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Abstract

Genomic sequence analysis of Acinetobacter baumannii revealed the presence of a puta-

tive Acid Phosphatase (AcpA; EC 3.1.3.2). A plasmid construct was made, and recombinant

protein (rAcpA) was expressed in E. coli. PAGE analysis (carried out under denaturing/

reducing conditions) of nickel-affinity purified protein revealed the presence of a near-

homogeneous band of approximately 37 kDa. The identity of the 37 kDa species was veri-

fied as rAcpA by proteomic analysis with a molecular mass of 34.6 kDa from the deduced

sequence. The dependence of substrate hydrolysis on pH was broad with an optimum

observed at 6.0. Kinetic analysis revealed relatively high affinity for PNPP (Km = 90 μM) with

Vmax, kcat, and Kcat/Km values of 19.2 pmoles s-1, 4.80 s-1(calculated on the basis of 37 kDa),

and 5.30 x 104 M-1s-1, respectively. Sensitivity to a variety of reagents, i.e., detergents,

reducing, and chelating agents as well as classic acid phosphatase inhibitors was examined

in addition to assessment of hydrolysis of a number of phosphorylated compounds.

Removal of phosphate from different phosphorylated compounds is supportive of broad,

i.e., ‘nonspecific’ substrate specificity; although, the enzyme appears to prefer phosphotyro-

sine and/or peptides containing phosphotyrosine in comparison to serine and threonine.

Examination of the primary sequence indicated the absence of signature sequences charac-

teristic of Type A, B, and C nonspecific bacterial acid phosphatases.

Introduction

Phosphatases (EC 3.1.3) are a diverse, ubiquitous group of enzymes that hydrolyze phosphoe-

sters from a wide variety of compounds [1]. These enzymes have been broadly grouped

according to their pH optimum, i.e., acid, neutral or alkaline. Acid phosphatases have been fur-

ther grouped according to molecular weight, substrate specificity, response to inhibitors, phys-

ical appearance, and sequence homology into two large families, i.e., specific and nonspecific.

Both are widely distributed among Gram-positive and Gram-negative bacteria. Some are
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released in soluble form, i.e., secreted, or retained in the periplasmic space either free or mem-

brane bound [2, 3]. ‘Specific’ phosphatases have been shown to play a role in cellular processes

removing phosphate, the most common metabolomic functional group [1, 4]; whereas, ‘non-

specific’ phosphatases (NSAPs) are considered physiologically important in both utilization of

phosphoesters, and in gene expression [5]. NSAPs have been further grouped into three clas-

ses, i.e., A, B, and C on the basis of physico-chemical properties, and presence of key amino

acid signature sequences [6–8].

Acinetobacter baumannii is an opportunistic pathogen which has become a medically rele-

vant nosocomial pathogen accounting for approximately 2% of all healthcare associated infec-

tions in the United States [9]. The rate of multidrug resistant phenotypes associated with

Acinetobacter infections has merited Acinetobacter as being considered a severe threat requir-

ing use of last line treatment options, i.e., use of carbapenenems, tigecycline, and colistin thera-

peutic agents [10]. Epidemiological data indicate Acinetobacter spp to have acquired multi-

drug resistant phenotypes faster than almost all other Gram-negative bacteria [11].

Genomic sequence data suggest the presence of a putative acid phosphatase (NCBI Refer-

ence Sequence WP_000749225.1). Given that acid phosphatases (EC 3.1.3.2) have been impli-

cated as intracellular pathogen virulence factors [12, 13] and the emergence of this pathogen,

we report here partial characterization of an Acinetobacter baumannii recombinant acid phos-

phatase (rAcpA). The role of this enzyme in Acinetobacter baumannii pathogenesis is

unknown and the focus of current efforts.

Materials and methods

Cloning and protein expression

The complete genome of Acetinobacter baumannii (ATCC 17978 strain) has been sequenced

and annotated [14]. An Acinetobacter baumannii acid phosphatase gene (NCBI Accession

CP000521, region: 2058753–2059719, encoding 322 amino acids) construct was synthesized

with a C-terminal histidine tag, and inserted into a pET23a(+) expression vector via NdeI/Hin-
dIII restriction sites (Genscript, Inc.). The resulting pET23a-acid phosphatase (AcpA) bearing

plasmid was used to transform Escherichia coli Rosetta by electroporation using a BioRad

Gene Pulser Xcell apparatus. Bacterial transformants harboring pET23a-AcpA were selected

on LB agar plates containing ampicillin (100 μg/ml) and chloramphenicol (50 μg/ml) followed

by PCR confirmation using a pair of AcpA gene specific primers. For expression of rAcpA pro-

tein, an overnight culture of pET23a-AcpA transformant was used to inoculate 1 L LB broth

while shaking at 225 RPM at 37 0C to an OD600 of 0.6. Isopropyl β-D-1-thiogalactoside (IPTG,

Sigma Chemical Co.) was then added (1 mM final concentration), incubated for an additional

4 hours after which time bacterial cells were pelleted at 4000 x g for 10 minutes at 5 0C. Follow-

ing decanting of supernatant, the pellet was stored at -20 0C.

Preparation of recombinant lysate

Pellet material was resuspended in 20 mL ice-cold lysis buffer [50 mM NaH2PO4 buffer, pH 8

containing 300 mM NaCl, 10 mM imidazole, and 2 protease inhibitor cocktail tablets (Sigma

Chemical Co.)]. The pellet suspension was sonicated using a Misonix Ultrasonic Liquid Pro-

cessor (XL-200 Series) at an output wattage of 10 while partially immersed in an ice slurry.

Sonicated lysate was centrifuged at 6000 x g for 15 minutes at 5 0C. Supernatant was decanted

and 20 mL lysis buffer containing 8 M urea was added to the pellet, sonicated a second time,

and allowed to stand in an ice slurry for one hour to extract and free rAcpA from bacterial

inclusion bodies. Recombinant protein containing supernatant was obtained by centrifugation
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at 6000 x g for 15 minutes, and His-tagged rAcpA was subjected to affinity chromatography

purification using Ni2+-nitrilotriacetic acid (Ni-NTA) Agarose beads (Qiagen).

Nickel column purification

Ni-NTA Agarose beads (3 mL) were washed (3 times) with 2 mL cold lysis buffer and pelleted

at 200 x g for 2 minutes. Recombinant protein was added to the washed beads, mixed thor-

oughly overnight at 5 0C using an inverting rotator, transferred to a small glass column, and

allowed to settle (final bed volume dimensions = 1.7 x 13 cm). The column was first washed

with 25 mL lysis buffer containing 8M urea followed by 20 mL cold wash buffer (50 mM

NaH2PO4 buffer, pH 8 containing 300 mM NaCl, 40 mM imidazole, and 8 M urea). Bead-

bound recombinant protein was eluted by sequential addition of ten 1 mL applications of cold

elution buffer (50 mM NaH2PO4 buffer, pH 8 containing 300 mM NaCl, 250 mM imidazole,

and 8 M urea). Eluates (1 mL) were collected in microcentrifuge tubes partially immersed in

an ice slurry.

Removal of urea

Eluted Acinetobacter baumannii rAcpA was subjected to dialysis using a 500–1000 molecular

weight cutoff dialysis membrane (Fisher Scientific). Recombinant protein eluates were pooled

(~ 5–7 mL), and dialyzed sequentially against 200 mL dialysis buffer (0.050 M sodium acetate

buffer, pH 6.5) containing 4, 2, 1, and 0 M urea. Respective dialysates were allowed to equili-

brate at 5 0C for two hours. The final dialysis against buffer containing no urea, i.e., 0 M was

carried out twice. Dialysate was removed and aliquoted (1 mL) to which 50 μL glycerol was

added followed by storage at -20 0C. This served as source of purified recombinant protein

used in this study.

Acid phosphatase assay

Unless indicated otherwise, reaction mixtures contained 2.0 mM PNPP (Sigma Chemical Co.)

or phosphorylated compounds (Sigma Chemical Co.), 0.20 M MES (Sigma Chemical Co.)

buffer, pH 6.0, 2.0 mM NiCl2, and 0.080–0.30 μg total Acinetobacter baumannii rAcpA pro-

tein, and were brought to a final concentration of 0.186 μg/μL protein with addition of bovine

serum albumin (BSA, BioRad Laboratories) in a total reaction volume of 200 μL (determina-

tion of released phosphate) or 300 μL (determination of released paranitrophenol). All incuba-

tions were carried out for 30 minutes at 37 0C after which time reactions were placed in an ice

slurry for 3 minutes followed by addition of enzyme to the respective blanks and reactions

were terminated by heating at 65 0C for 10 minutes followed by immersion in an ice slurry for

3 minutes. Released phosphate was determined by addition of 1.0 mL BIOMOL GREEN phos-

phate reagent (Enzo Life Sciences), and monitored at 620 nm using a Genesys 10 UV Scanning

Spectrophotometer (Thermo Scientific). Paranitrophenol was monitored at 405 nm following

addition of 1.7 mL 0.5 M Glycine buffer, pH 10. Following subtraction of blank values, parani-

trophenol and released phosphate were quantitated using paranitrophenol and phosphate

standard curves, respectively. All reactions, i.e., generation of paranitrophenol and release of

free phosphate were linear with both time (30 minutes) and assay protein (0.30 μg, ~ 13.2 nM).

Specific activity is expressed as nmoles paranitrophenol or free phosphate liberated mg-1s-1.

Protein determination

Protein was determined using the Bradford dye-binding procedure [15] per manufacturer’s

recommendation (BioRad Laboratories) with BSA as protein standard.
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PAGE analysis

Recombinant protein (~0.5–1.0 μg) and pre-stained standard ladder were added to 10 μL 2x

Laemmli sample buffer under reducing conditions (2.0% v/v β-mercaptoethanol), and dena-

tured at 95 0C for 2 minutes. Respective samples were applied onto 4–20% precast gradient

polyacrylamide gels partitioned in 1X Tris Glycine buffer containing SDS. Electrophoresis was

carried out at constant voltage (80 volts) for 90 minutes at room temperature using a Power

Pac 3000 power supply, and Mini Protein II electrophoretic apparatus. Protein was stained

using Coomassie Brilliant Blue R-250. All electrophoresis reagents (sample buffers, running

buffers, standards, precast gels, and gel stain) and equipment were obtained from Bio-Rad

Laboratories.

Proteomic analysis

The predominant Coomassie Blue stained protein band (~37 kDa) resolved by electrophoresis

of nickel-affinity purified protein (cf., PAGE analysis) was excised, subjected to trypsin diges-

tion, and analyzed by matrix-assisted laser desorption ionization-time of flight (MALDI-TDF)

mass spectrometry in the Proteomics and Biomarkers Core of the University of Texas at San

Antonio.

Results

Expression and purification of rAcpA

A putative Acinetobacter baumannii acid phosphatase (AcpA) was expressed as a His(6x)-

tagged recombinant protein in E. coli. Recombinant protein was purified to near homogeneity

by nickel affinity column chromatography and migrated as a species of ~37 kDa under dena-

turing/reducing conditions (Fig 1A) in agreement with the molecular weight of 34.6 kDa from

the deduced protein sequence. Proteomic analysis of purified rAcpA revealed 9 peptides

(sequences in red) that coincided with that of the deduced Acinetobacter baumannii rAcpA

with a 49% overall protein coverage (Fig 1B).

Fig 1. Purification and proteomic analysis of Acinetobacter baumannii rAcpA. (A) SDS-PAGE analysis of nickel-

affinity purified rAcpA. (B) Proteomic analysis. The 9 matching peptide sequences are shown in red.

https://doi.org/10.1371/journal.pone.0252377.g001
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Dependence of rAcpA activity on pH and divalent cations

The dependence of rAcpA PNPP hydrolysis on pH was carried out in the presence of 2.0 mM

NiCl2 buffered with 0.2 M HEPES (pH 5.0–7.0) or MES (pH 6.0–7.5). As shown in Fig 2,

rAcpA exhibited maximum hydrolysis of PNPP at pH 6.0. Shown in Fig 3 is the dependence of

PNPP hydrolysis by rAcpA on various cations at pH 6.0. Maximum hydrolysis was observed

in the presence of 2.0 mM NiCl2 with MgCl2, CoCl2, MnCl2, and ZnCl2 exhibiting 85, 76, 50,

and 11% that observed for NiCl2, respectively.

Effect of inhibitors, detergents, and reducing agents

Shown in Table 1 is the effect of common phosphatase inhibitors, detergents, and reducing

agents on rAcpA PNPP hydrolysis. Inhibition, i.e., 50% (IC50) by sodium orthovanadate and

molybdate was 125 and 350 μM, respectively. EDTA, sodium tartrate, and sodium pyrophos-

phate were moderately inhibitory (IC50 = 1.25, 2.0, and 2.5 mM, respectively) while sodium

fluoride, and sodium phosphate inhibited 50% at 6.0, and 9.0 mM, respectively. In contrast to

Triton X-100 which inhibited 50% at 5.1 mM (0.32% v/v), the nonionic detergent Tween 20

stimulated ~1.4-fold at 3.2 mM (0.40% v/v). Although anionic detergents deoxycholate and

taurocholate exhibited millimolar IC50 values, i.e., 1.5 and 4.0, respectively, dodecyl sulfate was

very inhibitory (IC50 = 100 μM). Acinetobacter baumannii rAcpA exhibited some sensitivity

albeit low (~19%) to cysteamine phosphate, a classical inhibitor of alkaline phosphatase.

Although moderately sensitive to β-mercaptoethanol (IC50 = 10 mM), hydrolysis of PNPP was

considerably more sensitive to dithiothreitol and dithioerythritol (IC50 = 3.0 and 2.0 mM,

respectively). The enzyme was observed to be insensitive to okadaic acid.

rAcpA enzymatic kinetics

The effect of increasing PNPP substrate on Acinetobacter baumannii rAcpA activity was deter-

mined. Shown in Fig 4 is a Lineweaver-Burk plot from which Km and Vmax values of 90 μM

Fig 2. Determination of optimal pH. Acinetobacter baumannii rAcpA activity (pmoles s-1) was determined as a

function of pH using 0.2 M HEPES (solid circles, blue line) and 0.2 M MES (solid squares, red line) buffered reaction

mixtures. Error bars represent 1 standard deviation from the mean.

https://doi.org/10.1371/journal.pone.0252377.g002
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and 19.2 pmoles s-1, respectively, were derived. The turnover number (kcat) and catalytic effi-

ciency (kcat/Km) were calculated to be 4.80 s-1 and 5.30 x 104 M-1s-1, respectively.

rAcpA hydrolyzes different phosphorylated substrates

Acinetobacter baumannii rAcpA was observed to remove phosphate from an array of sub-

strates including nucleotides, sugars, metabolites, vitamin derivatives, phosphorylated amino

acids, and phosphorylated peptides (Table 2).

Acinetobacter baumannii AcpA exhibits high homology with the

Escherichia coli SurE protein

A. baumannii AcpA (AbAcpA) has been annotated as an acid phosphatase. Gandhi and Chan-

dra classified bacterial non-specific acid phosphatases into A, B and C classes [5]. Protein

BLAST (via NCBI) and phylogeny (PhyML, via http://www.phylogeny.fr; [16, 17]) analyses

reveal that the AbAcpA is closely related to the well-characterized E. coli SurE protein (EcSurE;

NCBI Reference Sequence: WP_001472109.1), but distant from other non-specific acid phos-

phatases as shown in Fig 5A. The EcSurE protein is a metal ion-dependent phosphatase [18]

that dephosphorylates various ribo- and deoxyribonucleoside 50-monophosphates and ribonu-

cleoside 30-monophosphates, and plays an important role in bacterial stationary phase survival

[19]. Acinetobacter baumannii also expresses a SurE-like protein (AbSurE; GenBank A3M7F7)

with 69.2% amino acid similarity (43.6% identity) to EcSurE, and 47.3% amino acid similarity

(21.9% identity) to AbAcpA. Shown in Fig 5B is a multiple sequence alignment of AbAcpA,

AbSurE, and EcSurE proteins using Clustal W [20, 21]. The presence of a unique leader

sequence in AbAcpA (Fig 5B) suggests this protein may be secreted while AbSurE resides pri-

marily inside the bacterium.

Fig 3. Effect of divalent cations on Acinetobacter baumannii rAcpA activity. Reactions were carried out at pH 6.0 in

the presence of indicated divalent cations (2 mM final concentration). Activity is expressed as percent of rAcpA

activity (pmoles s-1) observed in the presence of NiCl2. Error bars represent 1 standard deviation from the mean.

https://doi.org/10.1371/journal.pone.0252377.g003
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Discussion

C-terminus His(6x)-tagged Acinetobacter baumannii rAcpA migrated as a monomer of ~37

kDa under reducing denaturing conditions which is in good agreement with the predicted

molecular weight from protein sequence (Fig 1B), i.e., 34,619. The identity, i.e., sequence of the

recombinant protein synthesized from the gene construct was verified by proteomic analysis.

Examination of the primary sequence revealed the absence of GSYPSGHT, FDIDDTVLFSSP,

and bipartite sequence motifs [IV]-[VAL]-D-[IL]-D-E-T-[VM]-L-X-[NT]-X(2)-Y and [IV]-

[LM]-X(2)-G-D-[NT]-L-X-D-F signature sequences of Class A, B, and C nonspecific acid phos-

phatase, respectively [3, 22]. Additionally, this phosphatase shares no other sequences unique to

Class A, B, and C bacterial phosphatases as shown by Gandhi and Chandra [5]. Although the

bipartite Class C signature sequence with defining aspartic acid residues is missing in Acineto-
bacter baumannii rAcpA, the primary sequence does contain multiple aspartic acid (D) residues.

Maximum hydrolysis of PNPP by Acinetobacter baumannii rAcpA was observed at pH 6.0

in the presence of 2.0 mM NiCl2. Kinetic analysis revealed micromolar affinity for PNPP

(Km = 90 μM), turnover number of 4.80 s-1, and a catalytic efficiency of 5.30 x 104 M-1s-1. Aci-
netobacter baumannii rAcpA is sensitive to early transition metal oxyanions, i.e., vanadate and

molybdate (μmolar IC50 values) compared to that observed for other compounds tested (mM

IC50 values). Sensitivity to vanadate is suggestive of involvement of transiently phosphorylated

histidine residues during cleavage of the phosphomonoester O-P bond [23, 24]. The classic

inhibitor of alkaline phosphatase, i.e., cysteamine phosphate had no strong effect although a

Table 1. Effect of common inhibitors, detergents, and reducing agents on Acinetobacter baumannii rAcpA activity.

Compounds IC50 (mM)a Max. Conc. Tested (mM) Percent Controld

Sodium Pyrophosphate 2.5 10

Sodium Tartrate 2.00� 10

Sodium Phosphate 9 20

Sodium Fluoride 6 20

Molybdate 0.35 2

Vanadate 0.125 2

EDTA 1.25 5

Sodium Taurocholate 4.00� 10

Sodium Deoxycholate 1.5 10

Triton X100 5.10b� 16

Tween 20c N/A 3.2 140

Sodium Dodecyl Sulfate 0.10 1.0

Cysteamine S-Phosphate ND 2.0 81

β-Mercaptoethanol 10.0 25

Dithiothreitol 3.0 10

Dithioerythritol 2.0 10

Okadaic acid ND 0.0001 100

a Inhibitor concentration rendering 50% inhibition (IC50) was determined by extrapolation from the 50% inhibition value. Each compound tested was dissolved in

dH2O and analyzed out to the indicated maximum concentration (5 replicates for each concentration tested and corresponding blank).
b 0.32% corresponds to 5.10 mM. Molarity-calculated on 625 g/mole.
c 0.40% corresponds to 3.2 mM. Molarity-calculated on 1,225 g/mole.
d Percent control = (Activity in presence of compound)/(Activity in absence of compound) x100.

� Apparent IC50-extrapolated from the linear portion of the titration curve prior to leveling off and reaching 50% activity.

ND = Not determined

N/A = Not applicable

https://doi.org/10.1371/journal.pone.0252377.t001
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small degree, i.e., ~19% inhibition was observed. Inhibition by EDTA (IC50 = 1.25 mM) is con-

sistent with a divalent metal cation requirement for maximum activity. Pyrophosphate was

shown to reduce activity by 50% at 2.5 mM. Consistent with the presence of 3 cysteine residues

accommodating formation of one disulfide bridge, the effect of reducing agents suggest differ-

ential accessibility with 10 mM 2-mercaptoethanol reducing activity by 50% in contrast to 3.0

and 2.0 mM dithiothreitol (trans isomer) and dithioerythritol (cis isomer), respectively. The

monofunctional sulfhydral group reagent mercury was very inhibitory (cf., Fig 3). This enzyme

appears more sensitive to tartrate (IC50 = 2.0 mM) but only moderately sensitive to fluoride

(IC50 = 6.0 mM), classical and common inhibitors of high molecular weight acid phosphatases

[13]. Okadaic acid, did not inhibit Acinetobacter baumannii rAcpA at 100 nM. Although 5

times the IC50 value observed for inhibition of serine/threonine phosphatase protein 1, this is

consistent with Acinetobacter baumannii rAcpA not being a member of this family of phos-

phatases [25, 26].

A comparison of hydrolysis of phosphoester bearing molecules to that of PNPP by Acineto-
bacter baumannii rAcpA revealed several phosphorylated compounds as potential substrates.

Most notable was pyridoxal phosphate (35.3%), ribose-5-phosphate (20.0%), 3’-AMP (63.0%),

5’-AMP (27.0%), TMP (27.3%), and thiamine monophosphate (12.3%). Some of the phosphor-

ylated compounds evaluated were not hydrolyzed relative to PNPP, i.e., galactose-1-phosphate,

phytic acid, CDP, CTP, GMP, GTP, ITP, TTP, and UTP. Nucleotides ADP, ATP, GDP, IDP,

and UDP were marginally hydrolyzed, i.e.,< 2% that of PNPP; whereas, CMP, IMP, TDP, and

UMP exhibited higher relative hydrolysis values from 3.0–8.7%.

Reversible phosphorylation is an important means of regulation in prokaryotes [27].

Numerous serine/threonine/tyrosine phosphorylated proteins have been observed in bacteria

[28–30]. Likewise, serine/threonine kinases from phylogenetically diverse bacteria have been

Fig 4. Determination of Km and Vmax. Enzymatic activity (0.149 μg rAcpA) was determined over a broad range of

PNPP concentrations (0.10–10.0 mM) in replicates of five for each substrate concentration tested and corresponding

blank. Km and Vmax values were derived from standard Lineweaver-Burk plot analysis. Error bars represent 1 standard

deviation from the mean.

https://doi.org/10.1371/journal.pone.0252377.g004
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described [30]. Bacterial phosphoprotein-metal dependent phosphatases have been shown to

mediate dephosphorylation of phosphoserine or phosphothreonine residues, and a 2C-like

phosphoprotein phosphatase has been described in E. coli [31]. However, these phosphatases

have been shown to hydrolyze PNPP only in the presence of Mn2+ and are insensitive to vana-

date properties inconsistent with the Acinetobacter baumannii rAcpA. Although the phospha-

tase from Acinetobacter baumannii removed phosphate from the phosphorylated amino acid

phospho-L-tyrosine (31.5% that of PNPP, assayed at 2.0 mM) and tyrosine phosphopeptide

(20% that of PNPP but assayed at 100 μM, ~ 1 Km value), little to no phosphate was released

from phospho-L-threonine (4.5%) and threonine phosphopeptide (0%), respectively. β-casein,

a 30 kDa protein containing 5 serine residues exhibited 1.2% hydrolysis relative to PNPP while

0.4, and 0% hydrolysis was observed for phospho-L-serine and serine phosphopeptide,

respectively.

The removal of phosphate from ribose-5-P, AMP, thiamine monophosphate, and pyridoxal

phosphate (vitamin B6) may constitute a means of interdiction of host response to the organ-

ism. Alternatively, removal of phosphate from 3’ and 5’ nucleoside monophosphate, i.e., AMP,

and 5’ nucleoside monophosphates TMP, CMP, IMP, TDP, and UMP is consistent with the

Class B and C nonspecific 5’, 3’-nucleotidase theme making available products required for

Table 2. Hydrolysis of various phosphorylated compounds by Acinetobacter baumannii rAcpA.

Compounda Relative Activityb Compounda Relative Activityb

Pyridoxal Phosphate 35.3 3’-AMPc 63.0

Thiamine Pyrophosphate 3.6 AMP 27.0

Thiamine Monophosphate 12.3 ADP 1.9

Phospho-L-Threonine 4.5 ATP 1.1

Phospho-L-Tyrosine 31.5 CMP 4.1

Phospho-L-Serine 0.4 CDP 0.0

Phosphoethanolamine 1.8 CTP 0.0

Phosphocholine 2.0 GMP 0.0

β-Glycerol Phosphate 40.0 GDP 1.0

Ribose-5-Phosphate 20.0 GTP 0.0

Galactose-1-Phosphate 0.0 IMP 6.0

Fructose-1,6-bisphosphate 6.6 IDP 0.5

Glucose-6-Phosphate 2.7 ITP 0.0

Mannose-6-Phosphate 10.6 TMP 27.3

Trehalose-6-Phosphate 4.0 TDP 3.0

PEP 7.6 TTP 0.0

Phosphocreatinine 0.6 UMP 8.7

Phytic acid 0.0 UDP 1.8

Serine Phosphopeptide 0.0 UTP 0.0

Threonine Phosphopeptide 0.0 NADP+ 3.7

Tyrosine Phosphopeptide 20.0 NADPH 3.5

β-Casein 1.2

a Compounds were dissolved in dH2O. With the exception of phosphopeptides and β-Casein, all phosphorylated compounds were tested at 2.0 mM final concentration.

Phosphopeptides

R-R-A-pS-V-A, K-R-pT-I-R-R, T-S-T-E-P-Q-pY-Q-P-G-E-N-L, and β-Casein were all tested at 0.1 mM final concentration.
b Relative Activity (%) = (nmoles mg-1s-1 phosphate released from phosphorylated compounds)/(nmoles mg-1s-1 paranitrophenol released from PNPP) x 100.

0% = Experimental values (5 replicates)–Blank values (5 replicates).
cWith the exception of 3’-AMP, all nucleoside mono-, di-, and triphosphates listed are 5’.

https://doi.org/10.1371/journal.pone.0252377.t002
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nucleotide biosynthesis [32, 33]. Interestingly, this enzyme removed phosphate from both

NADP+ and NADPH albeit to a lesser extent than that observed for other phosphorylated sub-

strates, i.e., 3.7 and 3.5%, respectively. Could removal of the 2’-phosphate be prefatory to con-

version of NAD+ to nicotinamide mononucleotide (NMN) and AMP, thus constituting a

Fig 5. Phylogenic analysis of Acinetobacter baumannii AcpA. (A) Phylogenetic tree constructed using amino acid

sequences of AbAcpA and other indicated bacterial phosphatases including SurE proteins and 3 classes of non-specific

acid phosphatases. The names of bacteria along with the NCBI accession numbers for each protein are as follows:

SeAcp (Salmonella enterica; ECE6726571.1), KpAcp (Klebsiella pneumoniae; AAL59317.1), AbAcpA (Acinectobacter
baumannii; ABO12194.2), BaSurE (Brucella abortus; WP_002966786.1), AbSurE (Acinectobacter baumannii;
A3M7F7), EcSurE (Escherichia coli; WP_001472109.1), SeClassA (Salmonella enterica; CAA41760.1), KaClassA

(Klebsiella aerogenes; ABW37174.1), PsClassA (Providencia stuartii, CAA46032.1), BaClassC (Bacillus sp.;

ABO69628.1), SdClassC (Streptococcus dysgalactiae; CAA73175.1), CpClassC (Clostridium perfringens; ACB11490.1),

SeClassB (Salmonella enterica; AAW22868.1), KpClassB (Klebsiella pneumonia; SSW83847.1), and EcClassB

(Escherichia coli; CAA60534.1). (B) Amino acid sequence alignment of AbAcpA, AbSurE, and EcSurE.

https://doi.org/10.1371/journal.pone.0252377.g005
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vestigial NAD+ utilization pathway [34, 35]? It remains to be determined if this phosphatase

plays a role in the pathogenesis of this organism, the topic of ongoing investigation.
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