number, on osteoblasts, pancreatic duct cells,
neuronal cells, and lung epithelial cells, even if the biological role in nonendothelial cells remains unclear. VEGFR2 has
been shown to be a vital promoter of pathological neovascularization, including cancer and diabetic retinopathy, by
making it a potential target in therapy of these diseases. However, neither of these markers is specific for EPCs, either alone
or together. Vascular endothelial cells, expressing CD34 and VEGFR2, are not considered to be EPCs [76].

Also known as ACI133. It is a marker of immature stem cells, proposed as the third marker for EPCs. Thus, EPCs have been
identified as VEGFR-2"/CD133"/CD34" cells. However, more than 99% of CD34"/KDR"/CD133" triple positive cells also

CD133

express CD45, which is a pan leukocyte marker, even if these cells are not able to give rise to EPCs capable of highly
differentiating in endothelial cells. As such, CD45 expression on putative EPCs became a bone of contention [76].

CD31

Platelet endothelial cell adhesion molecule-1, also defined as PECAM [76].

CD146 S-endo, PIHI2 antigen [76].

VWF Von Willebrand factor [76].

eNos Endothelial nitric oxide synthase [76].

Also known as CD62 antigen-like family member E (CD62E). Endothelial-leukocyte adhesion molecule-1 (ELAM-1), or

E-selectin
activated by cytokines [76].

leukocyte-endothelial cell adhesion molecule 2 (LECAM?2), is a cell adhesion molecule expressed only on endothelial cells

The protooncogene c-kit is a 145,000 Dalton transmembrane glycoprotein designed as CD117. This receptor tyrosine kinase

C-kit

and its ligand stem cell factor (SDF) mediate pleiotropic functions, including cell survival, differentiation, homing,

migration, and proliferation as well as functional activation. It is present on the surface of cells of the mast cell and
erythroid lineage as well as on multipotent stem and progenitor cells and megakaryocytes [76].

CXCR4

Also known as fusion or leukocyte-derived seven transmembrane-domain receptor (LESTR). It represents the receptor of

SDF-1, highly expressed on the surface of CD34 positive cells [76].

UEA-I Ulex europaeus lectin [76].

administration has been recently suggested as a suitable
strategy for treatment of patients with refractory angina
[58]. The third strategy is more invasive and consists in the
direct injection of cells into target tissues [59]. This treatment
(and precisely transepicardial or transendocardial injection of
unfractioned BM cells) has been performed in patients with
diffuse coronary artery disease and intractable angina with
no option of recanalisation. Ventricular function and physical
capacity have been observed to increase, but the small sample
size of these studies requires to be confirmed in larger studies
[60-62] (see Table 3).

The treatment with direct administration of EPCs has
been also effectuated in patients with chronic limb ischemia,
demonstrating a reduced rate of limb’s amputation at 3 years
of follow-up [63, 64] (see Table 3).

Of special interest are the studies with autologous cell
therapy. In line with this, the Yamamoto group performed an
intramuscular injection of autologous BM-derived mononu-
clear cells containing 1% of CD34" cells in patients with
chronic limb ischemia [65]. They quantitatively evaluated the
expression of EPCs and endothelial markers (i.e., CD133 and
VE-cadherin) before the experiment and after the injection.
Before investigation, the transcription of these molecules
was undetectable. Autologous injection caused an elevation
of EPC marker transcription. Thus, they concluded that
autologous BM cells may be used in the therapy of patients
with arterial diseases. A replication of these results was

obtained by Lenk and colleagues [66]. Erbs and colleagues
used this autologous treatment in patients who underwent
recanalisation of chronic coronary total occlusion [67]. The
autologous treatment with EPCs, expanded four days in
endothelium growth medium, improved coronary endothe-
lium function and wall motion abnormalities and had a
benefit effect on the metabolism in the target area in patients
with symptomatic coronary atherosclerosis [67] (see Table 3).

Despite of these promising data, EPC clinical application
as exogenous or autologous cell therapy remains still unclear
because of different reasons. We below discuss the limitations
on EPC clinical applications.

5. Focus on Controversies and
Perspectives about the EPC Clinical
Use as Possible Solutions for Vascular
Impairment and CVDs

Since their discovery, EPCs have been object of an intensive
investigation and a plethora of clinical applications has
been opened, as reported above. As result, EPCs have been
suggested as potential predictive, diagnostic, and prognostic
CVD biomarkers, as well as therapeutic agents. These efforts
have encouraged the researchers in the vision to modulate
the vasculogenesis process and consequently potentiate car-
diovascular self-repair. However, the enthusiasm is actually
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dampened by a large number of critical viewpoints [68-
72]. In particular, insights into EPC biology are leading
several research groups to discuss on critical EPC aspects
and to evidence the limitations. Thus, these perspectives
reduce the large relevance and potentiality of these cells
and cotemporally underline urgent necessity to move versus
standardized and common criteria of research for EPC cells.
This might reduce the heterogeneity of EPC literature data.

Here, we summarize the aspects of EPC cells principally
discussed by scientific community (see Figure 3).

5.1. Real Capacity of EPCs Cells to Improve In Vivo Neovas-
cularization. In healthy adults, EPC cells (as CD34"CD133"
VEGFR2" EPC cells) represent only 0.0001%-0.01% of
peripheral blood mononuclear cells (PBMCs) [73]. These low
percentages lead to question on their impact in pathological
or physiological processes. Current evidence reports changes
in EPC number and function in several CVDs (see Table 1S).
However, different factors may influence levels and viability
of EPC cells, including methodological approaches (i.e., the
timing and ways of taking samples) [74], detection meth-
ods and their protocols, panel of antibodies used for their
phenotypical evaluation, age of patients and their clinical
conditions, and ethnicity of populations studied (see below).

5.2. EPCs as Vascular Healthy and CVD Biomarkers. 1t is
current opinion that number and/or functionality of EPCs
do not adequately describe CVD risk. This perplexity is due
to inconsistent EPC definitions, different number of CVD
risk factors in different patient populations studied, and the
interaction of EPCs cells with other HPCs, inflammatory
cells, and platelets.

5.3. EPCs as Therapeutic Agents. Available clinical studies
of EPCs as therapeutic agents show beneficial results (as
described above). However, their validity is limited by differ-
ent factors: (a) the small number of patients enrolled in the
major number of studies, their randomization not blinded,
the involvement of few centres, (b) the exact phenotypic
profile of cells used for the treatments which is always not
indicated or missing, (c) the different administration ways
and methods used, and (d) the safety and feasibility of
the treatments not proved by long-term follow-up results.
Teratoma formation, immunoreactivity, or arrhythmias may
represent the adverse effects of these treatments. In addition,
there are other limitations in the large-scale clinical use of
EPCs. As the above mentioned, EPCs are relatively rare cells,
and expansion of sufficient numbers of subpopulations from
peripheral blood is hardly possible. Furthermore, in vitro
enumeration of progenitor cells for a quantity sufficient for
a therapeutic treatment is associated with changes in pheno-
type and differentiation and risk of cell senescence and it may
require artificial cell preactivation or stimulation. The in vitro
cultures consent the production of two subpopulations from
CDI133"/CD34"/CD309" BM-hemangioblasts according to
Hristov and Weber’s schema [75], the early EPCs (eEPCs)
and late EPCs (outgrowth endothelial cells, OECs), having
different features (see Figure 4).
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5.4. Lack of Standardized Criteria and Consensus for Defining,
Characterizing, and Identifying EPCs with Well Established
Surface Markers, Protocols, and Methods. EPCs cells have
been largely described as CD34"CD133" VEGFR2" cells [69].
However, other progenitor populations have been recently
considered in EPC studies, that is, circulating angiogenic
cells (CACs), circulating endothelial cells (CECs), circulating
H-progenitor cells (CPCs), and circulating endothelial pro-
genitors (CEPs), playing important roles in tissue neovascu-
larization, but having diverse features [76]. CAC and CEP
cells represent variable proportions of CD14" monocyte cells
having different angiogenic properties. Despite their lower in
vitro proliferation than HSCs or cord stem cells, they seem
to have a similar ability to increase neovascularization, as
reported in experimental models [76]. This leads to suppose
that EPCs might be essentially H-monocyte-derived CD14"
cells with variable expression of CD34, CD133, CD45, and
KDR and angiogenesis capacity, as evidenced by Sieveking
and colleagues [77]. Given the heterogeneous presence of
EPC subpopulations in peripheral blood and absence of
standardized criteria, we suggest considering the EPCs as
“putative cells.” Their identification might be performed with
a combination of several surface antigens. Other markers
have been, indeed, detected, including platelet endothelial
cell adhesion molecule-1 (CD31), CD146, von Willebrand
factor (VWF), eNos, and E-selectin, C-kit, and CXCR4
(see Table5) [13, 76]. Concerning methods for isolating
and quantitatively or qualitatively evaluating these putative
EPC cells, a large number of methodologies are disposable
until now. However, immunohistochemistry or immunocy-
tochemistry is principally used for quantifying EPCs in tissue
samples [7, 76]. For circulating EPC evaluation, four different
methods are available after their isolation from PBMCs: (1)
cell culture of colony forming cells to reveal EPC features,
that is, high proliferative potential, expression of endothelial
markers, endothelial morphology, and formation of blood
vessels in coculture experiments [7, 76]; (2) phenotypic EPC
identification and enumeration by flow-cytometry analysis
according to Duda protocol published in 2007 [78]; (3)
quantitative real time PCR, which permits detecting and
quantifying EPC specific markers in preenriched PBMC cell
population [7,76]; and (4) MCA method which includes
magnetic (M) isolation of CD34" cells from PBMCs, followed
by a CD133" immunocytochemical (CA) staining [7, 76]. To
date, flow-cytometry and CFU assays are the two most used
methods for EPC enumeration.

6. Conclusions and Recommendations:
Standardized Criteria on EPC Investigations
Are Imperative

The observations described above about the critical aspects
on EPC cells point out the following considerations: (1)
results of earlier studies on EPCs have to be reexamined; (2)
the impact of these subpopulations has to be evaluated and
considered only when future studies will be performed; (3)
precise biological role or roles of several EPCs have to be
clarified before their clinical application as both biomarkers
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FIGURE 3: Critical aspects of the EPC relevance as possible solutions for vascular impairment and clinical applications. As reported in the figure

and text (see Section 5), four critical aspects reduce the EPC potentiality as potential actors of endothelium repair, optimal CVD biomarkers,
and therapy agents.
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FIGURE 4: Angioblast differentiation into mature endothelial cells according to the schema proposed by Hristov and Weber, 2004 [75]. As
illustrated in the figure, CD133", CD34", and VEGFR2" (CD309") angioblasts give rise to early EPCs expressing high intensity CD31, CD34,
and CD309 markers which differentiate in late outgrowth endothelial cells (OEC)s, having high expression not only of CD34, CD309, and
CD31 but also of vVWE, E-selectin, VE-cadherin, and eNOs.
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Our suggestions

Standardized criteria for EPCs research: fixing established and common methods,
identification’s pro Is, and surface marker:

mon manner of EPC cells

Better understanding of EPC biology and characterization through identification of
their cellular and molecular mechanisms. For example, a deeper insight on role the

molecular and cellular pathways identified until now (miRNAs, TLR-4 , Notch, and

TGF- 3 pathways and growth factors)

Creation of multidisciplinary groups composed of physicians and academic
researchers for an interaction of various knowledge areas

(EPC biology, grafting, rejection, transplantation, and tissue engineering)

Establishment of common guidelines for the therapeutic use of EPCs:

administration methods, ways, patients age, and their clinical characteristics

Clinical application of EPC cells as biomarkers (vascular health, and CVDs)

and exogenous and autologous cell therapies.

FIGURE 5: Our working hypothesis on the possible steps to perform to overcome the critical limitations and problems of EPC research and

to develop real therapeutic applications.

to test cardiovascular health or candidates for cardiovascular
cell therapy; (4) EPC definition using surface markers has to
be reevaluated considering their heterogeneous origin and
nature and probably performing not only flow-cytometry
analysis but preferably a combination of other biomolecular
assays.

In line with these considerations, recent advances in
molecular EPC mechanisms highlight involvement of differ-
ent growth factors and signaling pathways (i.e., VEGF, TGF-
B, ROS, Wnt, Notch, and TLR-4 pathways) and microRNA
in EPCs mobilization and differentiation into mature ECs
[79, 80]. Future and intensive studies on the role of these
molecules in EPC biology will be needed for improving
or inducing vascular neoformation and angiogenesis in
different CVD conditions. The common hope is in early
overcoming various EPC problems and developing their
real clinical applications, as biomarkers and regenerative cell
agents. This might likely permit inducing and improving
vascular regeneration under ischemic or other CVD events or
provide a good substrate for vascular grafting, that is, bypass
surgery and vascular reconstruction following aneurisms or
traumatic injuries.

In order to achieve this gold purpose, we suggest the
following working hypothesis, as reported in Figure 5. Firstly,
we underline that it is imperative to move versus a deep EPC
characterization and precise definition, by performing future
and further studies and establishing standardized criteria for
EPC identification protocol and methods. This might really

consent EPC defining and specifying functions. Probably,
a combined and standardized analysis based on cytomet-
ric, transcriptomic, proteomic, and metabolomic evaluations
might preferentially be needed for a definitive and true
characterization of these cells, fixing standardized criteria. In
addition, the development of an ideal EPC therapy and its
clinical applications as CVD biomarkers might require the
creation of interdisciplinary teams for fixing precise clinical
elements of design and standardization. They might derive
an intersection of investigations on EPC biology, tissue engi-
neering, transplantation, grafting, rejection biology, clinical
cardiovascular medicine, and device technology.
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