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Abstract

The availability of low-cost wildlife trackers increases the capacity to collect valuable eco-

logical data when research budgets are limited. We converted a commercially available

global positioning system (GPS) product into a low-cost tracking device that sends data via

the mobile phone network, and assessed its performance under varying conditions. We

established a stationary test, deploying devices along a continuum from open urban areas

to topographically and structurally complex forested sites. We tested three features of the

device: (a) the GPS, by measuring fix success rate, fix precision and horizontal dilution of

precision (HDOP), (b) remote download capacity via the mobile phone network and (c) bat-

tery drain. Measures of GPS performance demonstrated high fix success rates and preci-

sion. HDOP values were influenced by habitat type and topographical position, but

generally remained very low, giving an acceptable degree of error for most applications in

wildlife research. Devices experienced delayed data transmission at sites with less phone

reception, and faster battery drain at sites with denser vegetation. We recorded device mal-

functions in 8.2% of the 110 sampling locations, but these were not associated with habitat

type or topography. Our device was effective under a wide range of conditions, and the

development process we used provides guidance to other researchers aiming to develop

cost-effective wildlife trackers. Reducing the financial and labour costs of acquiring high-

quality movement data will improve the capacity to increase sample size in animal move-

ment studies.

Introduction

Animal movement is a key process influencing survival and reproduction [1, 2]. Movement is

fundamental to behaviours such as acquiring food, shelter and mates, avoiding predators, and

dispersing to new habitats [1]. Further, understanding how animals move within and between

landscapes will provide a sound basis to improve management. However, data are limited for

many species and data collection remains a major challenge [2].
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Spatial ecologists commonly employ the Global Positioning System (GPS) to acquire move-

ment data. The advantages of GPS technology include increased data quantity and quality, and

reduced labour time and costs. The latter can be reduced further by coupling GPS with the

mobile phone network which eliminates the need to extract the data via a local radio-link, or

to recapture the tagged animal and download stored data, as the data can be collected

remotely.

Although these new technologies have numerous benefits and have made significant

improvements to the quality and quantity of data researchers can obtain, commercially avail-

able tracking devices remain expensive. As a result, researchers often purchase a small number

of units [3], reducing sample size and limiting population-scale inference [4–7].

A potential solution is to purchase off-the shelf GPS components and modify them for wild-

life trackers. Although this strategy has been successfully applied on several occasions [4, 5, 7],

it is not widespread. Moreover, using remote data transmission via the mobile phone network

has been successful in some studies [8, 9] but implementing this technology into custom-made

wildlife trackers is rare. For example, Quaglietta et al. [10] developed and tested a GPS wildlife

tracker linked to the phone network for otters (Lutra lutra) and reported a reliable method of

GPS telemetry in riparian and aquatic environments. By combining a data-logging function

with a remote download feature, data loss is minimised, as recapturing animals to regain data

is often difficult or local download restricted (i.e. home ranges are large or located in remote

or challenging environments). As far as we are aware, no studies have tested custom-made

wildlife trackers with remote download function in a range of terrestrial environments and

under varying environmental conditions.

In this study, we (a) describe the development of a custom-made GPS/High Speed Packet

Access (HSPA) wildlife tracker and (b) determine the performance of our devices by testing

GPS function, remote download capacity and battery drain rate along a continuum from

urban areas to topographically complex forested sites.

We chose two study sites, that differ in vegetation cover, topographical levels and phone

network coverage to test the performance of our trackers. We expected varying results between

study locations but demonstrate that both GPS and remote download capacity performed very

well under a range of conditions.

Methods

GPS wildlife tracking system development

We purchased MT-900C tracking devices from UniTraQ (UniTraQ International Corp., Tai-

wan) at a unit cost of US$175. Unlike many low-cost tracking devices, the MT-900C combines

a GPS and 3G HSPA mobile interface, and can be configured to store GPS fixes in an internal

4 MB flash memory (up to 944 records). Fixes are stored on the device until the next active

phone network connection, when data are sent via text message or to a specific IP address via a

HSPA internet connection. In addition to GPS fix (reported as longitude and latitude), each

record delivers information including speed (m/s), send/resend status, battery status (mV) and

cellular signal quality (CSQ).

We modified the firmware to increase battery life and included several additional variables

in each record. We decreased power consumption by reducing the duration of the awake

mode in the awake–sleep cycle between fix attempts. Further, we programmed the device to

report altitude, number of satellites and horizontal dilution of precision (HDOP) to help

define the quality of each fix. Secondly, we made changes to the hardware by extending the

GPS antenna, enabling this to point towards the sky when the device was built into a collar,

increasing the likelihood of locating satellites [11]. To extend battery life, we replaced the
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original battery with a pair of 3.6-V lithium ion battery cells (Panasonic NCA103450

2350mAh, Master Instruments Pty Ltd., NSW, Australia), which required the attachment of an

external battery connector to the circuit board.

We used Plasticast, a fast-curing, two-component, rigid, urethane casting compound (Dal-

chem Pty Ltd., VIC, Australia; Barnes Products Pty Ltd., NSW, Australia) to embed the tracker

components in a shock resistant and waterproof casing. We built the casing using a mould

designed to fit the tracker components and to suit our study species, the swamp wallaby (Wal-
labia bicolor). We embedded the batteries and device circuit board (including the 3G antenna)

within the casing and sealed the lid using silicon. We attached a 25 mm wide synthetic web-

bing tube to the casing to function as a collar. The GPS antenna, embedded in epoxy putty

(Selleys Pty Ltd, NSW, Australia) and covered with silicon spray, was fitted within the collar

webbing opposite the casing. The antenna wire was positioned inside the tube to prevent dam-

age. A video showing how collars were built is available at S1 Video.

Finally, we developed an internet server to facilitate communication with deployed devices,

data download, and initial data visualisation by displaying fixes in Google Maps. The cost of

each unit, including firmware change and development of the server, was US$366.81 (see

detailed list of costs in S1 Table). The weight of the custom-made tracker was 180g.

Stationary field test

Study locations. In a stationary test, we systematically tested the devices at two locations,

Phillip Island and the Victorian Central Highlands, to represent a range of conditions likely to

be encountered in animal GPS tracking studies. The two locations differed with respect to veg-

etation cover, topographical complexity and phone network coverage (Fig 1).

Phillip Island (38˚ 29’ S; 145˚ 15’ E) is a 100-km2 landmass 90 km south-east of Melbourne,

Australia. Relief is mostly low, with a maximum altitude of 112 m above sea level. The land-

scape contains patches of agricultural land, coastal and roadside vegetation, urban centres and

small (<100 ha) patches of native bushland (Fig 1).

The Victorian Central Highlands (37˚ 75’ S; 145˚ 69’ E) ranges in elevation from 200–1500

m above sea level. The landscape is topographically complex with much of the region charac-

terised by steep (>20˚) slopes and gullies. We selected two sub-regions within the Central

Highlands study area differing in canopy cover and vegetation complexity: wet and dry forest.

Wet forest was characterised by a tall Eucalyptus regnans or E. delegatensis overstorey, with a

tall broad-leaved shrubby understorey and a moist, fern-rich ground layer. Dry forest was

dominated by messmate stringybark (E. obliqua) and broad and narrow-leaf peppermints (E.

dives and E. radiata), and a diverse open understorey of shrubs, grasses and herbs. Dry forest

was characterised by a more open canopy than wet forest (Fig 1).

Study design. We conducted systematic tests of the devices between February and May

2016. On Phillip Island, we chose five different habitat types to represent the range of terres-

trial environments present: remnant bushland, farmland, roadside vegetation and urban and

coastal areas. In each habitat type, we randomly selected ten sites using ArcGIS 10.2.1 [12], giv-

ing 50 sites in total (Fig 1). The minimum distance from the edge of each habitat type was 25

m and minimum distance between each sampling site was 100 m.

We initially stratified the Central Highlands study area into wet forest and dry forest. In each

forest type, we distributed sites in clusters of three (gully, mid-slope and ridge), with randomly

chosen sites in gullies defining the position of the other two sites in the cluster (Fig 1). Clusters

were at least 100 m apart, while sites within clusters were separated by a minimum distance of

30 m. We excluded areas of recent disturbance (<10 years), such as fire or logging from the

sampling area. There were 10 clusters (30 sites) in each forest type, giving 60 sites in total.
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We used ten different devices on Phillip Island and the same ten plus an additional five in

the Central Highlands. We positioned each randomly-chosen device on the ground at each

site and secured it to a wooden stake with adhesive tape. Devices were scheduled to record

Fig 1. Location of the two study areas, Phillip Island and the Central Highlands. Sites in the Central Highlands are positioned in blocks of three;

gully (G), mid-slope (M) and ridge (R). Locations (a) and (b) represent the two spatially separated study sites of the Central Highlands.

https://doi.org/10.1371/journal.pone.0199617.g001
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fixes every 30 minutes, a rate used in many studies [9, 13, 14]. Devices remained at each site

for a period of approximately 24 hours, before being moved to another site.

Data analysis. We selected three response variables to test GPS performance: fix success

rate, fix precision and horizontal dilution of precision (HDOP). We assessed remote download

capacity using a variable representing the cellular signal strength (CSQ), and assessed battery

drain using the reduction in voltage over the deployment period standardised by the number

of fix attempts. As predictor variables, we chose habitat type (both study areas), topographic

position (Central Highlands) and, in the case of remote download and battery drain, the CSQ

value, as these factors were expected to influence the performance of the device. For some anal-

yses we also included the number of successful fixes as a continuous predictor. Because topog-

raphy was relevant only in the Central Highlands, we analysed each response variable

separately in each study area. Details of response and predictor variables are presented in

Table 1. Malfunctioning devices with less than two successful fixes (n = 6; 5.5%), and fixes with

Table 1. Overview of all variables.

Response variable Description Predictor

variables

GPS performance
Fix success (%) Percentage of successful fixes (number of fixes with X and Y

coordinates divided by the number of fix attempts)

Habitat Type

Topography

(CH)

Fix precision The median distance in meters between each GPS fix and the

median fix location.

Habitat Type

Topography

(CH)

Number of fixes

Horizontal dilution of

precision (HDOP)

Geometric quality of the satellites contributing to the GPS

position1
Habitat Type

Topography

(CH)

Number of fixes

(CH)

Remote download capacity
Data transmission (%) Percentage of fixes sent from the device with no temporal delay Habitat Type

Topography

(CH)

Number of fixes

Cellular signal

quality2

Battery drain
Voltage loss index mV used during deployment divided by the number of fix

attempts

Habitat Type

Topography

(CH)

Cellular signal

quality2

Response and predictor variables used for testing the devices’ (a) GPS performance, (b) remote download capacity

via the phone network (c) battery drain rate. Predictor variables followed by (CH) were only used to analyse data

from the Central Highlands study area. Habitat types were bushland, farmland, roadside vegetation, urban and

coastal areas on Phillip Island and wet and dry forest in the Central Highlands. Topography was classified as a three-

level variable representing gully, mid-slope and ridge.
1 Values can range from < 1 (ideal) to > 20 (poor).
2 Cellular signal quality (CSQ) represents the signal strength of the mobile network and ranges from 0 (no signal) to

31 (high signal strength).

https://doi.org/10.1371/journal.pone.0199617.t001
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no coordinates and HDOP and CSQ values of 99, were excluded from the analysis (Phillip

Island: n = 806; 16.9%; Central Highlands: n = 2630, 22.9%).

Two of the response variables, fix success rate and data transmission rate (Table 1), were

not amenable to formal analysis due to their limited range: most of the values for both vari-

ables were 100%. However, graphical data exploration revealed a strong, non-linear relation-

ship between data transmission and phone signal strength (CSQ), so we displayed this using a

scatter plot and smoothing spline.

We determined associations between the remaining three response variables and their

predictors (Table 1) using either linear models (LM) or linear mixed models (LMM) with

Gaussian error distributions, having tested assumptions of normality, independency and

homogeneity of variance. For each response variable separately, we initially compared a global

fixed model with and without device ID as a random factor, accepting the form of model with

the lowest AICc (Akaike’s Information Criterion corrected for small sample size) for subse-

quent analysis [15]. Using this procedure, we included device ID as a random factor and used

a LMM to analyse HDOP on Phillip Island and battery drain in the Central Highlands. We ran

all other models as simple linear models with no random factor. We built models in the R sta-

tistical environment [16] using the package nlme [17].

For each response variable in each study area, we produced a candidate set of models con-

sisting of each individual predictor variable and variables in additive and interactive combina-

tions. The size of the candidate set in each case was defined by the number of predictors,

which differed among response variables and study areas (Table 2). Within each candidate

model set, we used AICc and Akaike weights to indicate the degree of support for each model

[18]. We assessed model fit using R2. For LMM, we used the method of Nakagawa et. al [19],

which yields marginal R2 (R2m), the variance explained by fixed factors, and conditional R2

(R2c), the variance explained by both fixed and random factors. We conducted model selection

and the R2 calculation for mixed models using the package MuMIn [19, 20].

Results

Raw data for each of the five response variables in each study site are shown in Fig 2. Fix suc-

cess rate was 100% in 93.9% of the sampling locations on Phillip Island and in 76.4% of the

locations in the Central Highlands. On Phillip Island, the median fix precision (±95% CI) in

all habitat types combined was good (2.83 ± 0.48 m) and better than in the Central Highlands

(7.52 ± 47.01 m). Median HDOP values (±95% CI) were very low (good) on Phillip Island

Table 2. Full interaction model structure of all predictor variables.

Response Variable Global fixed model Random effect structure

(a) Phillip Island
HDOP HT Device ID

Fix precision HT x Fix None

Battery drain HT x CSQ None

(b) Central Highlands
HDOP HT x Fix x Topo None

Fix precision HT x Fix x Topo None

Battery drain HT x CSQ x Topo Device ID

(a) Phillip Island and (b) the Central Highlands. Habitat type (HT), Number of fixes taken (Fix), Topography (Topo),

phone signal strength (CSQ) and the random variable (Device ID) after testing the significance of the random factor

in the model. On Phillip Island the number of fixes taken for HDOP was uneven among HT and omitted.

https://doi.org/10.1371/journal.pone.0199617.t002
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(1.20 ± 0.11) and the Central Highlands (1.70 ± 0.58), respectively (Fig 2). Immediate data

transmission was high in both study sites (Figs 2 and 3) and battery drain (±95% CI) was

higher in the Central Highlands (-0.75 ± 0.03) compared to Phillip Island (-0.39 ± 0.04) (Figs 2

and 4).

Statistical modelling suggested that fix precision was not influenced by any of the predictor

variables in either study location (Table 3A and 3B). On Phillip Island, HDOP was influenced

by habitat type (Table 3A). However, HDOP values for all habitat types were very low (Fig 5),

indicating similar GPS fix quality across the island. In the Central Highlands, there was an

interaction between habitat type and the number of fixes (Table 3B): devices that collected

fewer fixes had higher HDOP values, but this effect was more pronounced in dry forests than

wet forests (Fig 5). Nevertheless, HDOP values were low in both habitat types and across the

number of fixes taken.

The capacity of devices to transmit data immediately via the phone network was generally

high, but reduced substantially at very low network signal strength (Fig 3). Most fixes were

sent immediately when CSQ values were greater than 7.5 (n = 65). Of the 65 devices with

CSQ> 7.5, 80% recorded the transmission of all fixes taken with no delay. Nevertheless, the

devices still performed well in areas with CSQ values� 5 (n = 82), where the immediate data

transmission rate was > 75%. The remaining stored data was transmitted to the server when

the next successful phone network connection was established, leading to no data loss overall.

The only variable influencing battery drain on Phillip Island was cell signal strength (Fig

4A). In contrast, battery drain was influenced by habitat type in the Central Highlands, with

batteries draining faster in wet than dry forests (Fig 4B). However, the R2m value of this model

was low (R2m = 0.051) and the AICc value was similar to the null model (ΔAICc), both indicat-

ing the model to be a poor fit to the data.

Our devices failed 8.2% of the time (9 of 110 sites), with 7 of the 9 failures in the Central

Highlands (Table 4). Failures did not appear to be associated with particular devices, habitat

types or topographic positions, although the data were too sparse to analyse this formally.

Characteristics of each failure are described in Table 4.

Discussion

In spatial ecology, using GPS telemetry devices is a common tool to acquire animal movement

data. Although commercially available systems are effective, they are costly and therefore

unavailable for projects with budget limitations. In this study, we designed and built cost-effec-

tive wildlife trackers and examined their performance in a range of terrestrial environments

likely to be encountered by researchers using terrestrial GPS tracking technologies.

Building GPS wildlife trackers

Building wildlife trackers proved to be very cost efficient, saving around 80% of the regular

costs for commercially available devices with similar functions. Allan et al. [5], for example,

highlights prices of several GPS-based devices which could have been used to build a wildlife

tracker and are similar in cost to ours. Although it requires time and therefore cost to design,

build and test the trackers (S1 Table), new technologies such as 3D printers to form the tracker

casing could be used in the future to reduce some of these expenses. Further, custom building

Fig 2. Raw data of all variables. (a) and (b) fix success (%), (c) and (d) fix precision, (e) and (f)Horizontal dilution of precision (HDOP), (g) and (h) data

transmission (%) and (i) and (j) battery plotted against habitat type and, for the Central Highlands, topography (gully, mid-slope and ridge). Boxplots indicate

median and first and third quartile. To improve visual display dots of (a), (b), (d), (g) and (h) have been jittered and data of (d) has been log10 transformed.

https://doi.org/10.1371/journal.pone.0199617.g002
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wildlife trackers provides the ability to specifically adjust the design of the tracker and the

devices’ firmware to better suit the study species and address research questions [5].

Stationary field test

GPS performance: We expected poorer performance from the device in areas with denser vege-

tation and more complex topography. However, the GPS functioned well under a wide range

of conditions. Fix precision in both of our study areas and along a range of habitats and topo-

graphic levels was high and none of the predictor variables tested influenced precision.

Although our model outputs showed that HDOP values were influenced by some predictor

variables (habitat type and number of fixes taken), the majority of these values were low, sug-

gesting that none of our predictor variables had an appreciable impact on precision. D’Eon

et al. [21] and D’Eon et al. [22] found that fix precision and HDOP values depended on the

Fig 3. Data transmission. Percentage of GPS fixes sent immediately through the phone network plotted against phone signal strength (CSQ) combined for both study

sites. Black line represents a locally weighted smoothing spline with 95% confidence intervals (grey shading).

https://doi.org/10.1371/journal.pone.0199617.g003
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amount of available sky, and that animals inhabiting topographically flat and open areas

receive GPS locations of better quality than animals on slopes and within denser vegetation. In

our study, the HDOP values in the Central Highlands increased slightly when the numbers of

fixes were low and sites were more vegetated (wet forest), yet they did not exceed the range

representing good fix quality, which might be due to recent technical improvements.

Phone Network: Although the success rate of the remote data transmission was generally

high, areas with very weak phone network connection experienced delays in data transmission

(Fig 3). Our results suggest that immediate data transmission will usually occur if study areas

have CSQ values greater than 5. However, the remote download capacity may fail completely

Fig 4. Battery drain rate. Battery drain rate for each sample location in (a) Phillip Island plotted against phone signal strength (CSQ) and (b) Central Highlands

represented in wet and dry forest. Values closer to 0 indicate less battery drain. Predictions are from linear models and grey dots represent raw data, jittered in (b).

Shaded areas and error bars indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0199617.g004
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in more remote areas where the phone network connection is very poor or unavailable. How-

ever, this could be improved through the use of a wireless-sensor network that does not require

telecommunication support, as trialled by Juang et al. [23]. Other options to download data

remotely in areas with patchy or no phone receptions are satellite-linked GPS wildlife trackers

such as GPS-Iridium or GPS-Globalstar, but purchasing them commercially remains expen-

sive [3, 20, 24]. However, Lehrke et al. [25] used off-the-shelf GPS-Globalstar trackers and suc-

cessfully tracked black swans (Cygnus atratus) in New Zealand for a fraction of the cost of

commercial units.

Battery drain: Battery drain increased with decreasing network strength on Phillip Island

and was higher in wet forest than dry forest in the Central Highlands. If fixes are taken every

15 minutes, as it was the case in the collar-mounted devices, battery life was less than 10 days

using two 3.6-V lithium ion batteries. In general, frequent remote downloads significantly

increase power consumption, having an impact on battery life, especially in areas of poor

reception when the device continues searching for phone network connection (Fig 4). Thus,

researchers face a trade-off: they can use devices with a remote download function, but face

high battery drain rates, or they can download the data in the field using an antenna to down-

load data by recapturing animals, or with functions such as self-release mechanisms [26, 27].

Downloading in the field, however, will increase labour time and most likely costs. Yet, a

major advantage of custom-made trackers is that the batteries of recovered collars can easily

be recharged and redeployed, avoiding the additional costs required to refurbish most com-

mercial trackers. To increase the life of the battery, solar powered or energy harvesting GPS

trackers, or increased battery capacity, could be considered as future improvements to our

device. The firmware could also be improved in a number of ways to better manage battery

life, such as using CSQ values below a certain threshold to selectively store the fix data for later

transmission, or requesting fewer transmission attempts.

Despite a generally good performance of the stationary devices we also experienced occa-

sional malfunctions (Table 2). The main issues were errors in HDOP estimation, leading to

Table 3. Table of model responses.

Variable Model sets ΔAICc Akaike weight R2m (R2c)

(a) Phillip Island
HDOP HT 0.00 0.953 0.236 (0.461)

NULL 6.02 0.047 0.000 (0.189)

Fix precision NULL 0.00 0.634 0.000

Battery drain CSQ 0.00 0.539 0.100

NULL 2.90 0.127

(b) Central Highlands
HDOP HT x Fix 0.00 0.743 0.565

NULL 40.53 0.000

HT x Topo 45.90 0.000 0.099

Fix precision NULL 0.00 0.644 0.000

Battery drain HT 0.00 0.274 0.051 (0.188)

Responses of horizontal dilution of precision (HDOP), precision and battery drain to habitat type (HT), Number of

fixes taken (Fix), Topography (Topo) and phone signal strength (CSQ) on (a) Phillip Island and in the (b) Central

Highlands. Akaike’s information criteria adjusted for small sample sizes (AICc) was used to rank models. Models

within two AICc units of the top ranked models and the null model are shown in Akaike weights (Aw) and are

displayed with two measures of fit: R2m and R2c. (b) HDOP includes top ranked model, null model and least

supported model.

https://doi.org/10.1371/journal.pone.0199617.t003
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fixes lacking X, Y coordinates or fixes with low fix quality. Further, one device stopped work-

ing completely. Currently we have no explanation for these malfunctions; faulty devices

worked well again when reset and retested in other sampling locations.

Finally, we note that animal behaviours that result in poor orientation of the GPS antenna

or increase the instance of physical barriers between the antenna and the satellites may reduce

GPS performance, but are not accounted for in stationary tests. To ensure stationary devices

provide a rigorous test of new GPS products, spatially matched data from stationary and ani-

mal-born devices should be similar, but to our knowledge this comparison has never been

made. Although it was beyond the scope of this study to comprehensively compare data from

stationary and animal-born devices, we conducted a pilot project using data from two swamp

wallabies (Wallabia bicolor) moving within a 25 ha grid of 100 stationary devices. We present

Fig 5. Response of horizontal dilution of precision (HDOP). HDOP values in different habitat types and topographic levels are plotted against number of fixes in

the Central Highlands. Predictions are from linear models and dots represent raw data. Shaded areas indicate 95% confidence interval.

https://doi.org/10.1371/journal.pone.0199617.g005
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the pilot project in S1 Appendix. Our intention is to highlight the need for further research,

and to provide some initial methods for data analysis.

Conclusion

Neither habitat type nor topography had a major impact on the performance of the GPS,

remote download capacity or battery, indicating that our device will function well in a wide

range of habitats with adequate phone network connection. Although phone signal strength

influenced battery drain rate, likely resulting in shorter battery life in areas of low or patchy

phone reception, an advantage of having remote download capacity is that researchers reduce

valuable labour time in the field acquiring the data. Finally, a major advantage of our device is

its low cost. In many situations this will enable larger samples sizes, improving the capacity to

make population-level inferences, and to contrast behaviour among different habitat types or

demographic classes.

Supporting information

S1 Table. GPS wildlife tracker costs. Total cost of GPS wildlife tracker per unit excluding

postage.

(DOCX)

S1 Video. Development of a wildlife tracker.

(MP4)

S1 Appendix. Comparing spatially-matched GPS data from stationary and animal-born

devices.

(DOCX)

S1 Dataset. Dataset underlying the findings described for the Central Highlands analysis

(CSQ/battery drain).

(CSV)

Table 4. Listing of malfunctioning GPS devices.

Habitat

Type

Topography Device ID Fix attempts Successful fixes (in

%)1
Fixes with HDOP failure (in

%)

Comments

(a) Phillip Island
Farmland NA 8 22 100 9 Device stopped taking fixes after 22 successful fix

attempts.

Farmland NA 9 47 0 100 No successful fixes taken

(b) Central Highlands
Wet Gully 2 43 47 93 Low fix quality

Wet Gully 3 41 54 100 Low fix quality

Wet Mid 9 42 0 100 No successful fixes taken

Wet Mid 10 41 7 100 Low fix quality

Dry Gully 4 40 100 85 Low fix quality

Dry Mid 1 40 0 100 No successful fixes taken

Dry Mid 6 37 92 100 Low fix quality

Numbers of total successful fixes compared to fix attempts and the number of fixes with HDOP errors.
1 Fixes with X and Y coordinates

https://doi.org/10.1371/journal.pone.0199617.t004
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S2 Dataset. Dataset underlying the findings described for the Central Highlands analysis

(HDOP).

(CSV)

S3 Dataset. Dataset underlying the findings described for Phillip Island analysis (CSQ/bat-

tery drain).

(CSV)

S4 Dataset. Dataset underlying the findings described for Phillip Island analysis (HDOP).

(CSV)
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