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Abstract

Bioluminescent proteins (BLPs) are a class of proteins with various mechanisms of light emission such as bioluminescence
and fluorescence from luminous organisms. While valuable for commercial and medical applications, identification of BLPs,
including luciferases and fluorescent proteins (FPs), is rather challenging, owing to their high variety of protein sequences.
Moreover, characterization of BLPs facilitates mutagenesis analysis to enhance bioluminescence and fluorescence.
Therefore, this study proposes a novel methodological approach to estimating the propensity scores of 400 dipeptides and
20 amino acids in order to design two prediction methods and characterize BLPs based on a scoring card method (SCM).
The SCMBLP method for predicting BLPs achieves an accuracy of 90.83% for 10-fold cross-validation higher than existing
support vector machine based methods and a test accuracy of 82.85%. A dataset consisting of 269 luciferases and 216 FPs is
also established to design the SCMLFP prediction method, which achieves training and test accuracies of 97.10% and
96.28%, respectively. Additionally, four informative physicochemical properties of 20 amino acids are identified using the
estimated propensity scores to characterize BLPs as follows: 1) high transfer free energy from inside to the protein surface,
2) high occurrence frequency of residues in the transmembrane regions of the protein, 3) large hydrophobicity scale from
the native protein structure, and 4) high correlation coefficient (R = 0.921) between the amino acid compositions of BLPs
and integral membrane proteins. Further analyzing BLPs reveals that luciferases have a larger value of R (0.937) than FPs
(0.635), suggesting that luciferases tend to locate near the cell membrane location rather than FPs for convenient receipt of
extracellular ions. Importantly, the propensity scores of dipeptides and amino acids and the identified properties facilitate
efforts to predict, characterize, and apply BLPs, including luciferases, photoproteins, and FPs. The web server is available at
http://iclab.life.nctu.edu.tw/SCMBLP/index.html.
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Introduction

Bioluminescent proteins (BLPs) are a class of proteins with

various mechanisms of light emission such as bioluminescence and

fluorescence from luminous organisms. Bioluminescence of

organisms is the emission of visible light by a natural chemical

reaction in diverse forms of morphology within a living organism

[1]. In the bioluminescence process, the luciferin-luciferase

reaction involves two chemicals, luciferin and luciferase. Luciferins

are a class of small light-emitting heterocyclic compounds that are

oxidized in the presence of the enzyme luciferase. Luciferase

generally refers to the class of oxidative enzymes that catalyzes the

oxidation of luciferin to emit light with an intermediate called

oxyluciferin. Luciferins typically undergo enzyme-catalyzed oxi-

dation, and the unstable oxyluciferin emits light upon decaying to

its ground state. The amount of light emitted is proportional to the

concentration of the substrate luciferins. Firefly luciferin is a well-

studied luciferin found in many firefly species, in which oxygen,

ATP, and magnesium ions are required for light emission [2].

As a stable protein complex, photoprotein consists of a

catalyzing protein (i.e. a luciferase variant) and factors required

for light emission including the luciferin and oxygen. Photo-

proteins do not exhibit a luciferin-luciferase reaction and emits

light without the intervention of an enzyme. Photoproteins are

triggered to produce light upon binding with another ion or co-

factor such as Ca2+, causing a conformational change in the

protein. Photoproteins referring to luciferase-like proteins display

luminescence proportional to the amount of the catalyzing protein.

The number of photoproteins with known structures is relatively

small, compared with that of BLPs. As a photoprotein isolated

from luminescent jellyfish Aequorea victoria, aequorin has been used

to measure calcium ion concentration. Aequorin consists of two

distinct units, the apoprotein apoaequorin and a latently

luminescent molecule coelenterazine, i.e. a luciferin. When a

calcium ion Ca2+ binds to aequorin, the protein complex

decomposes into apoaequorin, coelenteramide and CO2, accom-

panied by the emission of light [3].

Rather than producing their own light, fluorescence molecules

absorb photons, which temporarily excite electrons to a higher

energy state. When relaxing rapidly to their ground state, the

electrons rerelease their energy, usually at a longer wavelength.

Fluorescent proteins (FPs) belong to a structurally homologous
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class of proteins that share the unique property of being-sufficient

to form a visible chromophore from a sequence of three amino

acids within their own polypeptide sequence [4]. The tightly

packed nature of a barrel excludes solvent molecules, thereby

protecting the chromophore fluorescence from quenching by

water. Fluorescent proteins are well established markers for gene

expression and protein targeting in intact cells and organisms. The

mechanism of light production through a chemical reaction

distinguishes bioluminescence from fluorescence [4]. The green

fluorescent protein (GFP) from jellyfish Aequorea victoria can be

colocalized with its bioluminescence counterpart (i.e. aequorin).

BLPs serve in a variety of functions of cellular processes. With

the increasing number of innovative commercial and medical

applications using BLPs, understanding BLPs provides fascinating

challenges for fundamental sciences and numerous opportunities

for practical applications. Prediction and characterization of BLPs

are of priority concern in a variety of research fields. Despite the

availability of experimental methods to investigate BLPs [5], such

methods are often time-consuming and severely limited in scope,

leading to a lack of large datasets of reviewed BLPs. Therefore,

developing computational methods to predict and characterize

BLPs, including luciferases and FPs, from a sequence is more

challenging, owing to their high variety in the protein sequence

and lack of a large BLP dataset. The sequence-based prediction

method can fast identify putative BLPs from sequences with/

without known structure information for further validation.

By establishing a dataset consisting of 441 BLPs and 18,502

non-BLPs, Kandaswamy et al. [6] proposed a computational

method (known as BLProt) to predict BLPs. BLProt is trained

using a dataset consisting of 300 BLPs and 300 non-BLPs and,

then, evaluated by an extremely imbalanced test dataset (141 BLPs

and 18,202 non-BLPs). BLProt uses a support vector machine

(SVM) and 100 physicochemical properties selected by adopting

three feature selection methods. BLProt achieves an accuracy of

80.0% for 5-fold cross-validation (5-CV) from training and an

accuracy of 80.06% from testing. Huang et al. [7] subsequently

proposed an improved SVM-based method (known as PBLP), in

which 15 physicochemical properties are used to predict BLPs; in

addition, the training (5-CV) and test accuracies are 84.50% and

81.79%, respectively. Zhao et al. [8] developed a BLPre method

with a training accuracy of 85.17% for 10-CV to predict BLPs by

using a model based on position specific scoring matrix (PSSM)

and auto covariance. Fan and Li [9] recently proposed an accurate

SVM-based method (known as SVM-Hybrid) by integrating

multiple features, including dipeptide composition, reduced amino

acid composition, PSSM, and auto covariance of averaged

chemical shift. SVM-Hybrid achieves a training accuracy of

90.50% for 10-CV. Although yielding an acceptable accuracy,

Figure 1. The flowchart of system designs for predicting and characterizing bioluminescent proteins (BLPs). The SCMBLP method
predicts BLPs and the SCMLFP method distinguishes luciferases from fluorescent proteins. The obtained scoring cards are used to further analyze
BLPs.
doi:10.1371/journal.pone.0097158.g001
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existing SVM-based prediction methods suffered from obtaining

human-interpretable knowledge for further understanding BLPs.

Predicting and characterizing BLPs as well as luciferases and

FPs in general conditions from a sequence are worthwhile yet

challenging tasks. This study proposes a novel methodological

approach to estimating the propensity scores of 400 dipeptides and

20 amino acids in order to design two prediction methods, i.e.

SCMBLP and SCMLFP, based on a scoring card method (SCM)

[10,11]. In addition to using the existing datasets of BLPs for

comparison, this study also establishes a balanced dataset

consisting of 274 non-BLPs and 274 BLPs, including 141 BLPs

from seed proteins of the Pfam database, 94 BLPs using the GO

term GO: 0008218 ‘‘bioluminescence’’, and 39 BLPs using the

keyword ‘‘photoprotein’’ from the Protein Data Bank (PDB

database) to evaluate SCMBLP. According to those results,

SCMBLP achieves an accuracy of 90.83% for 10-CV, better than

the existing SVM-based methods, and the test accuracy of

82.85%. Additionally, a dataset of 269 luciferases and 216 FPs is

established to design a novel SCMLFP method for distinguishing

luciferases from FPs. Evaluation results indicate that the SCMLFP

method yields training and test accuracies of 97.10% and 96.28%,

respectively. This study also identifies informative physicochemical

properties from the AAindex database [12,13] by using propensity

scores of 20 amino acids to gain further insight into BLPs,

luciferase, photoproteins, and FPs. Results of this study demon-

strate that the propensity scores of dipeptides and amino acids and

the identified properties greatly facilitate mutagenesis analysis to

enhance the bioluminescence and fluorescence of BLPs.

Materials and Methods

This study proposes a novel methodological approach to

estimating the propensity scores of 400 dipeptides and 20 amino

acids to design two prediction methods, i.e. SCMBLP and

SCMLFP, based on a scoring card method (SCM). Figure 1

shows the flowchart of system designs involving datasets, methods,

and analysis of propensity scores to predict and characterize BLPs.

Datasets
While obtaining 300 BLPs from seed proteins of the Pfam

database [14], Kandaswamy et al. [6] enriched this dataset

consisting of 441 BLPs with sequence identity , = 40%. The

used training set, known as BLP-TRN, consists of 300 BLPs

selected from the 441 BLPs and 300 non-BLPs from seed proteins

of Pfam protein families that can be obtained from this work [6].

The test dataset used in the studies [6–9] consists of 141 BLPs and

18202 non-BLPs, which is an extremely imbalanced dataset. After

manual examination by inquiring the domain classification in the

Pfam database for each BLP, the dataset of 441 BLPs consist of

three groups: 269 luciferases, 84 FPs, and 88 others (without

obviously unique categorization into luciferase or FP). Owing to

the extreme imbalance of the test dataset, the overall accuracy

only is an unsatisfactory performance index used in related studies

[6–9]. This study also established a balanced dataset, known as

BLP-TEST, consisting of 274 non-BLPs (randomly selected from

the 18,202 non-BLPs) and 274 BLPs including the 141 BLPs from

seed proteins of the Pfam database, 94 BLPs from 44 species using

the GO term GO:0008218 ‘‘bioluminescence’’ annotated on

Table 1. The propensity scores of amino acids to be a bioluminescent protein (BLP) and amino acid composition (%) using BLP-
TRN.

Amino acid BLP Score (rank) Composition of BLP: A (%) Composition of Non-BLP: B (%) Composition difference: A–B (%)

G-Gly 573.025 (1) 7.53 6.49 1.04

C-Cys 572.850 (2) 2.09 1.28 0.81

F-Phe 548.075 (3) 4.58 3.90 0.68

H-His 534.450 (4) 2.75 2.33 0.42

Y-Tyr 508.750 (5) 3.56 3.05 0.51

D-Asp 498.100 (6) 5.82 5.55 0.27

M-Met 483.150 (7) 2.42 2.27 0.15

V-Val 477.775 (8) 6.60 6.45 0.15

P-Pro 472.950 (9) 4.99 4.91 0.08

I-Ile 456.525 (10) 5.60 5.66 –0.05

T-Thr 452.750 (11) 5.51 5.40 0.11

N-Asn 451.125 (12) 4.23 4.21 0.02

Q-Gln 435.025 (13) 3.70 4.03 –0.33

W-Trp 434.575 (14) 1.22 1.27 –0.05

L-Leu 426.700 (15) 9.31 9.70 –0.39

E-Glu 404.075 (16) 6.25 6.79 –0.54

R-Arg 384.875 (17) 4.96 5.51 –0.55

S-Ser 368.500 (18) 6.61 7.27 –0.66

A-Ala 359.750 (19) 7.12 8.15 –1.03

K-Lys 336.275 (20) 5.14 5.80 –0.66

R 1.00 –0.30 –0.50 0.97

The total number of amino acids in the used datasets of BLPs and non-BLPs is 130,904 and 120,607, respectively.
doi:10.1371/journal.pone.0097158.t001
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Figure 2. Heat map of the propensity scores of 400 dipeptides obtained from the SCMBLP method. Color bar is obtained using Jet of
Matlab.
doi:10.1371/journal.pone.0097158.g002

Figure 3. The histogram of propensity scores for BLPs and non-BLPs in the training dataset BLP-TRN. (A) Sequence scores before
optimization (B) Optimized sequence scores.
doi:10.1371/journal.pone.0097158.g003
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SwissProt, and 39 BLPs (without duplicated sequences) using the

keyword ‘‘photoprotein’’ from the PDB database.

To investigate the properties of discriminating between

luciferases and FPs from a sequence, a dataset consisting of 269

luciferases and 216 FPs was created (given in Files S1 and S2,

respectively). The 269 luciferases were obtained from the 441

BLPs in the Pfam database. There are 512 sequences obtained by

using the keyword ‘‘fluorescent protein’’ from the PDB database.

Only the 189 sequences with the classification category ‘‘fluores-

cent protein’’ were adopted. Deleting the duplicated sequences

among the 189 and 84 FPs (from the Pfam database) led to a final

dataset of 216 FPs. The luciferases and FPs in the dataset were

randomly divided into ten groups. Among which, nine groups

were used for training (i.e. LFP-TRN) and the other one for testing

(i.e. LFP-TEST) in turn to design the SCMLFP method.

Therefore, 10 independent training and test datasets are available

to evaluate SCMLFP.

This study also calculates the Pearson’s correlation coefficients

(the R values) between the propensity scores of amino acids to be a

BLP and the physicochemical properties of amino acids in the

AAindex database. The range of R is [–0.733, 0.592]. Table 4 lists

four physicochemical properties of amino acids with a large value

of R estimated in a general condition. Figure 5 shows the

correlations of propensity scores and the four identified properties

of 20 amino acids. The four properties of interest with high

absolute values of R are discussed below.

Scoring Card Method
The scoring card method (SCM) [10,11] is a general-purpose

method for predicting and analyzing protein functions from

primary sequences by estimating propensity scores of 400

dipeptides and 20 amino acids to be the protein with the

investigated function. To apply the SCM method for designing a

SCM-based predictor, the procedure mainly comprises the

following steps: 1) both positive and negative datasets are prepared

as input, 2) an initial scoring card with 400 propensity scores of

dipeptides is generated using a statistical method, 3) propensity

scores of 20 amino acids are derived from those of 400 dipeptides,

4) the scoring card is refined using a global optimization method,

and 5) a binary SCM classifier with a threshold value is

established. The algorithm of the SCMBLP method, based on

SCM for predicting BLPs, is described below. Design of the

SCMLFP method resembles that of SCMBLP by simply replacing

the training dataset BLP-TRN with LFP-TRN. Further details of

the SCM method and its applications can be found in these studies

[10,11].

Step 1: Adopt a training dataset BLP-TRN, which consists of

two subsets for positive (BLP) and negative (non-BLP) datasets.

Step 2: Generate an initial scoring card, which consists of

propensity scores of 400 dipeptides by using a statistical method as

follows:

a. Calculate the dipeptide composition of BLPs and non-BLPs

from the positive and negative datasets;

b. Obtain the propensity score of each individual dipeptide by

subtracting the composition value of the dipeptide in non-

BLPs from that of the dipeptide in BLPs; and.

c. Normalize the scores of all dipeptides into the range [0, 1000].

Step 3: Calculate the propensity score of each amino acid O by

averaging the 40 scores of dipeptides OX and XO where X can be

any amino acid.

Step 4: Optimize the scoring card (referred to herein as Scard)

of dipeptides, which consists of 400 scores by using an intelligent

genetic algorithm (IGA) [15]. In the chromosome representation,

the 400 real-valued variables within the range [0, 1000] are

encoded into a chromosome of IGA. The fitness function of IGA is

Table 2. The comparisons of SCMBLP with some comparable methods using BLP-TRN in terms of 5- or 10-fold cross-validation
accuracy (%).

Method Classifier Features Optimization Sensitivity Specificity Accuracy

BLProt [6] SVM 100 PCPs No 74.47a 84.21a 80.00

PBLP [7] SVM 15 PCPs Yes 84.11 79.25 84.50

BLPre [8] SVM PSSM-AC No 79.33 91.00 85.17

SVM-Hybrid [9] SVM DPC+PSSM+RAAC+ACS No 88.33 92.67 90.50

SVM-DPC SVM DPC No 82.00 85.00 83.50

SCMBLP SCM DPC Yes 89.67 92.00 90.83

RAAC: Reduced amino acid composition;
ACS: Average chemical shift;
DPC: Dipeptide composition.
aThe results are test accuracies that the cross-validation accuracies were not reported.
doi:10.1371/journal.pone.0097158.t002

Table 3. The test performance (%) of SCMBLP on various data sets.

Dataset (Source) BLPs (PDB) BLPs (SwissProt) BLPs (Pfam) Non-BLP (Pfam) Total

Total no 39 94 141 274 548

True positive 37 81 116 220 454

Accuracy (%) 94.87 86.17 82.27 80.29 82.85

The overall accuracy is 82.85% with a sensitivity of 85.40% and a specificity of 80.29%.
doi:10.1371/journal.pone.0097158.t003
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to maximize the prediction accuracy in terms of the area under the

ROC curve (AUC) [16] and also the Pearson’s correlation

coefficient (the R value) between the initial and optimized

propensity scores of 20 amino acids. To avoid overfitting, the

fitness function is calculated using a 10-CV assessment [10]. The

fitness function is as follows (W1 = 0.9 and W2 = 0.1 in this study).

Max Fit Scardð Þ~Wi|AUCzW2|R ð1Þ

Step 5: Predict a sequence P bases on the scoring function S(P),

i.e. a weighted-sum score, and a threshold value determined by

maximizing the prediction accuracy of using the training dataset.

S(P)~
X400

i~1
wiSj , ð2Þ

where wi and Si denotes the composition and propensity score of

the i-th dipeptide, respectively. Additionally, P is classified as the

positive class (i.e. BLP) when S(P) is greater than the threshold

value; otherwise, P is the negative class (i.e. non-BLP).

Identifying Informative Physicochemical Properties
Physicochemical properties of amino acids are well recognized

to be effective features for predicting and analyzing protein

functions from primary sequences [7,12,17]. Kandaswamy et al.

[6] and Huang et al. [7] developed prediction methods for BLPs

using SVM and a set of physicochemical properties selected from

the AAindex database [13]. Since the mathematical vectors

representing the 544 physicochemical properties in AAindex are

distributed diversely, a set of properties can achieve a high

prediction accuracy for binary classifier problems if the feature

selection method is satisfactory, especially when using optimal

feature selection approaches [7,12,17].

To characterize BLPs from the aspect of physicochemical

properties of amino acids, this study proposes a novel method in

which the properties of particular interest are identified, based on

the scoring card of SCM while considering two factors. First, many

physicochemical properties of amino acids in AAindex are

investigated in a specific condition. Second, bioluminescence of

organisms occurs in diverse forms of morphology with various

mechanisms of light emission, which also heavily depends on

environmental conditions. Therefore, this study elucidates infor-

mative physicochemical properties in a generalized condition to

discriminate between BLPs and non-BLPs, as well as luciferases

and FPs.

The propensity scores of 400 dipeptides and 20 amino acids to

be a BLP obtained from the above-mentioned SCMBLP classifier

greatly facilitate efforts to understand BLPs. The procedure to

identify informative physicochemical properties is described

below. First, whether or not the bioluminescence is a global

property of sequence for general BLPs is examined. The

Figure 4. Distribution of dipeptide scores on two typical sequences of BLPs. The BLP with Pfam ID A8QZJ6 (length 96 with domain
Oxidored shown in red) and the non-BLP with NCBI sequence entry GI: 20137223 (length 101 shown in blue) have high and low sequence scores
551.65 and 256.86, respectively.
doi:10.1371/journal.pone.0097158.g004
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examination method analyzes the distribution of locations of high-

score dipeptides on the BLP and non-BLP sequences [8,9]. A

situation in which the high-score dipeptides are evenly distributed

on the sequences implies that the bioluminescence is a global

property of a sequence; otherwise, bioluminescence may occur in

specific segments. Second, the procedure identifies the candidate

physicochemical properties in AAindex with a large Pearson’s

correlation coefficient between the properties and the propensity

scores or composition of 20 amino acids. The candidate

physicochemical properties investigated in a generalized condition

are preferred for further analysis.

Results and Discussion

Propensity Scores of BLPs
Figure 2 shows the propensity scores of 400 dipeptides to be a

BLP obtained by using the SCMBLP method with the BLP-TRN

dataset consisting of 300 BLPs and 300 non-BLPs. The propensity

scores of 20 amino acids can be derived from the propensity scores

of 400 dipeptides. Table 1 lists the propensity scores of amino acids

to be a BLP and the amino acid compositions of BLPs and non-

BLPs. The total number of amino acids in the used datasets of

BLPs and non-BLPs is 130,904 and 120,607, respectively. The

propensity scores and amino acid composition can be analyzed to

further gain insight into how to characterize BLPs.

Closely examining the dipeptide composition (not shown)

reveals that the 20 top-ranked dipeptides according to propensity

score (DI, LP, HP, YD, CN, GM, KN, CA, VM, QH, FH, CG,

DV, GY, RG, IY, LS, MD, MQ, VR in order) make up BLPs

(5.23%) and non-BLPs (4.37%). There are 19 individual dipeptides

(except for IY) in which their compositions in BLPs are larger than

those in non-BLPs. Compositions of the dipeptide IY for BLPs

(0.1738%) and non-BLPs (0.1779%) are very close. The results

indicate that BLPs have a larger number of dipeptides with high

propensity scores than non-BLPs. Similarly, BLPs have a small

number of dipeptides with low propensity scores. This result

reveals that the propensity scores of dipeptides can discriminate

between BLPs and non-BLPs.

The set of hydrophobic residues is {Ala, Ile, Leu, Met, Phe, Val,

Cys, Gly}, and the other residues are hydrophilic residues

according to the work [18]. The three top-ranked amino acids

according to propensity scores are Gly = 573.025, Cys = 572.850,

and Phe = 548.075, which belong to the class of hydrophobicity.

The three amino acids with the smallest scores are Lys = 336.275,

Ala = 359.750, and Ser = 368.500. The three hydrophobic resi-

dues Gly, Cys, and Phe make up BLPs (14.20%) and non-BLPs

(11.67%). Based on the composition differences between BLPs and

non-BLPs, the three individual amino acids Gly, Cys, and Phe are

ranked at 1, 2, and 3, respectively. The top-10 high-score residues

of BLPs have nine residues (except for Ile) with positive

composition differences. Table 1 lists the compositions of BLPs

and non-BLPs for residue Ile, which are 5.60% and 5.66%,

respectively. The correlation coefficient R equals to 0.97 between

the propensity scores of amino acids and composition difference of

amino acids between BLPs and non-BLPs. Analysis results of

amino acid composition indicate that BLPs have more hydropho-

bic residues and less hydrophilic residues than non-BLPs.

Moreover, the high correlation coefficient suggests that the

propensity scores of amino acids can also discriminate between

BLPs and non-BLPs.

Table 4. The propensity scores of amino acids to be a bioluminescent protein (BLP) and four physicochemical properties of amino
acids with Pearson’s correlation coefficient (the R value).

Amino acid BLP Score (rank)
Transfer free
energy

Membrane
preference Hydrophobicity scale

Composition in nuclear
proteins

G-Gly 573.025 (1) 0.3 1.08 –0.1 6.3

C-Cys 572.850 (2) 0.9 (1) 1.60 (1) 1.9 (1) 1.6 (2)

F-Phe 548.075 (3) 0.5 1.46 1.0 2.7

H-His 534.450 (4) –0.1 1.00 0.4 2.1

Y-Tyr 508.750 (5) –0.4 0.89 0.5 2.4

D-Asp 498.100 (6) –0.6 0.27 –1.4 4.7

M-Met 483.150 (7) 0.4 1.52 0.5 2.3

V-Val 477.775 (8) 0.6 1.33 0.7 5.3

P-Pro 472.950 (9) –0.3 0.54 –1.0 6.9

I-Ile 456.525 (10) 0.7 1.44 1.4 3.7

T-Thr 452.750 (11) –0.2 1.01 –0.4 5.1

N-Asn 451.125 (12) –0.5 0.59 –0.5 3.7

Q-Gln 435.025 (13) –0.7 0.39 –1.1 4.7

W-Trp 434.575 (14) 0.3 1.06 1.6 0.7

L-Leu 426.700 (15) 0.5 1.36 0.5 7.4

E-Glu 404.075 (16) –0.7 0.23 –1.3 6.5

R-Arg 384.875 (17) –1.4 0.38 –0.7 8.7

S-Ser 368.500 (18) –0.1 0.98 –0.7 8.8

A-Ala 359.750 (19) 0.3 1.26 0.2 8.3

K-Lys 336.275 (20) –1.8 (20) 0.33 (18) –1.6 (20) 7.9 (17)

R 1.00 0.532 0.415 0.478 –0.660

doi:10.1371/journal.pone.0097158.t004
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From the propensity scores of dipeptides and amino acids, we

can infer that two individual amino acids with high propensity

scores do not necessarily form a dipeptide with a high propensity

score. For example, although the two top-ranked amino acids are

Gly and Cys, the dipeptides Gly-Cys and Cys-Gly have propensity

scores of 442 and 923, respectively. The propensity scores of two

dipeptides with the same two residues are not the same, owing to

the different dipeptide compositions of BLPs. It is hypothesized

that the charged polar residues play an important role in placing

the luciferin and chromophore in the right orientation facing the

hydrophobic surface of substrate-binding cavity [19], resulting in

the asymmetry scores of dipeptides. Notably, the dipeptide with

the smallest score is Ala-Ser with a score 0. The score of Ser-Ala is

also small, which equals to 164. The two residues Ala and Ser have

small propensity scores, ranking 19 and 18, respectively.

Prediction Accuracy of SCMBLP
The propensity score of a sequence to be a BLP is useful for

discrimination between PLPs and non-BLPs. The histogram of

sequence scores for BLPs and non-BLPs in the training dataset is

given in Fig. 3. The distribution range of sequence scores for BLPs

is reduced and shifted to the end of high score after the

optimization on propensity scores. Furthermore, the distributions

for BLPs and non-BLPs are more separable after optimization. A

higher score of a sequence implies a larger probability that the

sequence is a BLP.

This study also compares SCMBLP with the existing SVM-

based methods [6–9] using the promising features: dipeptide

composition (DPC), physicochemical properties (PCPs), PSSM

and hybrid feature set. The SVM-DPC method using SVM with

the DPC features is implemented for comparison. Owing to the

extreme imbalance of the test dataset (i.e. 141 BLPs and 18,202

non-BLPs; 99.23% for non-BLP), the test accuracy heavily

depends on the specificity performance of using the training

dataset. If the design of the prediction methods tends to have a

higher specificity performance than sensitivity performance (i.e.

preference towards non-BLP), the test accuracy is easily higher

than 90%. Therefore, it is not fair to evaluate the predictors using

the test accuracy only. The training accuracy of 5-CV or 10-CV

was commonly used for performance comparisons in these studies

[6–9]. The comparisons of SCMBLP with existing methods using

the training dataset BLP-TRN are given in Table 2.

Above comparisons reveal that the best SVM-based method is

SVM-Hybrid with an accuracy of 90.50% for 10-CV using a

hybrid feature set by integrating DPC, RAAC, PSSM, and auto

Figure 5. The correlation coefficients between the propensity scores and various physicochemical properties of 20 amino acids. (A)
Transfer free energy (B) Average membrane preference (C) Hydrophobicity scale from native protein structures (D) Composition of amino acids in
nuclear proteins.
doi:10.1371/journal.pone.0097158.g005
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covariance of average chemical shift (ACS) [9]. That SVM-DPC

has an accuracy of 83.50% for 10-CV further reveals that DPC is

a more effective feature type than PSSM and PCPs in terms of

predicting BLPs. The proposed SCMBLP method of using SCM

and DPC (90.83%) is superior to all the SVM-based methods. The

high performance of SCMBLP arises mainly from the used

optimization approach to adjusting 400 propensity scores of

dipeptides, i.e. 400 features for classification. Owing to the

difference in the feature number and optimization usage used,

evaluating the effectiveness of individual types of features is

relatively difficult. Based on the above results, we can conclude

that the feature of dipeptides is effective in predicting BLPs, and

the SCM classifier is comparable to the high-performance SVM

classifier. Moreover, SVM is satisfactory in designing an accurate

predictor and SCM is appropriate for analyzing the investigated

functions with an acceptable accuracy from a sequence. However,

the dipeptide features with propensity scores are more easily

interpreted and helpful for subsequent analysis [10,11].

To evaluate SCMBLP using test performance for observing the

generalization ability, a balanced dataset consisting of different

resources for comparison and analysis is created. The test dataset

BLP-TEST consists of 274 non-BLPs and 274 BLPs. Table 3

summarizes the performance of SCMBLP on BLP-TEST. From

Table 3, the following observations are made. First, the overall test

accuracy is 82.85% with a sensitivity of 85.40% and a specificity of

80.29%. The threshold value of sequence scores used is 439.63,

and can be adjusted according to the preference of a decision

marker on the sensitivity and specificity. Second, while considering

the training accuracy of 90.83% and the test accuracy of 82.85%,

not-severe overtraining seems to occur. This overtraining can be

alleviated by way of increasing the size of the training dataset and

including all domains of luciferases and FPs with a sufficient

number of samples. Third, the accuracies of BLPs from PDB,

SwissProt, and the Pfam database are 94.87%, 86.17%, and

82.27%, respectively. The prediction accuracies on the datasets

consisting of reviewed BLPs from PDB and SwissProt are larger

than that of using seed proteins from the Pfam database. The 39

BLPs from the PDB database and 94 BLPs from SwissProt with

their sequence scores are given in Tables S1 and S2, respectively.

Physicochemical Properties for BLPs
The propensity scores come from the statistics of whole sequences

to discriminate between BLPs and non-BLPs. Figure 4 shows the

distribution of dipeptide scores on two typical sequences of BLP

(Pfam ID A8QZJ6 of length 96 with domain Oxidored) and non-

BLP (NCBI sequence entry GI: 20137223 of length 101) with high

and low sequence scores of 551.65 and 256.86, respectively. This

finding suggests that both high- and low-score dipeptides are evenly

Figure 6. Heat map of the propensity scores of 400 dipeptides obtained from the SCMLFP method. Color bar is obtained using Jet of
Matlab.
doi:10.1371/journal.pone.0097158.g006
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distributed on the sequences. Moreover, there are more high-score

dipeptides in the BLP than in the non-BLP. Distribution of the

dipeptide scores indicates no obviously high-score segment in the

BLP. The above finding that top-ranked dipeptides do not tend to

cluster in a certain region suggests that bioluminescence and

fluorescence are a global property of BLP sequences.

1. The property of free energy of transfer (DGt~RT ln f ) from

the inside to the protein surface in globular proteins [20] has

R = 0.532. Variable f of each amino acid is a ratio of the molar

fractions of the buried and accessible residues. For example,

amino acid Cys has the largest free energy of transfer DGt0.9

with f = 4.6, in which the molar fractions of the buried and

accessible residues are 4.1 and 0.9, respectively. The propensity

score of Cys is 572.85 at rank 2, which is quite close to 573.025

of Gly at rank 1. The residue with the smallest transfer free

energy21.8 is Lys at rank 20. This finding is consistent with a

situation in which Lys has the smallest propensity score of

336.275 at rank 20. The residues with high propensity scores to

be a BLP tend to be buried with a high free energy of transfer.

2. The property of average scale of membrane preference

(AMP07) [21] has R = 0.415. The membrane-preference value

for the amino acid residue j is defined as follows:

MPj~fj,MEM=fj,TOT ,

where fj, MEM denotes the frequency of occurrence of residue j in

the transmembrane regions of the proteins and fj, TOT represents

the frequency of occurrence of residue j along the entire sequences

of the proteins, i.e. the molar fraction of residue j. Average scale of

the membrane preference AMP07 has been computed as the

arithmetical mean of seven different scales of the membrane

preference. Residue Cys has the largest scale of membrane

preference 1.60 at rank 1. Residue Lys having the smallest

propensity score has the scale of membrane preference 0.33 at

rank 18. Residues with high propensity scores to be a BLP tend to

have residues with a high frequency of occurrence in the

transmembrane regions. Consider the BLP with Pfam ID

A8QZJ6 as an example. Three segments are in the transmem-

brane regions, which are in the positions 6,22, 29,50, and

56,78, annotated in the Pfam database [14].

3. The property of hydrophobicity scale from the native protein

structures of globular proteins [22] has R = 0.478. The

structure-derived hydrophobic interaction along can distinguish

a substantial number of native conformation from a large pool

of misfolded structures. The hydrophobic interactions largely

contribute to the stability of native folds, which agrees with

experimental findings. Residue Cys has the largest hydropho-

bicity scale 1.9, which ranks 1st. The cysteine pair appears to be

strongly hydrophobic since the formation of disulphide bonds

increases the hydrophobicity of the reactants [23]. Residue Lys

with the smallest propensity score has the smallest hydropho-

bicity scale 21.6 at rank 20. The hydrophobic potential is an

important stabilizing interaction that is closely related to the

native conformation. Moreover, the large propensity scores

assigned to the hydrophobic residues agree with the hydropho-

bic characterization of luciferins, chromophore, and substrate-

binding cavity [19].

Table 5. The compositions of BLPs, integral membrane proteins, and nuclear proteins, and their corresponding R values using the
training dataset BLP-TRN.

Amino acid Composition of BLPs (%) Composition of membrane (%) Composition of nuclear (%)

G-Gly 7.53 7.0 6.3

C-Cys 2.09 2.0 1.6

F-Phe 4.58 5.6 2.7

H-His 2.75 2.0 2.1

Y-Tyr 3.56 3.3 2.4

D-Asp 5.82 3.8 4.7

M-Met 2.42 2.8 2.3

V-Val 6.60 7.7 5.3

P-Pro 4.99 4.7 6.9

I-Ile 5.60 6.7 3.7

T-Thr 5.51 5.6 5.1

N-Asn 4.23 3.7 3.7

Q-Gln 3.70 3.1 4.7

W-Trp 1.22 1.8 0.7

L-Leu 9.31 11.0 7.4

E-Glu 6.25 4.6 6.5

R-Arg 4.96 4.6 8.7

S-Ser 6.61 7.3 8.8

A-Ala 7.12 8.1 8.3

K-Lys 5.14 4.4 7.9

R 1.00 0.921 0.766

doi:10.1371/journal.pone.0097158.t005
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4. The property of composition of amino acids in nuclear proteins

[24] has R = 20.660. Correlation analysis of the amino acid

composition and the cellular location of a protein is performed,

which discriminates among the following five protein classes:

integral membrane proteins, anchored membrane proteins,

extracellular proteins, intracellular proteins and nuclear pro-

teins [24]. BLPs tend to have a dislike of the amino acid

composition of nuclear proteins, compared to that of integral

membrane proteins.

Both integral membrane proteins and nuclear proteins were

more closely examined by analyzing the compositions of BLPs,

integral membrane proteins, and nuclear proteins, and their

corresponding R values were analyzed, as shown in Table 5. The

correlation coefficient between the compositions of BLPs and

integral membrane proteins was R = 0.921, which is larger than

R = 0.766 for nuclear proteins. The mean differences of compo-

sition of every amino acid were 0.77% and 1.31% for integral

membrane proteins and nuclear proteins, respectively. Membrane

proteins are rich in hydrophobic residues, which correspond to

proteins having several transmembrane stretches of a secondary

structure and poor in charged residues [24]. As is well recognized,

the function of a protein is correlated with its subcellular

localization, because the environment of a protein provides a

portion of the relevant circumstance necessary for function. From

the above analysis of the four properties, we hypothesize that BLPs

tend to locate themselves near the cell membrane in order to

execute their functions such as the emission of visible light (i.e.

appropriate for the photic environment to surface regions) and

receipt of extracellular ions for luciferases and photoproteins to

trigger the bioluminescence reaction. Residue Cys in BLPs has the

largest hydrophobicity scale and highest transfer free energy,

which tends to be a buried residue. Consequently, the Cys

composition was small, i.e. 2.09%, which ranked 19th (i.e. larger

Table 6. The propensity scores of amino acids for distinguishing luciferases from FPs.

Amino acid Propensity score
Composition of
luciferases: A (%) Composition of FPs: B (%)

Composition difference:
A–B (%)

Composition of
membrane (%)

L-Leu 729.900 10.41 7.17 3.24 11.0

A-Ala 726.425 8.25 5.04 3.21 8.1

R-Arg 674.050 5.64 3.75 1.89 4.6

S-Ser 650.575 6.61 5.23 1.38 7.3

I-Ile 646.125 6.05 4.78 1.27 6.7

Q-Gln 610.950 3.55 3.14 0.41 3.1

W-Trp 604.525 1.24 0.98 0.26 1.8

C-Cys 598.400 1.58 1.36 0.22 2.0

V-Val 594.625 6.52 6.45 0.07 7.7

F-Phe 591.925 4.82 4.89 –0.07 5.6

P-Pro 579.100 4.48 4.83 –0.35 4.7

N-Asn 575.950 3.85 4.22 –0.37 3.7

D-Asp 574.025 5.79 6.25 –0.46 3.8

E-Glu 569.000 6.34 6.85 –0.51 4.6

M-Met 555.800 2.47 3.31 –0.84 2.8

Y-Tyr 549.950 3.38 4.33 –0.95 3.3

T-Thr 535.050 4.84 6.21 –1.37 5.6

H-His 516.425 2.49 4.22 –1.73 2.0

G-Gly 490.975 6.84 9.31 –2.47 7.0

K-Lys 476.225 4.83 7.69 –2.86 4.4

R 1.00 0.503 –0.237 0.9996 0.522

The total number of amino acids in the used luciferases and FPs is 107,742 and 133,473, respectively.
doi:10.1371/journal.pone.0097158.t006

Table 7. The performance (%) of SCMLFP and the compared SVM-based methods on the dataset consisting of 269 luciferases and
216 FPs.

Method Training Accuracy (%) Test Accuracy (%) Test Sensitivity (%) Test Specificity (%)

SCMLFP 97.1060.38 96.2863.35 98.8761.81 93.0167.37

SVM-AAC 96.6860.62 93.1864.80 95.8864.84 89.8767.68

SVM-DPC 96.4960.48 96.0864.41 99.2662.34 92.1468.14

There are 10 independent runs on the training (LFP-TRN) and test (LFP-TEST) data sets.
doi:10.1371/journal.pone.0097158.t007
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than that of residue Trp). The above results support the analysis

derived from the propensity scores of the SCMBLP method.

Propensity Scores of Using SCMLFP
The propensity score of a sequence obtained using the

prediction method SCMLFP is useful for discrimination between

luciferases and FPs. The SCMLFP method uses the whole dataset

consisting of 269 luciferases and 216 FPs to estimate the propensity

scores of 400 dipeptides to be a luciferase against FP, as shown in

Fig. 6. The training accuracy is 98.56%, and the sensitivity and

specificity are 98.51% and 98.61%, respectively. Table 6 lists the

propensity scores of 20 amino acids to be a luciferase against FP.

For closely examining the different properties between luciferases

and FPs, this table also shows the compositions of luciferases and

FPs, composition difference between luciferases and FPs, and

composition of integral membrane proteins. The total number of

amino acids in the used luciferases and FPs is 107,742 and

133,473, respectively.

The correlation coefficient between the propensity scores to be a

luciferase and the compositions of luciferases and FPs are

R = 0.503 and 20.237, respectively. A higher correlation of

luciferases than that of FPs in terms of the absolute value of R

reveals that the propensity scores characterize luciferases more

appropriately. The two residues Leu and Ala have the highest

scores, i.e. 729.900 and 726.425, which also have the largest

percentages of composition in the luciferases, i.e. 10.41% and

8.25%, respectively. Notably, the top-two residues with the largest

percentages (11.0% and 8.1%) of composition of residues in the

integral membrane proteins are Leu and Ala, too. Leu and Ala are

abundant in the transmembrane regions of the membrane proteins

[21]. The hydrophobic residue Leu is frequently observed in

transmembrane proteins [25].

The correlation coefficient between the propensity scores and

the composition difference between luciferases and FPs is

R = 0.9996. According to Eq. (1), the high correlation indicates

that the estimated dipeptide scores can distinguish luciferases from

FPs by simultaneously maximizing the prediction accuracy in

terms of AUC and maximizing the correlation between the

optimized and initial propensity scores of 20 amino acids (i.e.

composition difference between luciferases and FPs).

The correlation coefficient between the propensity scores to be a

luciferase and the composition of integral membrane proteins was

R = 0.522. This study also examines the difference between

luciferases and FPs from the aspect of composition. The

correlation coefficients between the compositions of integral

membrane proteins and those of luciferases and FPs were

Figure 7. Bioluminescence system of the jellyfish Clytia with the GFP-clytin complex. (A) Clytin is a Ca2+-regulated photoprotein
comprising coelenterazine (CZ) as a substrate for its bioluminescence reaction. When Ca2+ binds to clytin, the bioluminescence reaction is triggered
to produce the excited state product coelenteramide (CA) and CO2 with emission of a broad blue bioluminescence (maximum 470 nm). Due to
energy transfer, Clytia GFP fluorescence is in green (maximum 500 nm). (B) The structure of clytin (22.4 kDa, PDB code 3KPX) and its representation
using hydrophilic (outer part in blue) and hydrophobic (inner part) residues. (C) The structure of Clytia GFP (PDB code 2HPW) and its representation
using hydrophilic and hydrophobic residues using Discovery Studio 3.5. The visible fluorophore of Clytia GFP (CSY) is a sequence of three amino acids
(68S, 69Y, and 70G). To protect the chromophore fluorescence from quenching by water, the tightly packed nature of the barrel excludes solvent
molecules resulting in that the environment comprising this fluorophore is also hydrophobic.
doi:10.1371/journal.pone.0097158.g007
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R = 0.937 and 0.635, respectively. The amino acid composition is

commonly used as an informative feature when predicting

subcellular localization [26]. Despite the inability of the amino

acid composition to define protein location, a correlation is made

between composition and location. We hypothesize that luciferases

prefer a location near the cell membrane location rather than FPs

for convenient receipt of extracellular ions.

Prediction Accuracy of SCMLFP
The correlation coefficient between the compositions of

luciferases and FPs was R = 0.72. The high value of R reveals

that the prediction method using the feature of amino acid

composition only cannot distinguish luciferases from FPs accu-

rately. The SCMBLP method optimizing the propensity scores of

400 dipeptides by maximizing prediction accuracy is more

effective in predicting BLPs than when using the SVM-based

methods. Table 7 summarizes the classification accuracy of

SCMLFP using 400 dipeptide scores from 10 independent runs

on the training (LFP-TRN) and test (LFP-TEST) datasets. The

training accuracy was 97.1060.38% using LFP-TRN. The

independent test performance was 96.2863.35% with a sensitivity

of 98.8761.81% and a specificity of 93.0167.37% on the LFP-

TEST consisting of 26 luciferases and 22 FPs. This study also

implemented the SVM-based methods using amino acid compo-

sition (SVM-AAC) and dipeptide composition (SVM-DPC) for

comparisons; their test accuracies were 93.1864.80% and

96.0864.41%, respectively. Above results demonstrate that

SCMLFP is better than SVM-AAC and comparable to SVM-

DPC.

Based on the above analysis of propensity scores of amino acids

for luciferases and FPs, as is expected, the propensity scores of

dipeptides can distinguish luciferases from FPs satisfactorily from

the following two aspects. From the aspect of the classification

mechanism, the residues and dipeptides with high propensity

scores make up luciferases with large percentages of composition.

Therefore, as is widely recognized, the weighted-sum propensity

score of a sequence based on the SCM method can effectively

distinguish luciferases from FPs. From the aspect of subcellular

localization, the correlation between the compositions of lucifer-

ases and membrane proteins is as high as R = 0.937. The high

correlation between the propensity scores and the composition of

luciferases can characterize luciferases located near the membrane

position.

Illustrative Examples and Discussion
In this study, propensity scores are proposed to predict and

characterize BLPs from primary sequences rather than informa-

tive crystal structures. Although the meaning of this apparently

simple relationship (the R value) between the propensity scores and

the identified physicochemical properties of amino acids is not

very clear, additional comments are necessary to gain further

insight into BLPs, including luciferases, photoproteins, and FPs.

To characterize BLPs more accurately, this study discusses the

propensity scores and the identified properties by using illustrative

models with known structures of BLPs and illustrative applications

of photoproteins.

Titushin et al. presented a review towards understanding the role

of protein-protein interactions in the function of various biolumi-

nescence systems [19]. That review provides valuable insight into

the detailed mechanism of bioluminescence using the most reliable

structural model which is available for the protein-protein complex

of the Ca2+-regulated photoprotein clytin and GFP from the

jellyfish Clytia gocking [19]. Figure 7 schematically depicts the

bioluminescence system of the jellyfish Clytia with the GFP-clytin

complex. Clytin shares a high structural and sequence similarity

with the other Ca2+-regulated photoproteins such as aequorin

Figure 8. Schematic presentation of the G protein-coupled receptor (GPCR) reporter cell line for drug discovery. The drug discovery of
high-throughput screening is monitored by activation of the calcium-sensitive photoprotein light production. Ligand-mediated activation of Gs-
coupled receptors stimulates cAMP synthesis by adenylyl cyclase (AC) and opening of the cAMP-gated heteromultimeric cyclic nucleotide-gated
(CNG) channel. Calcium ions from the extracellular solution enter the cell through the CNG channel and are detected by photoprotein luminescence
measurements. Gq-coupled receptor activation stimulates the phospholipase C (PLC)/IP3 pathway detected via photoprotein luminescence
stimulated by calcium released from the endoplasmic reticulum (ER).
doi:10.1371/journal.pone.0097158.g008
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from Aequorea. Clytin comprises the hydrophobic coelenterazine as

a substrate for its bioluminescence reaction, as shown in Fig. 7(A).

When Ca2+ binds to the hydrophobic substrate-binding cavity of

clytin, the bioluminescence reaction is triggered to produce the

excited state product coelenteramide and CO2 with emission of a

broad blue bioluminescence (maximum 470 nm). Clytia GFP has

a low sequence identity and a structure that is highly similar to

those of GFPs from Aequorea [27]. Owing to the energy transfer,

Clytia GFP extends the bioluminescence to slightly longer

wavelengths; the resulting fluorescence is in green (maximum

500 nm). Closely examining the structure of the GFP-clytin

complex reveals that the complexation is governed by several

hydrophobic contacts and a hydrogen bond network [19]. The

SCMBLP and SCMLFP methods predicted the photoprotein

clytin and obtained the propensity scores of 463.63 and 572.16,

respectively. The threshold values to classify BLPs and luciferases

are 439.63 and 577.12, respectively. According to the prediction

results, clytin is a BLP with high confidence and a FP with low

confidence (the sequence score close to the threshold value).

Additionally, the SCMBLP and SCMLFP methods predicted the

Clytia GFP and obtained the propensity scores of 464.98 and

560.94, respectively. The prediction result was accurate that Clytia

GFP was categorized into BLP and FP with high confidence.

Figure 7(B) shows the structure of clytin (PDB code 3KPX) and

its representation using hydrophilic and hydrophobic residues.

This figure reveals the hydrophobic coelenterazine and the

hydrophobic substrate-binding cavity of clytin. Similarly,

Fig. 7(C) shows a visible fluorophore of Clytia GFP (CSY) from

a sequence of three amino acids (68S, 69Y, and 70G). To protect

the chromophore fluorescence from quenching by water, the

tightly packed nature of the barrel excludes solvent molecules

resulting in that the environment comprising this fluorophore is

also hydrophobic.

Based on Fig. 7 and the prediction results, we can infer the

following. First, the propensity scores of sequences can classify the

clytin and Clytia GFP into BLPs accurately. The SCMLFP

method was designed using the training datasets consisting of

luciferases and FPs. Therefore, the propensity score of the

photoprotein clytin was close to the decision threshold value.

Luciferases (oxidative enzymes) have higher average propensity

scores of using SCMLFP than photoproteins. Second, the

hydrophobic coelenterazine and substrate-binding cavity of clytin,

as well as the hydrophobic contacts in the protein-protein

interaction in the GFP-clytin complex support the identified

physicochemical properties. Notably, the residues of BLPs with

high propensity scores tend to be buried with high transfer free

energy and hydrophobic.

Owing to the easy detection of the emitted light with an

illuminometer, photoproteins are widely used in molecular biology

to measure intracellular Ca2+ levels. The G protein-coupled

receptor (GPCR) family is the largest known class of molecular

targets with a proven therapeutic value. Cell surface GPCRs drive

numerous signaling pathways involved in the regulation of a broad

range of physiological processes [28]. GPCRs can couple with

Ca2+ signaling in the drug discovery of high-throughput screening.

Photoproteins are also increasingly used to detect activation of

other molecular target classes such as ligand-gated ion channels

and transporters [29]. Figure 8 schematically depicts the GPCR

reporter cell line for drug discovery monitored by activation of the

calcium-sensitive photoprotein light production [30]. Ligand-

mediated activation of Gs-coupled receptors stimulates cAMP

synthesis by adenylyl cyclase (AC) and opening of the cAMP-gated

heteromultimeric cyclic nucleotide-gated (CNG) channel. While

entering the cell through the CNG channel, Calcium ions from the

extracellular solution are detected by photoprotein luminescence

measurements. Gq-coupled receptor activation stimulates the

phospholipase C (PLC)/IP3 pathway detected via photoprotein

luminescence stimulated by calcium released from the endoplas-

mic reticulum (ER).

Conventionally, changes in intracellular Ca2+ levels have been

readily detected using fluorescent dyes that emit light in proportion

to changes in intracellular Ca2+ concentration. An alternative

approach to measuring indirectly the changes in Ca2+ concentra-

tions involves using recombinantly expressed biosensor photopro-

teins, of which aequorin is a prototypic example [31]. These

biosensors provide an intense luminescent signal in response to

elevations in intracellular Ca2+ [29]. Bovolenta et al. engineered a

new photoprotein, Photina, to overcome some of the limitations of

aequorin by exchanging a portion of the sequence of the

photoprotein obelin [32] with a corresponding region in clytin to

combine the best properties of each photoprotein [33]. The signal of

Photina cells is approximately 3-folds higher than the signal of cells

expressing aequorin in the mitochondria. Cainarca et al. stably

expressed c-Photina, a Ca2+-sensitive photoprotein, driven by a

ubiquitous promoter in a mouse embryonic stem cell line [34].

Photoproteins can detect both extracellular and intracellular

Ca2+ influxes. For the receipt of extracellular magnesium or

calcium ions, luciferases and photoproteins have a similar

composition of integral membrane proteins. The residues with

high propensity scores to be a luciferase tend to have residues with

a high frequency of occurrence in the transmembrane regions.

Photoprotein mutants and modified versions of coelenterazine can

increase the range of the recorded calcium concentrations. The

presented propensity scores and characterization of BLPs greatly

facilitates mutagenesis analysis to enhance the bioluminescence

and fluorescence of BLPs.

Conclusions

Predicting and characterizing bioluminescent proteins (BLPs),

including luciferases, photoproteins, and fluorescent proteins (FPs),

are valuable for commercial and medical applications yet more

challenging, owing to their high variety of protein sequences and

small number of crystal structures. Given the increasing number of

innovative tools in drug discovery based on engineered luciferases,

photoproteins, and FPs, accurate and easily interpreted compu-

tational methods must be developed to predict and analyze BLPs.

This study has proposed a scoring card method (SCM) based

approach to estimate the propensity scores of 400 dipeptides and

20 amino acids from sequences in order to design two prediction

methods (i.e. SCMBLP and SCMLFP) and characterize BLPs

using some identified physicochemical properties. Analysis results

indicate that the SCMBLP method performs better than the

support vector machine (SVM) based prediction methods. By

establishing the datasets of luciferases and FPs, to our knowledge,

the proposed SCMLFP method is the first prediction method

capable of distinguishing luciferases from FPs. The two sets of

propensity scores to be BLPs and luciferases are highly promising

for use in discovering new properties to more thoroughly elucidate

BLPs. For example, the residues of BLPs with high propensity

scores tend to be buried with a high transfer free energy and

hydrophobic in nature. As for the high correlation between the

compositions of luciferases and integral membrane proteins, we

hypothesize that luciferases prefer a location near the cell

membrane location for convenient receipt of extracellular ions.

Furthermore, the propensity scores and identified properties for

BLPs greatly facilitate mutagenesis analysis to enhance the

bioluminescence and fluorescence of BLPs.
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