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SUMMARY

HIV-1-negative factor (Nef) protein antagonizes serine incorporator 5 (SERINC5) by redirecting 

this potent restriction factor to the endosomes and lysosomes for degradation. However, the 

precise mechanism remains unclear. Using affinity purification/mass spectrometry, we identify 

cyclin K (CycK) and cyclin-dependent kinase 13 (CDK13) as a Nef-associated kinase complex. 
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CycK/CDK13 phosphorylates the serine at position 360 (S360) in SERINC5, which is required 

for Nef downregulation of SERINC5 from the cell surface and its counteractivity of the SERINC5 

antiviral activity. To understand the role of S360 phosphorylation, we generate chimeric proteins 

between CD8 and SERINC5 to study their response to Nef. Nef not only downregulates but, 

importantly, also binds to this chimera in an S360-dependent manner. Thus, S360 phosphorylation 

increases interactions between Nef and SERINC5 and initiates the destruction of SERINC5 by the 

endocytic machinery.

Graphical abstract

In brief

Chai et al. show that CycK/CDK13 is a Nef-associated serine kinase complex. They provide 

additional insights into how Nef antagonizes SERINC5 via the endocytic machinery for optimal 

HIV-1 infectivity by identifying S360 as the SERINC5 phosphorylation site, which is required for 

its binding to Nef and its subsequent downregulation.

INTRODUCTION

The accessory negative factor (Nef) protein is expressed by primate lentiviruses and 

functions to promote immune evasion, and subsequent viral fitness, by antagonizing a 

number of host cell-surface proteins, such as CD4 and major histocompatibility complex 

class I (MHC-I) (Kirchhoff, 2010). Recently, Nef was also found to antagonize three of the 
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multi-pass transmembrane proteins representing the human serine incorporator (SERINC) 

family, whose five total members include SERINC1 through 5 (Inuzuka et al., 2005). 

SERINC5 and, to a lesser degree, SERINC3 are specifically targeted by Nef in order to 

increase HIV-1 infectivity (Rosa et al., 2015; Usami et al., 2015). SERINC4 also has a 

Nef-sensitive anti-HIV-1 activity, but it is rapidly turned over by the host cell proteasomes 

(Qiu et al., 2020).

In a manner that is conserved across different species, SERINC5 is structurally composed 

of 10 transmembrane domains (TMDs), in an arrangement that forms five extracellular 

loops (ECLs) and four intracellular loops (ICLs) (Pye et al., 2020). In the absence of Nef, 

SERINC5 is incorporated into budding HIV-1 virions and subsequently inhibits viral entry 

into host cells by attacking HIV-1 Env trimers, in their open confirmation, thereby blocking 

the fusion pore formation between virions and target cells (Beitari et al., 2017; Chen et al., 

2020; Sood et al., 2017; Zhang et al., 2019). The potency of SERINC5 antiretroviral activity 

has been validated in SERINC5-null mice (Timilsina et al., 2020).

HIV-1 Nef antagonizes the antiretroviral effect of SERINC5 by downregulating it from the 

cell surface, thereby preventing its virion incorporation, in a manner that is analogous to 

Nef-mediated CD4 downregulation (Rosa et al., 2015; Usami et al., 2015). The process is 

dependent on binding between the C-terminal dileucine motif 160ExxxLL165 of Nef and 

adaptor protein 2 (AP-2) (Rosa et al., 2015) as well as an interaction of the Nef N-terminal 

32–39 amino acids (aa’s) with SERINC5 (Ananth et al., 2019). These Nef N-terminal 

residues are located in a multifunctional hydrophobic pocket that is also required for binding 

to the cytoplasmic tails of CD4 and MHC-I (Kwon et al., 2020). The assembly of SERINC5 

and CD4 with the Nef/AP-2 complex leads to their endocytosis and subsequent lysosome­

mediated degradation (daSilva et al., 2009; Shi et al., 2018).

The importance of Nef-mediated antagonism of SERINC5 is illustrated by both its 

conservation across primate lentiviruses and the fact that the global spread of primate 

lentiviruses is directly correlated to the potency of Nef-mediated SERINC5 antagonism 

(Heigele et al., 2016). SERINC5 is also counteracted by murine leukemia virus (MLV) 

glycoGag and by the equine infectious anemia virus (EIAV) S2 protein (Ahi et al., 

2016; Chande et al., 2016; Rosa et al., 2015). Although glycoGag and S2 do not share 

any homology with Nef, they also target SERINC5 to endosomes and lysosomes for 

degradation (Ahmad et al., 2019; Li et al., 2019). Finally, the clinical relevance of SERINC5 

antagonism is underscored by the observation that Nef genes isolated from HIV-1 controllers 

antagonize SERINC5 poorly when compared to those from progressors (Jin et al., 2019). 

Thus, SERINC5 is an important restriction factor whose antiretroviral activity has been 

demonstrated in vitro and in vivo.

Cyclin-dependent kinases (CDKs) belong to a family of serine/threonine kinases whose 

activities are regulated by cyclin (Cyc) subunits (Lim and Kaldis, 2013). The human genome 

encodes 21 CDKs and 29 Cycs, the functions of which can be separated into two major 

categories. Whereas CDK1, CDK2, CDK4, and CDK6 regulate the cell cycle, CDK7, 

CDK8, CDK9, CDK11, CDK12, and CDK13 play an essential role in transcription (Fan 

et al., 2020). CDK12, in conjunction with the regulatory subunit CycK (Bartkowiak et al., 
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2010; Blazek et al., 2011), phosphorylates the C-terminal domain of RNA polymerase 

II (Bösken et al., 2014; Greifenberg et al., 2016) and consequently regulates genome 

stability and RNA processing. Although CDK13-mediated phosphorylation proceeds in a 

manner similar to CDK12 via CycK, the precise cellular function of CDK13 remains 

largely unknown (Greenleaf, 2019). In this study, we demonstrate that CycK/CDK13 

phosphorylates SERINC5 and this phosphorylation is required for Nef antagonism of 

SERINC5.

RESULTS

Identification of CycK/CDK13 as a Nef-associated kinase complex via mass spectrometry

Initially, FLAG-tagged SERINC5 (Ser5) protein was expressed alone in HEK293T cells 

and purified by an anti-FLAG affinity column. When the eluted proteins were analyzed by 

SDS-PAGE, purified monomeric SERINC5 with a molecular mass of ~45 kDa was detected 

via Coomassie brilliant blue staining (Figure 1A). Next, SERINC5 was purified again after 

its co-expression with a wild-type (WT) or Nef-deficient (ΔNef) HIV-1 proviral vector. To 

avoid SERINC5 degradation by Nef, the amounts of proviral vectors were minimized. The 

monomeric SERINC5 was purified again but, notably, an ~170-kDa protein was co-purified 

with SERINC5 in the presence of Nef (Figure 1B, lane 3, labeled with an asterisk). To 

identify this large protein, purified proteins were analyzed by liquid chromatography-tandem 

mass spectrometry (LC-MS/MS). CDK13 was one of six large proteins identified that 

ranged in size from 150 to 200 kDa (Figure 1C). Because CDK13 interacts with CycK 

and, importantly, CycK is a well-characterized Nef-binding protein (Khan and Mitra, 2011), 

CycK and CDK13 were selected for further study.

First, we co-expressed FLAG-tagged CycK with a WT or ΔNef HIV-1 proviral vector. 

Proteins were pulled down by anti-FLAG antibodies and analyzed by western blotting 

(WB). CycK specifically pulled down Nef (Figure 1D, lane 1). The same CycK was also 

co-expressed with hemagglutinin (HA)-tagged CDK12 or CDK13. Three major CDK12 and 

CDK13 species were detected at 100–200 kDa. CycK pulled down all these CDK12 and 

CDK13 proteins, although proteins with the highest molecular mass were pulled down more 

effectively (Figure 1E, lanes 2 and 4). Thus, we confirmed the Nef and CycK, the CycK and 

CDK12, and the CycK and CDK13 interactions as reported previously.

Second, we expressed FLAG-tagged CDK13 with HA-tagged SERINC5 proteins in the 

presence of reduced amounts of a WT and ΔNef HIV-1 proviral vector. When proteins were 

pulled down again by anti-FLAG antibodies, CDK13 associated with SERINC5 only in 

the presence of Nef (Figure 1F, lane 1). Thus, Nef should serve as an adaptor that bridges 

SERINC5 with CycK/CDK13.

CycK/CDK13 is required for Nef downregulation of SERINC5

We examined how CycK/CDK13 affects Nef downregulation of SERINC5 by silencing the 

endogenous CycK gene (encoded by CCNK). Because CycK is essential for cell survival 

(Dai et al., 2012), we used CRISPR interference (CRISPRi) to knock down its expression. 

Catalytically dead Cas9 (dCas9) and CCNK-specific guide RNA (gRNA) were co-expressed 
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in HEK293T cells, and their knockdown (KD) of CCNK was assessed by WB. Unlike the 

ectopic CycK protein that was detected at ~55 kDa (Figure 1D), endogenous CycK protein 

was detected at ~55 kDa and ~75 kDa (Figure S1A). Both of these CycK proteins were 

reduced by CCNK-CRISPRi in a dose-dependent manner (Figure S1A).

CCNK-KD was reported to stall the cell cycle in the G1 phase (Lei et al., 2018). Indeed, 

when dCas9/CCNK-gRNA were co-expressed in human CD4+ Jurkat T cells, the fraction 

of cells in G2 was decreased in a dose-dependent manner (Figure S1B). Importantly, under 

such CCNK-KD conditions, Nef was unable to decrease SERINC5 protein expression in 

HEK293T cells (Figure 2A, upper panel, lanes 1 and 3). We reported that Nef also decreases 

SERINC5 protein expression in Jurkat cells (Shi et al., 2018). When the endogenous 

CycK was similarly targeted by CCNK-CRISPRi in Jurkat cells, the Nef activity also 

diminished (Figure 2A, lower panel). Measurement of SERINC5 expression on the cell 

surface produced similar results. Nef effectively decreased both the number of SERINC5­

positive cells (Figure 2B) and the mean fluorescence intensity (MFI) of these positive cell 

populations (Figure 2E). However, this Nef activity was disrupted by CCNK-KD. Nef also 

downregulates CD4 from the cell surface (Shi et al., 2018). However, CCNK-KD had no 

effect on Nef downregulation of CD4 (Figure S1C, lanes 1 and 3). Thus, the CycK effect is 

highly specific for Nef downregulation of SERINC5.

Next, we examined the endogenous CDK13 activity using CDK12 as a control. Like CycK, 

both CDK12 and CDK13 are essential for cell survival, so we used previously reported short 

hairpin RNAs (shRNAs) to knock down their expression (Dai et al., 2012). CDK12-shRNA 

and CDK13-shRNA effectively reduced the expression of their target proteins (Figure S2). 

Notably, Nef could no longer decrease the SERINC5 expression in the presence of CDK13­

KD (Figure 2C, lanes 1–4). In contrast, this Nef activity was not affected by CDK12-KD 

(Figure 2C, lanes 5–8). In addition, CDK13-KD disrupted Nef downregulation of SERINC5 

from the cell surface, whereas CDK12-KD did not (Figures 2D and 2E).

Furthermore, we determined how CCNK, CDK12, and CDK13 KD affects the Nef 

counteractivity of the SERINC5 anti-HIV-1 activity using a viral infectivity assay. As 

expected, SERINC5 strongly reduced the ΔNef HIV-1 infectivity, which was counteracted 

by Nef (Figure 2F). This Nef counteractivity was disrupted by KD of CCNK and CDK13, 

but not CDK12 (Figure 2F). KD of CDK13 and CDK12 alone had very little effect on WT 

and ΔNef HIV-1 infectivity, and CCNK-KD slightly reduced the infectivity of both viruses 

(Figure 2G). Taken together, these KD experiments support a conclusion that CycK/CDK13 

is required for Nef downregulation of SERINC5.

SERINC5 S360 is critical for Nef antagonism of SERINC5

CDKs preferentially phosphorylate serine or threonine residues in the motif [(S/T)Px(R/K)], 

in which only the (S/T)P residues are invariant (Lim and Kaldis, 2013). SERINC5 has 

two (S/T)P motifs at aa positions 249SP250 and 360SP361. Due to its presence in TMD6, 

S249 is unlikely to be accessible for phosphorylation by CycK/CDK13 (Figure 3A). In 

contrast, S360 is in ICL4, so it is a likely target for CycK/CDK13 (Figure 3A). In order 

to evaluate the importance of S249 and S360 for Nef downregulation of SERINC5, we 

independently substituted both residues to alanine and tested their respective response to 

Chai et al. Page 5

Cell Rep. Author manuscript; available in PMC 2021 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nef. When SERINC5, SERINC5S249A, and SERINC5S360A were co-expressed with WT or 

ΔNef HIV-1 proviral vectors in HEK293T cells, Nef selectively decreased the expression 

of SERINC5 and SERINC5S249A, but not SERINC5S360A, at steady-state levels (Figure 3B, 

lanes 2, 4, and 6).

Three more experiments were conducted to confirm the effect of the S360A substitution. 

First, SERINC5, SERINC5S249A, and SERINC5S360A were co-expressed with a WT or 

ΔNef HIV-1 proviral vector in HeLa cells, and SERINC5 endocytosis was determined 

by a confocal-microscopy-based antibody uptake assay (Shi et al., 2018). SERINC5 and 

SERINC5S249A were endocytosed in the presence of Nef, whereas SERINC5S360A was 

not (Figure 3C, top 12 panels versus bottom 6 panels). Second, Nef downregulation of 

SERINC5 and SERINC5S360A from the cell surface were compared by flow cytometry. 

Although SERINC5 was effectively downregulated in the presence of Nef, SERINC5S360A 

was not (Figures 3D and 3E). Third, the antiviral activity of SERINC5 was determined 

similar to as we did previously. Whereas SERINC5 strongly reduced ΔNef HIV-1 infectivity, 

SERINC5S360A strongly inhibited both WT and ΔNef HIV-1 infectivity (Figure 3F). These 

results demonstrate that the S360 residue is required for Nef downregulation and its 

counteractivity of SERINC5.

A SERINC5 S360D phosphomimetic substitution reduces its expression

It was reported that two hydrophobic residues, L350 and I352, in SERINC5 ICL4 (Figure 

3A) also determine SERINC5 sensitivity to Nef (Dai et al., 2018). We substituted both 

L350 and I352 residues for alanine to generate a double-mutant SERINC5L350A/I352A 

and tested its sensitivity to Nef, in comparison to SERINC5 and SERINC5S360A. When 

these SERINC5 proteins were expressed alone in Jurkat cells, they all had similar levels 

of cell-surface expression (Figures 4A and 4B). When they were expressed with a WT 

or ΔNef HIV-1 proviral vector, SERINC5 was sensitive, whereas SERINC5S360A and 

SERINC5L350A/I352A were both resistant to Nef-mediated downregulation from the cell 

surface (Figures 4C and 4D). These results were also confirmed in HEK293T cells (Figure 

S3), indicating that their resistance to Nef is not dependent on cell type.

Next, we replaced SERINC5 S360 with an aspartic acid (S360D) to create 

a phosphomimetic mutant, SERINC5S360D. When expressed in Jurkat cells, the 

SERINC5S360D level on the cell surface was very low even in the absence of Nef (Figures 

4A-4D). When the expression level at steady state was compared in HEK293T cells by 

WB, SERINC5S360D also had a much lower expression than SERINC5, SERINC5S360A, 

and SERINC5L350A/I352A (Figure 4E). To determine whether SERINC5S360D was targeted 

for degradation, cells were treated with proteasomal inhibitors (MG132, lactacystin) 

and lysosomal inhibitors (bafilomycin A1, NH4Cl) during SERINC5 expression. The 

SERINC5S360D expression level was increased strongly by bafilomycin A1 and mildly by 

NH4Cl, whereas MG132 and lactacystin barely had any effect (Figure 4F, lanes 6–10). On 

the contrary, although the SERINC5 expression was also increased in the presence of all 

four inhibitors, the level of increase was much less than that of SERINC5S360D (Figure 4F, 

lanes 1–5). Thus, this SERINC5 phosphomimetic S360D mutant is selectively targeted to 

lysosomes for degradation.
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It was reported that T366 in ICL4 of SERINC5 (Figure 3A) is phosphorylated by casein 

kinase II (Stoneham et al., 2020). We constructed a SERINC5T366A mutant to further 

complement our panel of SERINC5 mutants. When their anti-HIV-1 activity was compared, 

SERINC5, SERINC5S249A, or SERINC5T366A strongly reduced HIV-1 infectivity only in 

the absence of Nef, whereas SERINC5S360A and SERINC5L350A/I352A did so independent 

of Nef (Figure 4G). SERINC5S360D had a very marginal antiviral activity, which was due to 

its relatively low levels of expression. Collectively, these results confirm that residues S360, 

L350, and I352 determine the SERINC5 sensitivity to Nef and demonstrate that a negative 

charge at position 360 destabilizes SERINC5, due to its phosphomimetic property. Thus, 

S360 phosphorylation should play an important role in Nef antagonism of SERINC5.

CycK/CDK13 phosphorylates SERINC5 at S360

In the CDK13 kinase domain, D837 acts as a proton acceptor for phosphate transfer 

to the substrate, and D855 binds to two Mg2+ ions for coordinating the phosphate 

donor. Simultaneous disruption of these two residues by introducing D837A/D855N 

substitutions completely abrogates the CDK13 kinase activity (Greifenberg et al., 2016). 

To determine whether the S360 residue of SERINC5 is phosphorylated by CycK/CDK13, 

we generated CDK13D837A and CDK13D837A/D855N mutants and tested their activity on 

Nef downregulation of SERINC5. In addition, we also generated similar CDK12D858A 

and CDK12D858A/D876N mutants and tested them, too. CDK13D837A, CDK12D858A, and 

CDK12D858A/D876N had no effect on Nef-mediated downregulation of SERINC5 (Figure 

5A, lanes 1, 2, and 5–8). However, CDK13D837A/D855N disrupted this Nef activity (Figure 

5A, lanes 3 and 4). We then treated SERINC5 and HIV-1 expression cells with a CDK12/

CDK13 covalent inhibitor, THZ531 (Zhang et al., 2016). We found that Nef could no longer 

decrease the SERINC5 expression in the presence of this inhibitor (Figure 5B, lane 3). 

Taken together, these results demonstrate that the CDK13 kinase activity is required for Nef 

downregulation of SERINC5.

To determine whether SERINC5 is phosphorylated at S360 in cells, we purified SERINC5 

and SERINC5S360A proteins from HEK293T cells in the presence of HIV-1 proviral vectors 

as described previously (Figure 5C, upper gel). When their phosphorylation status was 

analyzed by Phos-tag staining, SERINC5 and SERINC5S360A showed a similar level of 

Phos-tag staining in the absence of Nef (Figure 5C, lower gel, lanes 2 and 4). However, in 

the presence of Nef, SERINC5 had a much stronger Phos-tag staining than SERINC5S360A 

(Figure 5C, lower gel, lanes 1 and 3).

To confirm that S360 is phosphorylated by CycK/CDK13, we conducted an in vitro kinase 

assay as reported previously (Greifenberg et al., 2016). The ICL4 region of SERINC5 was 

fused to a glutathione S-transferase (GST) tag and an S360A mutant was also created in this 

fusion protein. Recombinant GST-ICL4 and GST-ICL4S360A proteins were expressed in E. 
coli and purified by glutathione-Sepharose beads (Figure 5D). In addition, the CycK/CDK13 

complex was directly purified from HEK293T cells by anti-FLAG affinity chromatography. 

When these purified proteins were incubated with CycK/CDK13 and analyzed by Phos-tag 

staining, GST-ICL4 showed much stronger staining than GST-ICL4S360A (Figure 5D).
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To further confirm this phosphorylation result, we conducted another in vitro kinase assay, 

using ICL4-derived 17-aa peptides as substrates, and measured the phosphorylation by 

high-resolution MS via direct infusion. Initially, we compared the unphosphorylated WT 

peptide (357FCFSPGGEDTEEQQPGK373) with the S360-phosphorylated version (Figure 

5E, left panels). As expected, we found that the phosphorylated peptide had an 80-Da higher 

molecular mass than the WT peptide (1934.76 Da versus 1854.78 Da).

We then used an ICL4-derived peptide and a control peptide containing a T366K 

substitution (357FCFSPGGEDKEEQQPGK373) to conduct the same experiment and 

analyzed peptide phosphorylation by capillary zone electrophoresis (CZE)-MS. In the WT 

peptide sample, a peptide with an ~81-Da higher mass, compared to the mock treatment 

control, was observed (Figure 5E, middle panels). This result was most likely due to 

the phosphorylation (+80 Da) and deamination (+1 Da) of the peptide. Moreover, the 

phosphorylated peptide migrated slower than the unphosphorylated control during CZE 

separation due to the addition of one negative charge on the peptide (28 versus 27 min), 

a result which is consistent with previous phosphoproteomic data of CZE-MS (Chen et 

al., 2019). In the T366K peptide sample, a phosphorylated version of the peptide was 

also detected (Figure 5E, right panels). Similarly, this peptide had an 80-Da higher mass 

than the unphosphorylated one (1961.74 Da versus 1881.77 Da) and migrated significantly 

slower than the unphosphorylated control (18 min versus 15.6 min). Due to the fact that the 

T366K substitution eliminates this residue as a potential phosphorylation target, this result 

demonstrates that the phosphorylation occurs at the S360 residue. Thus, we conclude that 

CycK/CDK13 phosphorylates the S360 residue of SERINC5.

Nef downregulates CD8-ICL4 fusion protein

CD8 is a type I membrane protein with a signal peptide (SP), an N-terminal extracellular 

domain (ECD), a TMD, and a short C-terminal cytoplasmic tail (CT) (Figure 6A). CD8 

exists as an αα homodimer or an αβ heterodimer, and Nef selectively downregulates 

CD8β by interacting with its CT (Stove et al., 2005). Previously, we created a CD8α-Nef 

fusion protein to study Nef-mediated internalization of cell-surface molecules (Mandic et 

al., 2001). To further characterize the role of phosphorylation in Nef downregulation of 

SERINC5, we generated a WT CD8α-ICL4 fusion protein by both swapping the CD8α CT 

with SERINC5 ICL4 and inserting an HA tag immediately downstream of the SP (Figure 

6A). Three CD8-ICL4 mutants containing the S360A, S360D, or L350A/I352A substitutions 

were also generated.

CD8-ICL4, CD8-ICL4S360A, CD8-ICL4S360D and CD8-ICL4L350A/I352A were expressed in 

HEK293T cells and their expression level at steady state was compared. CD8-ICL4S360A 

and CD8-ICL4L350A/I352A had a relatively higher level of expression than CD8-ICL4 when 

compared by WB (Figure 6A, lanes 1, 2, and 4) or flow cytometry (Figures 6C and 6D). 

Like SERINC5S360D (Figure 4E), the expression of CD8-ICL4S360D was poorly detectable 

by WB (Figure 6A, lane 3). Its low relative level of expression was also confirmed by flow 

cytometry (Figures 6C and 6D). These results suggest that S360 phosphorylation should also 

downregulate CD8-ICL4.
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To further characterize the function of the L350/I352 residues, a triple L350A/I352A/S360D 

mutation was introduced into CD8-ICL4 and SERINC5. When CD8-ICL4L350A/I352A/S360D 

and SERINC5L350A/I352A/S360D were expressed in HEK293T cells, both of them were 

expressed as poorly as CD8-ICL4S360D and SERINC5S360D (Figures 6B-6D). Thus, the poor 

expression of the S360D mutants cannot be rescued by removing the L360/I352 residues.

We then tested the ability of Nef to downregulate each of these CD8-ICL4 fusion 

proteins. Nef effectively downregulated CD8-ICL4, but not CD8-ICL4S360A and CD8­

ICL4L350A/I352A (Figures 6E and 6F). The relative expression levels of CD8-ICL4S360D and 

CD8-ICL4L350A/I352A/S360D on the cell surface were both low, regardless of Nef expression. 

Taken together, these results demonstrate that Nef downregulates CD8-ICL4 and SERINC5 

via a similar mechanism.

Detection of Nef and CD8-ICL4 interaction by quantitative proteomics

To test whether Nef binds to SERINC5 via ICL4, CD8-ICL4, CD8-ICL4S360A, and CD8­

ICL4L350A/I352A were expressed in HEK293T cells in the presence of a downregulation­

deficient Nef, which contains an LL/AA substitution in its dileucine motif. Next, 

a co-immunoprecipitation (coIP) assay was carried out using an anti-Nef antibody. 

Approximately an equivalent level of each of the CD8-ICL4 fusion proteins, as well as 

the Nef protein, was detected in these cells by WB (Figure 7A). In addition, a similar level 

of Nef proteins was detected, as expected, whereas none of any CD8-ICL4 fusion proteins 

were detected, in these coIP fractions by WB (Figure 7A).

We then used MS to further analyze these coIP fractions. A total of 13 

Nef, 3 CD8, and 3 ICL4 peptides were detected from these CD8-ICL4, CD8­

ICL4S360A, or CD8-ICL4L350A/I352A samples (Figure 7B). Among the 3 ICL4 

peptides, peptide-1 (336SSSDALQGR344) was detected in all three samples. However, 

peptide-2 with the L350A/I352A substitutions (345YAAPEAEAAR354) was only 

detectable from CD8-ICL4L350A/I352A, and peptide-3 with the S360A substitution 

(355CCFCFSPGGEDTEEQQPGKEGPR377) was only detectable from CD8-ICL4S360A 

(Figure S4). Thus, we could detect Nef-ICL4 binding via MS and validated the specificity of 

this binding by identifying each of the ICL4 substitutions in their appropriate coIP fraction.

Lastly, we compared the intensity of Nef binding to CD8-ICL4, CD8-ICL4S360A, and 

CD8-ICL4L350A/I352A. We calculated the label-free quantification (LFQ) intensity of the Nef 

protein, the three CD8 peptides, and ICL4 peptide-1 in each of these three IP fractions. ICL4 

peptide-1 was selected because only this peptide could be detected from all three samples. 

Consistent with the WB result (Figure 7A), approximately an equivalent quantity of Nef 

proteins was detected from all three samples, excepting a slightly higher level in the L350A/

I352A-derived sample (Figure 7C). Notably, both CD8 and ICL4 quantities from CD8-ICL4 

were at least 2-fold higher than those from CD8-ICL4S360A and were also slightly higher 

than those from CD8-ICL4L350A/I352A (Figure 7C). These results demonstrate that S360, 

and to a lesser degree L350/I352, is required for Nef binding to SERINC5, which suggests 

that S360 phosphorylation increases SERINC5 binding to Nef.
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DISCUSSION

In this study, we provide evidence that CycK/CDK13 is required for Nef antagonism of 

SERINC5. When the kinase activity of this complex was inhibited by KD of CCNK or 

CDK13, expression of the kinase inactive mutant CDK13D837A/D855N, or treatment of 

cells with the kinase inhibitor THZ531, Nef became unable to downregulate SERINC5 

and/or counteract its antiviral activity. CycK/CDK13 phosphorylated SERINC5 at S360, and 

S360 phosphorylation was absolutely essential for these Nef activities. Thus, our findings 

not only reveal another role for CycK/CDK13 in eukaryotic biology but also extend the 

previous observation on the interaction between Nef and CycK (Khan and Mitra, 2011). 

Interestingly, although CycK partners with both CDK12 and CDK13, CDK12 had no effect 

on SERINC5. This finding could be due to different subcellular localizations of the two 

CDKs or to additional interactions between CycK/CDK13, Nef, and SERINC5. Our results 

are consistent with CDK12 and CDK13 regulating the expression of markedly different sets 

of genes (Greifenberg et al., 2016).

We have obtained identical results from SERINC5 and the CD8-ICL4 chimeric proteins 

in their response to Nef, which confirms that ICL4 is targeted by Nef (Dai et al., 2018). 

Among those 58 aa’s in ICL4, S360/L350/I352 have been identified to play a critical 

role in Nef downregulation of SERINC5. However, because the S360D phosphomimetic 

SERINC5 was rapidly internalized from the cell surface and degraded in lysosomes even 

in the absence of Nef, ICL4 contains an unknown phosphoserine-dependent endocytic 

motif. This situation resembles CD4 downregulation from the cell surface by phorbol esters 

that activate protein kinase C. Activated protein kinase C phosphorylates serine residues 

in a dileucine motif, 408SQIxxLLS415, in the CD4 cytoplasmic tail, which facilitates its 

binding to AP-2 (Pitcher et al., 1999). As recently reported, ICL4 binds to the μ subunit 

of AP-1 and AP-2 in a phosphorylation-dependent manner (Stoneham et al., 2020). We 

found that inactivating L350/I352 in conjunction with the S360D substitution did not 

rescue its expression, indicating that L350/I352 do not represent a bona fide dileucine 

internalization motif. Thus, in addition to S360/L350/I352, there are additional residues that 

play an important role in SERINC5 downregulation by interacting with adaptor proteins in a 

phosphorylation-dependent fashion.

We found that when L350/I352 were inactivated, the CD8-ICL4 interaction with Nef was 

reduced, indicating that these two hydrophobic residues are involved in SERINC5-Nef 

binding. Thus, although L350/I352 do not constitute a dileucine motif, they could still 

function as a Nef-binding site. L350/I352 should constitute a hydrophobic surface and 

bind to the multifunctional hydrophobic pocket of Nef, which also accommodates the CD4 

dileucine motif (Kwon et al., 2020). However, because a single S360A substitution disrupts 

the Nef-binding ability, the Nef-SERINC5 binding is dependent on phosphoserine, which 

is different from the Nef-CD4 binding, which is independent of phosphoserine (Garcia and 

Miller, 1991).

We suggest that S360 phosphorylation is a dynamic process, which promotes SERINC5 

downregulation via changing the ICL4 conformation (Figure 7D). Nef interacts with 

SERINC5 and CycK/CDK13, which induces a conformational change in ICL4 via 
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phosphorylating S360. This conformational change makes L350/I352 more accessible to 

Nef and enhances the Nef-SERINC5 binding, resulting in SERINC5 endocytosis and 

degradation via the Nef dileucine motif. We also suggest that this conformational change 

is transient due to rapid dephosphorylation by cellular phosphatases and sustainable only 

in the presence of Nef and CycK/CD13 (Figure 7D). If this conformational change is 

maintained, for example, by introducing the phosphomimetic S360D substitution, the 

unknown endocytic motif in ICL4 is stably exposed, resulting in AP-2 recruitment and 

SERINC5 degradation in a Nef-independent manner.

In summary, our findings promise another direction in anti-HIV therapy, namely by 

interfering with CDK13 as a strategy to attenuate viral replication and spread. Besides our 

covalent chemical inhibitor, great efforts are being made to inhibit specific transcriptional 

CDKs and those that function independent of the cell cycle. Our study revealed one such 

attractive target for HIV-1, as CDK13 does not play an essential role in transcription or in 

the cell cycle.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Yong-Hui Zheng (zhengyo@msu.edu).

Materials availability—Further information and requests for resources and reagents 

should be directed to Yong-Hui Zheng (zhengyo@msu.edu).

Data and code availability

• This paper does not report original code.

• Original data for figures in paper available from the lead contact upon request.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines—The human HEK293T cells were obtained from the American Type Culture 

Collection. TZM-bI cells were obtained from the National Institutes of Health (NIH) AIDS 

Research and Reference Reagent Program. HEK293T and TZM-bI cells were maintained in 

Dulbecco modified Eagle medium (DMEM) with 10% bovine calf serum (BCS) (HyClone), 

at 37°C and 5% CO2. The SERINC3/5 knockout Jurkat-TAg (JTAg) cell line was provided 

by Heinrich Gottlinger and cultured in RPMI 1640 with 10% fetal bovine serum (FBS) 

(Sigma), at 37°C and 5% CO2.

Bacterial strains—Escherichia coli HB101 (Promega) was used as the recipient strain 

for preparation of HIV-1 proviral vectors, whereas all of the other plasmid vectors were 

prepared from Escherichia coli DH10B (NEB). GST-fusion proteins were prepared from 
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Escherichia coli BL21 (NEB). All these bacteria were cultured in LB broth in a shaking 

incubator at 37°C.

METHOD DETAILS

Expression vectors—The HIV-1 proviral clones pH22 and pH22ΔN were reported 

previously (Zheng et al., 2003). pCMV6-Ser5-FLAG and pCMV6-CD4-FLAG were 

reported previously (Ahmad et al., 2019; Shi et al., 2018; Zhang et al., 2017). pBJ5­

Ser5-HA and pBJ5-iHA-Ser5 were provided by Heinrich Gottlinger. pcDNA3.1-CDK12­

FLAG, pcDNA3.1-CDK13-FLAG, prEF-FLAG-CCNK, pLKO.1-CCNKshRNA, pLKO.1­

CDK12shRNA, pLKO.1-CDK13shRNA expression vectors were provided by Qintong Li. 

pCMV6-CCNK-FLAG was purchased from Origene. The Cas9 expression vector pMJ920 

that has a GFP marker was obtained from Jennifer Doudna through Addgene. A CCNK 
gRNA (5′-AGGACTTGATCCAGCCACCGAGG-3′) targeting the 2nd exon was expressed 

from pGEM-T (Promega) as we did before (Zhou et al., 2014). pcDNA3.1-CDK12-HA 

and pcDNA3.1-CDK13-HA were created by cloning CDK12-HA and CDK13-HA into 

pEGPF-N1 via HindIII/KpnI digestion. To create pGEX-ICL4, ICL4 and vector fragments 

were amplified from SERINC5 cDNA or pGEX-6P-1 by PCR and ligated via homologous 

recombination using a CloneExpress II one-step cloning kit (Vazyme Biotech, China). The 

S249A, S360A, S360D, T366A, and L350A/I352A mutation in pCMV6-Ser5-FLAG or 

pBJ5-iHA-Ser5, the L350A/I352A/S360D mutation in pBJ5-iHA-Ser5, the S360A mutation 

in pGEX-ICL4, the D858A and D876N mutation in pcDNA3.1-CDK12-FLAG, and the 

D837A and D855N mutation in pcDNA3.1-CDK13-FLAG, were created by a site-directed 

mutagenesis kit (Agilent). CD8α-ICL4 and its mutants were synthesized from TWIST 

Bioscience and expressed from the pTwist-CMV-Puro vector. All mutations were confirmed 

by Sanger sequencing. Primers and cloning methods are available upon request.

Protein purification—To purify SERINC5 proteins, HEK293T cells were cultured in 

twenty 10-cm cell culture dishes at 2x106 cells in 10 mL medium per dish. Cells were 

transfected with 4.5 μg pCMV6-Ser5-FLAG and 4.5 μg HIV-1 proviral vector in 27 μg PEI 

and cultured for 48 h. After collecting cells and washing with PBS, cells were incubated 

with a lysis buffer [50 mM Tris, pH 7.5, 150 mM NaCl, 5% glycerol, 1% n-Dodecyl 

β-D-maltoside (DDM, Sigma), and EDTA-free protease inhibitor cocktail (Roche)] at 

4°C for 2 h. Total cell lysate was spun at 11,000 rpm using a F13-14x50cy rotor in a 

SORVALL RC6+ centrifuge at 4°C for 30 min. Supernatant was collected and applied to 

a Poly-Prep chromatography column (BioRad) containing 0.5 mL anti-FLAG M2 affinity 

gel (Sigma). After incubating at 4°C for 2 h with gentle shaking, supernatant was drained 

away, SERINC5 proteins were eluted out by 3xFLAG peptide (Sigma) at 100 μg/ml in a 

purification buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 5% glycerol, 0.05% DDM, and 

protease inhibitor cocktail). SERINC5 proteins were analyzed by SDS-PAGE followed by 

mass spectrum and phosphorylation analyses. To purify CycK/CDK13 complex, HEK293T 

cells were transfected with an equal amount of pcDNA3.1-CDK13-FLAG and pCMV6­

CCNK-FLAG. Proteins were purified similarly and used as enzymes for in vitro kinase 

assay.
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To purify GST-ICL4 proteins, E. coli strain BL21 was transformed with pGEX-ICL4 vectors 

and cultured in 1 l of LB medium at 37°C with shaking to an OD600 of 0.5-1.0. GST-fusion 

protein expression was induced by adding IPTG to a final concentration of 0.1 mM for an 

additional 3 h at 37°C with shaking. After centrifugation at 3,500 g for 20 min at 4°C, 

bacterial pellets were subjected to three cycles of sonication. Supernatant was collected 

after centrifugation of the lysate at 12,000 g for 15 m at 4°C and incubated with glutathione­

Sepharose beads (GE Healthcare). Fusion proteins were eluted out by 20 mM reduced 

glutathione in 50 mM Tris-Cl (pH 8.0) and used as substrates for in vitro kinase assay.

Immunoprecipitation (IP)—To detect protein interactions in Figures 1D, 1E, and 1F, 

FLAG-tagged proteins were expressed with their target proteins in HEK293T cells cultured 

in 10-cm dishes. Proteins were pulled down by an anti-FLAG M2 antibody (Sigma) using 

Pierce Classic IP Kit (Thermo Fisher Scientific) and analyzed by western blotting (WB). 

To detect CD8-ICL4 interactions with Nef in Figure 7A, these proteins were expressed in 

HEK293T cells cultured in 10-cm dishes. Cells were lysed in a lysis buffer [50 mM Tris, 

pH 7.5, 150 mM NaCl, 5% glycerol, 1% DDM, and EDTA-free protease inhibitor cocktail] 

at 4°C for 2 h. Cytosolic factions were collected and incubated with an anit-HIV-1 Nef 

polyclonal antibody (NIH AIDS Reagent Program, Cat. #2949) at 37°C for 2 h. Samples 

were then incubated with Protein G beads (ThermoFisher) at 4°C overnight and analyzed by 

WB.

Viral antagonism of SERINC5—HEK293T cells were transfected with 

polyethylenimine (PEI) as we described previously (Zhang et al., 2017). Briefly, HEK293T 

cells were seeded in 6-well plates at 4x105 cells per well with 2 mL medium one day 

before. Each well was transfected with 10 μg PEI mixed with 2 μg HIV-1 proviral vector 

and 50 ng SERINC5 expression vector in the presence or absence of 1 μg silencing vectors 

(Cas9+sgRNA, or shRNA vectors) or expression vectors (CycK, CDK12, CDK13). Jurkat 

cells were electroporated by Amaxa Nucleofector II system on program 3 for Jurkat E6 

cells. Briefly, 2x106 cells and 4 μg plasmid DNA were resuspended with 100 μL of Mirus 

electroporation buffer and electroporated. Cells were immediately transferred to 12-well 

plates containing 2 mL of RPMI 1640 with 10% FBS and cultured for 5 days. Relevant 

empty vectors were added to keep the same amounts of total DNAs for each transfection 

whenever necessary. Cells were collected for analyzing total protein expression by western 

blotting and flow cytometry. Virions in supernatants were quantified by p24Gag ELISA and 

viral infectivity was measured after infection of TZM-bI cells.

Western blotting (WB)—Cells were lysed with 1% NP-40 in PBS containing protease 

inhibitor cocktail (Sigma). After removal of nuclei by brief centrifugation, cytosolic fraction 

was collected and mixed with 4x Laemmli Sample Buffer (Bio-Rad). Proteins were 

separated in 10% Bis-Tris acrylamide gels, blotted on to nitrocellulose membrane (Bio­

Rad), and detected by antibodies. Mouse monoclonal anti-Nef was described previously 

(Zheng et al., 2003). Horseradish peroxidase (HRP)-conjugated mouse monoclonal anti­

FLAG, anti-HA antibodies, and anti-actin were purchased from Sigma; HRP-conjugated 

mouse monoclonal anti-GAPDH was purchased from Proteintech; rabbit polyclonal anti­

CrkRS (CDK12) and anti-CDC2L5 (CDK13) were purchased from Novus; rabbit polyclonal 
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anti-CycK was purchased from Abcam; HRP-conjugated anti-human, -rabbit, and -mouse 

immunoglobulin G secondary antibodies were purchased from Thermo Fisher. Immobilon 

Classico and Crescendo Western HRP Substrate was purchased from MilliporeSigma.

Viral infectivity—TZM-bI cells were seeded at 10,000 cells per well in 100 μL medium 

in 96-well black plates with half area transparent bottom (Greiner Bio-One). Each well was 

inoculated with 100 μL of viruses that were subjected to 10-fold serial dilution and infection 

was done in triplicate. After 48 h, viral infection was determined by a Firefly Luciferase 

Assay Kit (Biotium). Briefly, after removal of media, 20 μL of 1x Firefly Lysis Buffer were 

added to each well. After 5 m, 15 μL of Firefly Luciferase Assay Buffer 2.0 containing 

0.3 μL of D-luciferin at 10 mg/ml were added to each well and luciferase activities were 

measured by Veritas Microplate luminometer (Turner Biosystem). Viral infectivity was 

calculated by normalizing luciferase activities with the amounts of p24Gag in viral inoculum.

Flow cytometry—After transfection of HEK293T and Jurkat cells with SERINC5 and 

other expression vectors, cells were treated with Fixation/Permeabilization Solution kit (BD 

Biosciences) for detecting intracellular proteins or remained untreated for detecting cell 

surface proteins. Cells were stained with Alexa Fluor 647- or pacific blue labeled anti-HA 

antibodies (BioLegend). After extensive washing, non-permeabilized cells were fixed with 

4% paraformaldehyde (PFA), and all cells were analyzed by BD LSR II.

To analyze cell cycle, Jurkat cells were transfected with increasing amounts of CCNK 
silencing or expression vectors. After 24 h, cells were collected and held in 0.4 mL 50% 

FBS in PBS on ice. Cells were fixed by adding 1.2 mL 70% EtOH with gentle mixing over 

20-30 s. After washing with PBS, 1 mL of Propidium Iodide Cell Cycle Reagent (Thermo 

Fisher) were added to stain cells for 15-30 min at 37°C and analyzed by BD LSR II. ModFit 

LT version 4.1.7 software was used to analyze the resulting DNA histograms and calculate 

the percentage of cells in each phase of the cell cycle, based on a total of 10,000 events per 

sample.

Endocytosis assay—An antibody uptake assay was used to measure Nef-mediated 

SERINC5 endocytosis as we did previously (Shi et al., 2018). Briefly, HeLa cells were 

transfected with SERINC5 and Nef expression vectors and cultured for 48 h. Cells were 

then stained with an anti-HA antibody to label SERINC5 proteins on the cell surface 

and incubated at either 37°C to allow endocytosis. One hour later, SERINC5 subcellular 

localization was determined by fluorescence microscopy.

Peptides—Three peptides FCFSPGGEDTEEQQPGK, FCF{pSer}PGGEDTEEQQPGK, 

and FCFSPGGEDKEEQQPGK derived from SERINC5 ICL4 were synthesized and 

purchased from GenScript.

In vitro kinase assay—Purified GST-ICL4 proteins or synthesized ICL4-derived peptides 

were pre-incubated with purified CycK/CDK13 for 10 min at room temperature in a kinase 

buffer [150 mM HEPES, pH 7.6, 34 mM KCl, 7 mM MgCl2, 2.5 mM dithiothreitol, 5 mM 

β-glycerol phosphate, 1xPhosSTOP (Roche)] as described (Greifenberg et al., 2016). Cold 

ATP was added to a final concentration of 2 mM, and the reaction mixture was incubated 
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up to 60 min at 37°C. Reactions were stopped by adding EDTA to a final concentration of 

50 mM. GST-ICL4 phosphorylation was determined by phos-tag staining buffer (see below) 

whereas peptide phosphorylation was analyzed by capillary zone electrophoresis (CZE)-MS.

Phos-tag gel assay—Phosphorylation of SERINC5 proteins purified from HEK293T 

cells in the presence of Nef, and GST-ICL4 proteins after in vitro kinase reaction were 

checked by a Phos-Tag Phosphoprotein Gel Stain kit (ABP Biosciences, Rockville, MD). 

Briefly, equal amounts of proteins were run on an SDS-polyacrylamide gel (PAGE) and 

fixed with 50% methanol and 10% acetic acid. After washing with water, the gel was 

incubated with staining reagent for 90 m on an orbital shaker. Background was removed 

by incubation with de-staining reagent and the gel was imaged using a 300-nm UV 

transilluminator.

LC (liquid chromatography)-MS/MS—Proteins associated with anti-FLAG M2 affinity 

gels or with control beads were washed three times with PBS, and treated with 20 μl 

of denaturing buffer (8 M urea, 100 mM NH4HCO3) at 37°C for 30 min. Proteins were 

then reduced with addition of 2 μl of 5 mM dithiothreitol (DTT) for 20 m at 37°C. 

After alkylation with addition of 5 μl of 5 mM iodoacetamide (IAA) for 10 min at room 

temperature in dark, the sample was diluted 4 times with addition of 60 μL of 100 mM 

NH4HCO3 to reduce the concentration of urea. After digestion with 0.2 μg of trypsin at 

37°C for overnight, 1 μl of formic acid (FA) was added to quench the digestion. The sample 

tube was centrifuged at 1000 rpm for 30 s and supernatant was taken out for desalting 

using Zip-tip (Millipore, ZTC18S096). Protein digest was resuspended in 10 μl of buffer A 

[2% Acetonitrile (ACN), 0.1% FA] and 1 μl of sample was loaded for nanoRPLC-MS/MS 

analysis.

An EASY nanoLC-1200 system (Thermo Fisher) equipped with a C18 RPLC column 

(75 μm i.d. x 50 cm, C18, 2 μm, 100 Å, Thermo Fisher Scientific) was connected to a 

Q-Exactive HF mass spectrometer (Thermo Fisher) for nanoRPLC-MS/MS analysis. Buffer 

A containing 2% ACN and 0.1% FA, and buffer B containing 80% (v/v) ACN and 0.1% 

FA were used to generate gradient separation. The flow rate was 200 nl/min. The gradient 

for RPLC separation was as follows: from 8 to 30% (v/v) B in 50 min, from 30% to 50% 

(v/v) B in 30 min, from 50% to 80% (v/v) B in 10 min and maintain at 80% (v/v) B for 10 

min. A Top 10 data dependent acquisition (DDA) method was used. The MS parameter was 

set as follows: the full MS resolution was 60,000 and the maximum injection time was 50 

ms. The scan range was 300 – 1800 m/z. The AGC target was 3e6. The MS/MS resolution 

was 30,000 and the maximum injection time was 50 ms. The AGC target was set 1e5 for 

MS/MS. The isolation window was set 2.0 m/z. The intensity threshold for fragmentation 

was 5e4. The dynamic exclusion was set 30 s.

Database search for protein identification—Proteome Discoverer 2.2 (Thermo 

Fisher) with SEQUEST HT searching engine built in was used. The mass tolerance for 

precursor ion was set 20 ppm and for fragment ion was set 0.05 Da. UniProt human 

proteome database (UP000005640) was used for the database searching. Trypsin was set 

as the enzyme with two maximum missed cleavages. Oxidation on Methionine, acetylation 

on Protein N-terminal, phosphorylation on Serine, Tyrosine and Threonine and deamination 
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on Asparagine or Glutamine were set as variable modifications. Carbamidomethylation 

on cysteine was set as the fixed modification. The peptides were filtered with confidence 

as high, corresponding to a 1% peptide-level false discovery rate. Protein grouping was 

enabled, and the strict parsimony principle was applied.

To determine the relative abundance of peptides and proteins across different samples using 

label-free quantification (LFQ), MaxQuant software (version 1.6.15.0) (Cox and Mann, 

2008) was also employed for the identification and quantification of proteins and peptides 

using the UniProt human proteome database (UP000005640) and default settings. The false 

discovery rates of peptide and protein identifications were less than 1%. Specifically, the 

MaxLFQ function (Cox et al., 2014) integrated in the MaxQuant software was used for 

LFQ. The basic idea of LFQ is to compare peptide intensity obtained from MS measurement 

directly across different biological conditions to determine the relative abundance difference 

of the peptide and the corresponding protein in the samples. The major MaxQuant 

parameters related to the LFQ were turning on LFQ with the minimal ratio count as 2, 

peptides used for protein quantification as “razor,” match between runs as “true,” matching 

time window as 0.7 min, and alignment time window as 20 min.

Capillary zone electrophoresis (CZE)-MS—The synthesized peptide samples from 

the CCNK/CDK13 incubation and mock treatment experiments were desalted using C18 

ZipTips (MilliporeSigma), lyophilized, and dissolved in 50 mM ammonium bicarbonate. 

A commercialized electro-kinetically pumped sheath flow CE-MS interface (an EMASS-II 

CE-MS interface, CMP Scientific) was employed to couple CZE with MS (Sun et al., 

2015). A 7100 CE System (Agilent) was used for the automated operation of CZE. The 

electrospray (ESI) emitters were pulled from borosilicate glass capillary (1.0 mm o.d., 0.75 

mm i.d.) by a Sutter P-1000 flaming/brown micropipette puller. The opening of the emitter 

was 20-40 μm. Voltage for ESI was ~2.2 kV.

A 1-m-long fused silica capillary (50 μm i.d., 360 μm o.d.) was used for CZE separation. 

The inner wall of the capillary was coated with linear polyacrylamide (LPA) as reported 

(Chen et al., 2017). The background electrolyte (BGE) for CZE was 5% (v/v) acetic acid 

(pH 2.4) and the sheath buffer for electrospray was 10% (v/v) methanol and 0.2% (v/v) 

formic acid in water. For each run, about 500 nL sample was injected into the capillary. Then 

30 kV was applied at the injection end and 100 mbar was applied at the mean time for CZE 

separation for 35 min.

A 6545XT AdvanceBio Q-TOF mass spectrometer (Agilent) was used for data acquisition. 

The gas temperature was 325°C. The drying gas was 1 l/min. The fragmentor and skimmer 

were set as 150 V and 65 V, respectively. The mass range was 800-1000 m/z. The 

acquisition rate was 0.4 spectra/s. The acquisition mode was Extended Dynamic Range 

(2 GHz) and the slicer mode was High sensitivity. The Agilent MassHunter Qualitative 

Analysis Navigator B.08.00 was used for data analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were performed using GraphPad Prism 8. Variance was estimated by 

calculating the standard error of the mean (SEM) and represented by error bars. Significance 
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of differences between samples was assessed using two-way ANOVA with Bonferroni post­

test. All experiments were performed independently at least three times, with representative 

experiment being shown. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant (p > 0.05). 

All of the statistical details of experiments can be found in the figure legends and figures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• HIV-1 Nef interacts with SERINC5 and the CycK/CDK13 kinase complex

• CycK/CDK13 phosphorylates S360 in intracellular loop 4 (ICL4) of 

SERINC5

• S360 phosphorylation enhances SERINC5 binding to the Nef/AP-2 complex

• SERINC5 is then targeted to endosomes and lysosomes for degradation
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Figure 1. Identification of CycK/CDK13 as a Nef-associated kinase complex via mass 
spectrometry
(A) FLAG-tagged SERINC5 protein was expressed in HEK293T cells and purified by 

anti-FLAG M2 affinity chromatography. After SDS-PAGE, proteins from total cell lysate 

and three eluted fractions were analyzed after being stained with Coomassie brilliant blue. 

The monomeric SERINC5 band is labeled.

(B) FLAG-tagged SERINC5 was expressed with a WT or ΔNef HIV-1 proviral vector in 

HEK293T cells and purified and analyzed similar to as in (A). The monomeric SERINC5 

band is labeled and a protein band at ~170 kDa is indicated by an asterisk.

(C) purified proteins from (B) were analyzed by liquid chromatography-mass spectrometry 

(LC-MS). Control experiments were conducted using beads that were not conjugated with 

any antibodies. Six proteins with molecular masses of 150–200 kDa that are not found in the 

control experiments are listed.

(D) FLAG-tagged CycK was expressed with WT or ΔNef HIV-1 in HEK293T cells. Proteins 

were immunoprecipitated with an anti-FLAG antibody and analyzed by western blotting 

(WB). CycK was detected by an anti-FLAG antibody and Nef and GAPDH were detected by 

their specific antibodies. IP, immunoprecipitation; Input, cell lysate.

(E) FLAG-tagged CycK was expressed with HA-tagged CDK12 or CDK13 in HEK293T 

cells. Proteins were immunoprecipitated and analyzed as in (D). CDK12 and CDK13 were 

detected by an anti-HA antibody.
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(F) FLAG-tagged CDK13 was expressed with HA-tagged SERINC5 in the presence of WT 

or ΔNef HIV-1 in HEK293T cells. Proteins were immunoprecipitated and analyzed as in (D) 

and (E).

All experiments were repeated twice, and similar results were obtained.
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Figure 2. CycK/CDK13 is required for Nef downregulation of SERINC5
(A) SERINC5 was expressed with Cas9 and CCNK-gRNA expression vectors in the 

presence of WT or ΔNef HIV-1 in HEK293T (upper gels) or SERINC3/5 knockout Jurkat­

TAg cells (lower gels) and analyzed by WB. SERINC5 was detected by an anti-FLAG 

antibody.

(B) SERINC5 with an internal HA tag (Ser5-iHA) was expressed with a CCNK-shRNA 

expression vector in the presence of WT or ΔNef HIV-1 in HEK293T cells. SERINC5 

expression on the cell surface was analyzed by flow cytometry using a fluorescent anti-HA 

antibody. Results are presented as histograms and levels of SERINC5-positive cells are 

indicated (%).

(C) SERINC5 was expressed with a CDK12- or CDK13-shRNA expression vector in the 

presence of WT or ΔNef HIV-1 in HEK293T cells and analyzed by WB. SERINC5 was 

detected by an anti-FLAG antibody.

(D) Ser5-iHA was expressed with a CDK12- or CDK13-shRNA expression vector as in (B) 

and analyzed similarly.

(E) Mean fluorescence intensity (MFI) values for the SERINC5-positive cell populations in 

(B) and (D) were statistically analyzed.

(F) SERINC5 was expressed with WT or ΔNef HIV-1 in the presence of an indicated shRNA 

or control (Ctrl) expression vector in HEK293T cells. After virions were collected and 

quantified by p24Gag ELISA, TZM-bI cells were infected with an equal amount of virions 

and viral infectivity was analyzed by measuring the intracellular firefly luciferase activity 

after 48 h of infection. Infectivity is presented as a relative value, with the WT HIV-1 

infectivity in the absence of SERINC5 set to 100%.
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(G) WT and ΔNef HIV-1 were produced from HEK293T cells in the presence of a CCNK-, 

CDK13-, or CDK12-shRNA expression vector and viral infectivity was analyzed and 

presented as in (F).

Error bars in (E)–(G) represent SEM from three independent experiments. Statistical 

analysis: *p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant (p > 0.05).
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Figure 3. SERINC5 S360 is critical for Nef antagonism of SERINC5
(A) SERINC5 transmembrane topology and its ICL4 aa sequence are presented. Residues 

selected for mutagenesis are colored in red.

(B)SERINC5, SERINC5S249A, and SERINC5S360A were expressed with WT or ΔNef HIV-1 

in HEK293T cells. Their expression was detected by WB with an anti-FLAG antibody.

(C) SERINC5, SERINC5S249A, and SERINC5S360A with an internal FLAG tag were 

expressed with WT or ΔNef HIV-1 in HeLa cells. Cells were stained with a fluorescent 

anti-FLAG antibody, and the antibody uptake was determined by confocal microscopy at 

37°C (scale bars, 5 μm).

(D) SERINC5 and SERINC5S360A with an internal HA tag were expressed with WT or 

ΔNef HIV-1 in HEK293T cells and their surface expression was analyzed by flow cytometry.

(E) MFI values for the SERINC5-positive cell populations in (D) were statistically analyzed.

(F) The anti-HIV-1 activity of SERINC5 and SERINC5S360A was compared and presented 

similar to as previously.

Error bars in (E) and (F) represent SEM from three independent experiments. Statistical 

analysis: *p < 0.05, ****p < 0.0001; ns, p > 0.05.
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Figure 4. A SERINC5 S360D phosphomimetic substitution reduces its expression
(A) SERINC5, SERINC5S360A, SERINC5S360D, and SERINC5L350A/I352A With an internal 

HA tag were expressed in SERINC3/5 knockout Jurkat-TAg cells. SERINC5 expression on 

the cell surface was determined by flow cytometry.

(B) MFI values for the SERINC5-positive cell populations in (A) were statistically analyzed 

and presented.

(C) SERINC5, SERINC5S360A, SERINC5S360D, and SERINC5L350A/I352A with an internal 

HA tag were expressed with WT or ΔNef HIV-1 in SERINC3/5 knockout Jurkat-TAg cells. 

SERINC5 expression on the cell surface was determined by flow cytometry.

(D) MFI values for the SERINC5-positive cell populations in (C) were statistically analyzed 

and presented.

(E) The indicated SERINC5 proteins with an internal HA tag were expressed in HEK293T 

cells and their expression was determined by WB using an anti-HA antibody.

(F) The indicated SERINC5 proteins were expressed in HEK293T cells. Cells were treated 

with MG132, lactacystin (LA), bafilomycin A1 (Baf A1), or NH4Cl, and SERINC5 protein 

expression was determined by WB.

(G) The anti-HIV-1 activities of the indicated SERINC5 proteins were compared and 

presented similar to as previously.

Error bars in (B), (D), and (G) represent SEM from three independent experiments. 

Statistical analysis: *p < 0.05, **p < 0.01, ***p < 0.001; ns, p > 0.05.
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Figure 5. CycK/CDK13 phosphorylates SERINC5 at S360
(A) SERINC5 was expressed with the indicated CDK13 or CDK12 proteins in the presence 

of WT or ΔNef HIV-1 in HEK293T cells. SERINC5, CDK13, and CDK12 proteins were 

detected by WB using an anti-FLAG antibody.

(B) SERINC5 was expressed with WT or ΔNef HIV-1 in HEK293T cells and treated 

with THZ531 at 100 μM. SERINC5 expression was analyzed by WB using an anti-FLAG 

antibody.

(C) SERINC5 and SERINC5S360A were expressed with WT or ΔNef HIV-1 in HEK293T 

cells and purified similar to as previously. After SDS-PAGE, proteins were analyzed after 

being stained with Coomassie brilliant blue or Phos-tag.

(D) GST-ICL4 and GST-ICL4S360A recombinant proteins were expressed in E. coli and 

purified by glutathione resin. An in vitro kinase assay was conducted by incubating these 

proteins with affinity-purified CycK/CDK13. After SDS-PAGE, proteins were analyzed after 

being stained with Coomassie brilliant blue or Phos-tag.

(E) Peptide 357FCFSPGGEDTEEQQPGK373, its S360-phosphorylated version, and its 

T366K-substituted version were synthesized. They were analyzed by high-resolution MS via 

direct infusion or analyzed by CZE-MS after treatment with affinity-purified CycK/CDK13.
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Figure 6. Nef downregulates CD8-ICL4 fusion protein
(A) CD8-ICL4 fusion proteins with an internal HA tag were created by swapping the CD8α 
CT with SERINC5 ICL4 and introducing substitutions into ICL4. They were expressed in 

HEK293T cells and detected by WB using an anti-HA antibody. SP, signal peptide; ECD, 

extracellular domain; TM, transmembrane; CT, cytoplasmic tail.

(B) Expression of SERINC5 proteins with the indicated substitutions was compared by WB 

using an anti-FLAG antibody.

(C) The indicated CD8-ICL4 fusion proteins were expressed in HEK293T cells and their 

expression on the cell surface was detected by flow cytometry after staining with a 

fluorescent anti-HA antibody.

(D) MFI values for the CD8-positive cell populations in (C) were statistically analyzed and 

presented.

(E) The indicated CD8-ICL4 fusion proteins were expressed with WT or ΔNef HIV-1 in 

HEK293T cells and analyzed as in (C).

(F) MFI values for the CD8-positive cell populations in (E) were statistically analyzed and 

presented.

Error bars in (D) and (F) indicate SEM calculated from three independent experiments. 

Statistical analysis: *p < 0.05; ns, p > 0.05.
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Figure 7. Detection of Nef and CD8-ICL4 interaction by quantitative proteomics
(A) The indicated CD8-ICL4 fusion proteins were expressed with HIV-1 expressing Nef 

with a dileucine substitution (Nef LL/AA). Proteins were co-immunoprecipitated with a 

polyclonal anti-Nef antibody and detected by WB using the indicated antibodies.

(B) CoIP samples 1, 2, and 3 in (A) were analyzed by MS after trypsin digestion. Nef, CD8, 

and ICL4 peptides detected from these samples are underlined. Three ICL4 peptides are 

numbered (1, 2, 3).

(C) Levels of Nef, CD8, and ICL4 peptides detected by MS in (B) were quantified by label­

free quantification (LFQ) and their intensity is presented as relative values, with the value 

of WT CD8-ICL4 set to 100%. Nef and CD8 were quantified by all detectable peptides and 

ICL4 was quantified by peptide-1 (SSSDALQGR). The error bars indicate SEM calculated 

from three independent experiments. Statistical analysis: *p < 0.05, **p < 0.01; ns, p > 0.05.

(D) A proposed model of how S360 phosphorylation promotes SERINC5 downregulation.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-FLAG M2 Sigma Aldrich Cat#F1804; RRID: AB_262044

Anti-HIV Nef Polyclonal NIH AIDS Reagent Program Cat#2949; RRID: n/a.

Anti-HA-HRP Sigma Aldrich Cat#H6533-1VL; RRID: AB_439706

Anti-FLAG-HRP Sigma Aldrich Cat#A8592-.2MG; RRID: AB_262044

Anti-Actin-HRP Sigma Aldrich Cat#A3854-200UL; RRID: AB_262011

Anti-GAPDH-HRP Proteintech Cat#HRP-60004; RRID: AB_2107436

Rabbit polyclonal anti-CrkRS (CDK12) Novus Cat#NB100-87011; RRID: AB_1199396

Rabbit polyclonal anti-CDC2L5 (CDK13) Novus Cat#NB100-68268; RRID: AB_1107830

Rabbit polyclonal anti-Cyclin K Abcam Cat#Ab85854; RRID: AB_1860218

Goat-anti-human-IgG-HRP Thermo Fisher Cat#31412; RRID: AB_228265

Goat-anti-rabbit-IgG-HRP Thermo Fisher Cat#G21234; RRID: AB_2536530

Goat-anti-mouse-IgG-HRP Thermo Fisher Cat#G21040; RRID: AB_2536527

AF647 anti-HA BioLegend Cat#682404; RRID: AB_2566616

Pacific Blue anti-HA BioLegend Cat#901525; RRID: AB_2734659

Monoclonal anti-Nef Zheng et al., 2003 n/a

Bacterial and virus strains

HIV-1 Provirus pH22, pH22ΔN Zheng et al., 2003 n/a

BL21 E. coli NEB Cat#C2530H

DH10B E. coli NEB Cat#C3019H

HB101 E. coli Promega Cat#L2011

Chemicals, peptides, and recombinant proteins

Propidum Iodide Cell Cycle Reagent Thermo Fisher Cat#BMS500PI

MG132 APExBio Cat#A2585

Lactacystin Enzo Cat#BML-P1104-0200

Bafilomycin A1 APExBio Cat#A8627

NH4Cl Sigma Cat#A9434-500G

THZ531 APExBio Cat#A8736

Protease Inhibitor Cocktail Sigma Cat#P8340

FCFSPGGEDKEEQQPGK (T366K mutant) GenScript n/a

FCFSPGGEDTEEQQPGK GenScript n/a

FCF{pSer}PGGEDTEEQQPGK GenScript n/a

3X FLAG peptide Sigma Cat#F4799-4MG

Critical commercial assays

CloneExpressII one-step cloning kit Vazyme Biotech, China Cat#C112

Site-directed Mutagenesis Kit Agilent Cat#200521

Firefly Luciferase Assay Kit Biotium Cat#30085-T

Phos-Tag Phosphoprotein Gel Stain Kit ABP Biosciences Cat#P005A

Pierce Classic IP Kit Thermo Fisher Cat#26146
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Cell lines

HEK293T ATCC CRL-3216

TZM-bI NIH AIDS Research and Reference 
Reagent Program

8129

SERINC3/5 knockout Jurkat-TAg A gift from Heinrich Gottlinger, 
University of Massachusetts

n/a

Oligonucleotides

CCNK gRNA (5′-AGGACTTGATCCAGCCA 
CCGAGG-3′) (pGEM-T)

Promega n/a

Recombinant DNA

pCMV6-Ser5-FLAG Ahmad et al., 2019; Shi et al., 2018; 
Zhang et al., 2017

n/a

pCMV6-CD4-FLAG Ahmad et al., 2019; Shi et al., 2018; 
Zhang et al., 2017

n/a

pBJ5-Ser5-HA A gift from Heinrich Gottlinger, 
University of Massachusetts

n/a

pBJ5-iHA-Ser5 A gift from Heinrich Gottlinger, 
University of Massachusetts

n/a

pcDNA3.1-CDK12-FLAG A gift from Qintong Li, Sichuan 
University

n/a

pcDNA3.1-CDK13-FLAG A gift from Qintong Li, Sichuan 
University

n/a

prEF-FLAG-CCNK A gift from Qintong Li, Sichuan 
University

n/a

pLKO.1-CCNKshRNA A gift from Qintong Li, Sichuan 
University

n/a

pLKO.1-CDK12shRNA A gift from Qintong Li, Sichuan 
University

n/a

pLKO.1-CDK13shRNA A gift from Qintong Li, Sichuan 
University

n/a

pCMV6-CCNK-FLAG Origene n/a

pMJ920 (GFP marker) Jinek et al., 2013 Jennifer Doudna, UC Berkeley, Addgene 
Cat#42234

pcDNA3.1-CDK12-HA This paper n/a

pcDNA3.1-CDK13-HA This paper n/a

pGEX-ICL4 This paper n/a

pCMV6-Ser5-FLAG S249A, S360A, T366A, L350A/
I352A

This paper n/a

pBJ5-iHA-Ser5 S249A, S360A, T366A, L350A/I352A, 
L350A/I352A/S360D

This paper n/a

pGEX-ICL4 S360A This paper n/a

pcDNA3.1-CDK12-FLAG D858A, D876N, D858A/
D876N

This paper n/a

pcDNA3.1-CDK13-FLAG D837A, D855N, D837A/
D855N

This paper n/a

pTWIST-CD8α-ICL4 and mutants TWIST Bioscience n/a

pNL4.3-LL-AA A gift from Warner Greene, UCSF n/a

Software and algorithms

ModFit LT version 4.1.7 Verity https://www.vsh.com/products/mflt/
mfTrialVersions.asp
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REAGENT or RESOURCE SOURCE IDENTIFIER

Proteome Discoverer 2.2 + SEQUEST HT Search Engine Thermo Fisher OPTON-30945 https://www.thermofisher.com/order/
catalog/product/OPTON-30945#/
OPTON-30945

MassHunter Qualitative Analysis Navigator B.08.00 Agilent https://www.agilent.com/en/support/
software-informatics/qual-b-0800-sp1

FlowJo v10.7 FlowJo https://www.flowjo.com/solutions/
flowjo/downloads

Other

Zip-tip Millipore Cat#ZTC18S096

EASY nanoLC-1200 system Thermo Fisher Cat#LC140

Protein G beads Thermo Fisher Cat#20398

Anti-HA Affinity Matrix Sigma Cat#11815016001

Anti-FLAG M2 Affinity Gel Sigma Cat#A2220
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