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Many researchers have studied the problem of dimensioning service providers and making shift schedules and have proposed
various methods to solve it. Considering the importance and complexity of health care, this research is conducted through the
integrated dimensioning and scheduling of service providers under patient demand uncertainty. In the first stage, a robust
approach is adopted to determine the minimum number of required service providers. In the second stage, a monthly schedule is
devised for service providers, and a two-stage stochastic program is used to solve the problem. To this end, an improved sample
average approximation method considers different contracts and skills to determine a near-optimal schedule by minimizing the
service providers’ regular working hours, overtime, and penalties for idle hours. In the first stage, considering the highest level of
conservatism, equal to 7.6, a 19.38% cost increase is created compared to the nominal problem. In the second stage, by applying
different clustering methods in the SAA algorithm and comparing them, the k-means++ algorithm obtains a good upper and
lower bound and achieves a near-optimal solution in the shortest time.*is research deals with the Iranian Health Control Center
as a case study. *e proposed method can yield the appropriate number of service providers based on monthly workloads and
make the least undesirable schedules for service providers. Hence, managers can overcome patient issues’ uncertainty by assigning
various service providers to each scheduling period.

1. Introduction

Due to the increase in chronic diseases such as cancer,
diabetes, and COVID-19, the costs of healthcare systems are
rising dramatically [1]. Alternatively, the population is aging,
and more health services are needed with the baby boom
generation entering middle age. In 2029, the last group of
baby boomers will retire, resulting in a 73% increase in
Americans aged 65 and older. Also, by 2050, one out of six
people in the world will be over 65, while in 2019, it was one
person out of eleven [2]. *e statistics issued by the World
Health Organization indicate that personnel planning will be
a priority in the field of health in the next decade. Due to the
high cost of staffing, which accounts for about 40% of the
total costs, medical centers have to reduce their expendi-
tures. Healthcare organizations face the question of how to

organize the size and structure of their workforce to manage
upcoming workloads more cost-effectively. *is issue is
especially the case when current and future demands deviate
from each other. Cancer patients are among those who have
this uncertain demand.

*e dimensioning of service providers is no longer an
easy task to service with only one type of service provider. It
gets even more challenging with the heterogeneity of the
workforce due to different types of skills or contracts [3].
Considering service providers’ size and structure (e.g., skill
sets and contract types), dimensioning aims to determine the
adequate number needed in different categories. As another
crucial task in service provider planning, scheduling involves
getting the right service provider to the right shift on the
right day. *e nurse rostering problem (NRP), or nurse
scheduling problem (NSP), aims to schedule and assign
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available service providers to hospital shifts under various
constraints over a period [4]. It is easy to recognize that
dimensioning decisions impact the scheduling quality di-
rectly. Hence, it is reasonable not to look at dimensioning
and scheduling decisions as two consecutive tasks but to
employ an integrated planning approach. As a result, di-
mensioning and scheduling service providers is a critical
issue for health care centers. In the literature, there are few
contributions addressing integrated dimensioning and
scheduling compared to the literature on dimensioning or
scheduling problems. Since health care centers have access to
a limited number of service providers with certain contract
and skill types, the proper dimensioning and planning of
personnel gains importance. According to previous re-
search, most researchers in this field have concentrated on
staff dimensioning or scheduling issues with a specific
number of service providers. However, due to the uncer-
tainty of patient issues (such as the varied number of pa-
tients, different levels of patients’ severity, and unpredictable
patients’ situations) or service provider issues (e.g., absence,
pregnancy, and fatigue), health care centers require different
numbers of service providers for certain planning periods
(Tuna et al. [5]; Wang et al. [6]). Healthcare center managers
should forecast and determine the future service providers’
size based on uncertainty (Tuna et al. [5]) to ensure that they
are flexible in assigning extra service providers to other
departments or teams or requesting extra service providers
from them, as necessary. *us, a health care center manager
should negotiate the size of the service providers before
making a schedule. For example, in the Iranian health
control center, due to the uncertainty in the conditions of
cancer patients, determining the appropriate number of
service providers is critical. Cancer patients experience
sudden changes such as metastasis and lymphedema, which
lead to uncertainty in their conditions. In the Iranian health
control center, the contracts signed by service providers with
different skills are set in three modes, namely, full-time, part-
time, and hourly. *e service cost increases by 20% to 40%
per hour as a contract is changed from full-time to part-time
or hourly. *erefore, planning for the proper assignment of
service providers can significantly save system costs. As is
the case, most health care centers use manual planning, and
the Iranian health control center is no exception [7]. *e
present study focuses on providing specialized services to
cancer patients in the event of demand uncertainty to ad-
dress the issue of planning the service providers in this
center.

Motivated by the previous research, this study proposes a
method to evaluate the required service providers with
different skills and contracts and make the corresponding
schedule in an uncertain environment. So, the managers
have the flexibility to reassign their service providers to other
healthcare centers or get help from them to prepare care.
*is research integrates dimensioning and scheduling
problems with patient demand uncertainty. Academic
methods are lacking for dealing with such practical car
providers’ dimensioning and scheduling problems. *is lack
of methodology serves as the motivation for this research. To
the best of our knowledge, B. Vanhoucke andM. Vanhoucke

[8], Wright and Mahar [9], Chen et al. [10], and Respicio
et al. [11] are the only researchers that have combined the
dimensioning and scheduling issues of service providers to
form an integrated service provider dimensioning and
scheduling problem (ISPDSP). *is new ISPDSP involves
two decisions: (1) determining the size of the service pro-
viders at the beginning of each period and (2) creating a
schedule based on that information. *e present study aims
to create a two-phase method that integrates a robust ap-
proach and two-stage stochastic programming to solve the
ISPDSP. *e presented method will help managers to de-
termine the required number of service providers based on
the conservatism level, which is determined according to the
working conditions of the health center. Suppose the pa-
tients’ conditions at the health center are such that the
smallest delay in the service leads to the deterioration of the
patient’s condition. In that case, the level of conservatism is
considered at its highest value. Next, based on a two-stage
stochastic programming model, the shift planning of each
service provider is determined.

2. Literature Review

Medical staff planning has been a topic of research since the
1950s. Ernst et al. [12] indicated that it is difficult to create a
schedule that meets the needs of employees. *e task of
medical staff planning is often difficult due to staffing re-
quirements as well as government and hospital regulations.
Different subjects, such as the number and conditions of the
patients, the medical staff’s skills, preferences, and experi-
ences, and government regulations should be considered by
planners [12]. More studies on this issue have been pub-
lished over the last two decades because of the significance of
medical staff scheduling in healthcare.

Many articles have been reviewed about medical staff
scheduling. Cheang et al. [13], Ernst et al. [12], Viana [14],
Van den Bergh et al. [15], and Defraeye and Van Nieu-
wenhuyse [16] categorized medical staff scheduling prob-
lems based on their characteristics, solution methods, and
future research trends. Klinz et al. [17] used two mathe-
matical models to minimize the number of work shifts and
nurses’ general unhappiness. Topaloglu and Selim [18]
proposed a multiobjective fuzzy goal programming model
for NSPs. *e model satisfies the hospital management
objectives and makes an equitable schedule for nurses. *ey
provided different fuzzy solution approaches to solve the
problem.*ey studied the fulfilling demand coverage for the
hospital’s objective and satisfaction for nurses’ objectives,
which contains desired shift types, requested days off, work
patterns, and total workload. Different types of membership
functions, such as trapezoidal and triangular, were con-
sidered. Also, a sensitivity analysis is performed to provide
decision-makers with a more confident solution set. Landa-
Silva and Le [19] faced real-world uncertainties through a
multiobjective approach to achieve high-quality non-
dominated schedules. *ey solved the model with a simple
evolutionary algorithm. Ohki [20] established a cooperative
genetic algorithm to reoptimize nurse schedules. Zhang et al.
[21] presented a hybrid swarm-based optimization
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algorithm that combined a variable neighborhood search
and a genetic algorithm to face highly constrained nurse
scheduling problems in hospital environments. Maenhout
and Vanhoucke [8] studied the nurse allocation issue and
used the column-generation method to deal with it. Santos
et al. [22] introduced cutting in integer programming to
solve the problem involved innovatively. Ingels and
Maenhout [23] introduced reserve duties and surveyed their
impact on medium-term personnel shift rosters. *ey
evaluate the delivered robustness by imitating the workforce
management process in a three-step method. *e unex-
pected events were simulated after designing the personnel
roster. Finally, an optimization model determined the re-
quired adjustments to balance the supply and demand.
Dohn and Mason [24] defined a generalized staff scheduling
problem as containing a master problem and a subproblem.
*e master problem specified the roster lines of the staff to
satisfy the demand constraints, and the subproblem gen-
erated a feasible roster line. *ose researchers applied the
branch-and-price concept and column-generation to solve
the master problem and subproblems. Bagheri et al. [25]
introduced a stochastic mathematical model for an NSP in
the heart surgery department at Razavi Hospital to minimize
the regular and overtime assignment costs. *ey assumed
that patients’ demands and length of stay would be un-
certain. So, they used the sample average approximation
method to solve the problem. Punnakitikashem et al. [26]
used a stochastic integerMPmodel tominimize the overload
of nurses. Staffing cost is considered through a hard budget
constraint in the model. *ey used the Benders’ decom-
position and Lagrangian relaxation methods to achieve
nondominated solutions. Northeast Texas Hospital is con-
sidered for implementing the introduced model as a case
study. Chen et al. [10] studied an integrated problem of
medical staff allocation and staff scheduling in uncertain
environments. *ey used a two-stage algorithm based on
goal programming and determined the smallest possible
medical staff required to make the best schedule for them.
Ang et al. [27] introduced a goal programming model for
NSPs and developed a decision support system. *ey ex-
amined the workload distribution, shift equity, and staff
satisfaction.*ey also pursuedminimizing the nurse-patient
ratio (NPR) and calculated it based on the number of pa-
tients allocated to each nurse. Hamid et al. [28] proposed a
multiobjective mathematical model for nurse scheduling,
which took the decision-making styles of nurses into ac-
count. *e objectives addressed in that study were mini-
mization of the average index of the incompatibility in the
decision-making styles of the nurses assigned to the same
shift days, maximization of the overall satisfaction of nurses
with their shifts, and minimization of the total cost of
staffing. Moreover, three meta-heuristics were developed to
solve the problem, including multiobjective tabu search, the
nondominated sorting genetic algorithm, and the multi-
objective Keshtel algorithm. Pham and Dao [29] proposed a
method by grouping nurses into clusters. *en, a hybrid
metaheuristic algorithm consisting of the grey wolf opti-
mizer (GWO) and particle swarm optimization (PSO)

prepared the scheduling of each cluster. *e results from the
hybrid algorithm were compared to those from the standard
PSO, GWO, and a linear programming formulation to
evaluate the algorithm’s effectiveness. Hassani and Behna-
mian [30] developed a sustainable approach with a robust
scenario-based optimization method. *ey proposed the
differential evolution (DE) algorithm to solve the problem
and compared its performance to the genetic algorithm. *e
results show that the DE algorithm has good performance.
Kheiri et al. [31] studied the multistage nurse rostering
formulation. *ey proposed a sequence-based selection
hyper-heuristic using a statistical Markov model and an
algorithm for building feasible initial solutions. Empirical
results and analysis show that the suggested approach has
significant potential for difficult problem instances.

Many researchers have considered uncertainty re-
garding the patient, medical staff, or operational issues.
Still, few have studied uncertainty regarding staff size when
examining medical staff scheduling problems. Wang et al.
[6] focused on a two-phase study of nurse scheduling. *ey
employed forecasting technology during the first phase to
predict the number of nurses required for the next four
weeks. *ey used a two-cohort staggering strategy to
schedule the required nurses for each shift on each day
during the second phase. Tuna et al. [5] determined the
required number of nurses in an outpatient chemotherapy
unit for five consecutive weeks. *ey used historical data
about the six kinds of patients and the average treatment
time for each kind on a daily horizon. *e results dem-
onstrated that, based on the uncertainty in the patients’
number and treatment time, the required number of nurses
varied from day to day for the next five-week planning
period, ranging from 6 to 32. Uno [32] dealt with a staff
scheduling problem by calculating the size of the medical
staff needed for home care. *ey determined the total
required services for each period and used a mathematical
model to calculate the lower and upper bounds of the
helpers for each period. Table 1 presents a brief classifi-
cation of the models reviewed in the literature.

Based on these studies, the number of service providers
changes from one period to another. Hence, this research
employed a conservative service provider size to make a
monthly schedule by considering the patient demand un-
certainty. In real-world shift scheduling, a different source of
uncertainties needs to be addressed to provide a reliable
schedule. *erefore, this study presents a two-stage sto-
chastic programming model that considers the uncertainty
in patients’ demands, types of contracts, and service pro-
viders’ skills. In the following, the improved sample average
approximation (I-SAA) method is employed to solve the
model, and the parameters of the solution method are ad-
justed (Figure 1).

*e rest of this article is as follows. *e proposed op-
timizationmodel and its structure are presented in Section 3.
Section 4 introduced the solution approach with detailed
descriptions of the original SAA and I-SAA methods. Sec-
tion 5 presents numerical experiments. Finally, the con-
cluding remarks are made in Section 6.
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3. Problem Definition and Modeling

3.1. Service Providers Dimensioning Problem (SPDP). *e
robust approach is suitable for dealing with uncertainty,
which was first proposed by Soyster in the early 1970s [34]. In
an uncertain environment, a range of possible values for key
parameters can be related to the objective function or con-
straints. *is range of values is specified as the lower and
upper bounds for the main parameters, and robust optimi-
zation evaluates them.*en, a conservative level is selected as
the predetermined value of each parameter, and the corre-
sponding problem is formulated. Soyster [34] proposed a very
conservative approach; therefore, the answer obtained is so
far from the answer of the nominal model. Ben-Tal and
Nemirovski [35] considered an ellipsoidal uncertainty set and
presented a conic quadratic program that cannot be directly
used for discrete models. Sim [36] presented a different
approach for controlling the level of conservatism, which
leads to a linear programmingmodel.*is formulation, called
“budget of uncertainty,” allows a model’s uncertainty to be
adjusted based on the decision maker’s risk adversity through
an uncertainty budget and causes a small increase in com-
putational efforts compared to deterministic approaches. So,
the present study employed Bertsimas’ approach to formulate
deterministic MILPs into robust optimization counterparts.
*erefore, mathematical programming can obtain optimal
solutions to the corresponding problem. *e most conser-
vative response obtained from solving this model determines

the number of service providers required, as presented in
Section 3.2. Table 2 presents the notations of SPDP.

Based on the problem uncertainties, the patients’ de-
mands and the contract duration for each skill vary from
period to period. *e parameters dim and cajm, independent
of each other, have an unknown distribution but are sym-
metric in a range, possibly with an average equal to their
nominal values. So, dim and cajm take [dim − dim, dim + dim]

and [cajm − cajm, cajm + cajm], where dim and cajm repre-
sent the deviation from the nominal coefficients dim and
cajm, respectively. To formulate the robust counterpart of
the problem, Γim, i ∈ S, m ∈M values are defined for un-
certain constraints. *us, the goal is to find the optimal
solution in situations with Γim, iϵ 1, 2, . . . , S{ }, m ∈
1, 2, . . . , M{ }. *e details of how this formulation can be
derived are presented in reference [37]. It is also shown that
the resulting robust problem is solvable within a polynomial
time. *e robust model can be defined as follows:

min 
S

i�1


N

j�1


M

m�1
cijmxijm



N

j�1
cajmxijm − zimΓim +  pijmj∈Ji

+ pim0 ≥dim∀i,∀m

,

(1)

zim + pijm ≥ cajm xijm



∀j ∈ Ji,∀i,∀m, (2)

zim + pim0 ≥ dim∀i,∀m, (3)



n

j�1
xijm ≤ aim ∀i,∀m, (4)



m

i�1
xijm ≤ bjm ∀j,∀m, (5)



n

j�1
xijm ≥ 1∀i,∀m, (6)

zim, pim0 ≥ 0∀i,∀m, (7)

pijm ≥ 0∀i,∀j,∀m , (8)

xijmϵ 0, 1{ }∀i,∀j,∀m. (9)

*eobjective functionminimizes the cost of the required
service providers. Constraints (1), (2), and (3) guarantee the
meeting of the demands for each month and each skill under
robust optimization. Constraint (4) limits the number of
service providers per skill. Constraint (5) limits the number
of service providers per contract. Constraint (6) indicates
that at least one service provider of each skill must be
assigned each month. After the number of the required
service providers is determined, nurse scheduling is
addressed in Section 3.2.

Begin

Step 1. Use a robust approach to formulate a
service providers dimensioning problem

(SPDP) 

Step 2. SPDP calculates the minimum
number of service providers

Step 3. Use a two-stage stochastic
programming approach to formulate

stochastic service providers’ scheduling
problem (SSPSP )

Step 4. Use SAA and I-SAA algorithms to
solve the SSPSP

Figure 1: *e solution procedures of the two-stage method.
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3.2. Stochastic Service Providers’ Scheduling Problem (SSPSP).
*e proposed mathematical model assigns service providers
to shifts, and the number of required overtime and idle
hours in possible conditions is determined. *e required
duration of each skill per shift and per day (desm d) is
considered stochastic. Service providers are categorized into

nurses, general practitioners, and specialists depending on
their skills. Contracts are also available in full-time, part-
time, and hourly types, 8, 4, and 2 hours per shift, re-
spectively. Table 3 presents the notations used in the model.

*e stochastic demand model for the service providers’
scheduling problem can be formulated as follows:

MinZ � 
D

d�1


M

m�1


Ixx

i�1

N

j�1
hjcajaaijxximd + 

D

d�1


M

m�1


Ixy

i�1


N

j�1
hjcbjabijxyimd

+ 
D

d�1


M

m�1


Ixz

i�1


N

j�1
hjccjacijxzimd + 

ξϵB


D

d�1


M

m�1

iϵS

ϕ(ξ) c1ip
ξ
imd + c2iq

ξ
imd ,

(10)



M

m�1
xximd ≤ 1,

i � 1, . . . , Ixx,

d � 1, .., D,

(11)



M

m�1
xyimd ≤ 1,

i � 1, . . . , Ixy,

d � 1, .., D,

(12)



M

m�1
xzimd ≤ 1,

i � 1, . . . , Ixz,

d � 1, .., D,

(13)

xxi3 d + xxij(d+1) ≤ 1i � 1, . . . , Ixx, d � 1, .., D − 1 j � 1, . . . , M, (14)

xyi3 d + xyij(d+1) ≤ 1 i � 1, . . . , Ixy, d � 1, .., D − 1 j � 1, . . . , M, (15)

xzi3 d + xzij(d+1) ≤ 1 i � 1, . . . , Ixz, d � 1, .., D − 1 j � 1, . . . , M, (16)

Table 2: Notations of SPDP.

Sets
S Set of skills (nurse, general practitioner, and specialist)
M Set of months
N Set of contracts
Parameters
dim Demand for skill i per month m
cajm Contract capacity j per month m
aim Number of the service providers available with skill i per month m
bjm Number of the service providers available with contract j per month m
cijm Cost of skilled service provider i with contract j
Γim Conservatism level
Variable
xijm Number of the service providers required for skill i with contract j per month m
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D

d�1


M

m�1
1 − xximd( gd ≥ n1 i � 1, . . . , Ixx, (17)



D

d�1


M

m�1
1 − xyimd( gd ≥ n1 i � 1, . . . , Ixy, (18)



D

d�1


M

m�1
1 − xzimd( gd ≥ n1 i � 1, . . . , Ixz, (19)



D

d�1
xxi3 d ≤ n2, i � 1, . . . , Ixx , (20)



D

d�1
xyi3 d ≤ n2, i � 1, . . . , Ixy, (21)



D

d�1
xzi3 d ≤ n2, i � 1, . . . , Ixz, (22)

Table 3: Notations of SSPSP.

Sets
S Set of skills (xx: nurse, xy: general practitioner, and xz: specialist)
W Set of weeks
D Set of days
M Set of shifts
N Set of contracts (full time, part-time, and hourly)
ξ Set of scenarios (ξ � 1, 2, . . . , B)

Ixx Set of nurses
Ixy Set of general practitioners
Ixz Set of specialists
Parameters
aaij 1, if nurse i is under contract j
abij 1, if general practitioner i is under contract j
acij 1, if specialist i is under contract j
hj Number of hours of service by contract j per shift
hhj Number of contract hours j per month
desmd Number of the hours required of skill s per shift m per day d
caj Cost of a nurse with contract j per hour
cbj Cost of a general practitioner with contract j per hour
ccj Cost of a specialist with contract j per hour
c1i Additional service cost per hour for skill i (i� xx, xy, xz)
c2i Penalty cost per hour for working less than the contract for service providers with skill i (i� xx, xy, xz)
e1s Minimum number of shifts for a full-time service provider with skill s
e2s Maximum number of shifts for a full-time service provider with skill s
n1 Minimum number of weekends off that a service provider should take in the period
n2 Maximum number of night shifts for each service provider
gi 1, if day i is weekend
Variables
xximd One if nurse i is assigned to shift m on day d; otherwise, 0
xyimd One if general practitioner i is assigned to shift m on day d; otherwise, 0
xzimd One if specialist i is assigned to shift m on day d; otherwise, 0
wxid One if d is a working day for nurse i; otherwise, 0
wyid One if d is a working day for general practitioner i; otherwise, 0
wzid One if d is a working day for specialist i; otherwise, 0
p
ξ
imd

Number of the additional hours required for skill i on shift m on day d
q
ξ
imd Number of the idle hours for skill i on shift m on day d
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wxid � 
M

m�1
xximd, i � 1, . . . , Ixx, d � 1, .., D, (23)

wyid � 
M

m�1
xyimd, i � 1, . . . , Ixy, d � 1, .., D, (24)

wzid � 
M

m�1
xzimd, i � 1, . . . , Ixz, d � 1, .., D, (25)

wxid + 

n3

t�1
wxi(d+t) ≤ n3 i � 1, . . . , Ixx, d � 1, .., D − n3 + 1 , (26)

wyid + 
n3

t�1
wyi(d+t) ≤ n3 i � 1, . . . , Ixy, d � 1, .., D − n3 + 1 , (27)

wzid + 
n3

t�1
wzi(d+t) ≤ n3 i � 1, . . . , Ixz, d � 1, .., D − n3 + 1 , (28)



D

d�1


M

m�1
aaijxximd≥ e1xx j � 1, i � 1, . . . , Ixx, (29)



D

d�1


M

m�1
abijxyimd≥ e1xy j � 1, i � 1, . . . , Ixy, (30)



D

d�1


M

m�1
abijxzimd≥ e1xz j � 1, i � 1, . . . , Ixz, (31)



D

d�1


M

m�1
aaijxximd≤ e2xx j � 1, i � 1, . . . , Ixx, (32)



D

d�1


M

m�1
abijxyimd≤ e2xy j � 1, i � 1, . . . , Ixy, (33)



D

d�1


M

m�1
abijxzimd≤ e2xz j � 1, i � 1, . . . , Ixz, (34)

p
ξ
(xx)m d ≥ de

ξ
(xx)m d − 

N

j�1


Ixx

i�1
hjaaijxximd m � 1, 2, 3, d � 1, . . . , D, (35)

p
ξ
(xy)m d ≥de

ξ
(xy)m d − 

N

j�1


Ixy

i�1
hjabijxyimd m � 1, 2, 3, d � 1, . . . , D, (36)

p
ξ
(xz)m d ≥de

ξ
(xz)m d − 

N

j�1


Ixz

i�1
hjabijxzimd m � 1, 2, 3, d � 1, . . . , D, (37)

q
ξ
(xx)m d ≥

N

j�1


Ixx

i�1
hjaaijxximd − de ξ

(xx)m d m � 1, 2, 3, d � 1, . . . , D, (38)
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q
ξ
(xy)m d ≥

N

j�1


Ixy

i�1
hjaaijxyimd − de

ξ
(xy)m d m � 1, 2, 3, d � 1, . . . , D, (39)

q
ξ
(xz)m d ≥

N

j�1


Ixz

i�1
hjaaijxzimd − de ξ

(xz)m d m � 1, 2, d � 1, . . . , D, (40)

xximd ϵ 0, 1{ }m � 1, 2, 3, d � 1, . . . , D, i � 1, . . . , Ixx, (41)

xyimd ϵ 0, 1{ }m � 1, 2, 3, d � 1, . . . , D, i � 1, . . . , Ixy, (42)

xzimd ϵ 0, 1{ }m � 1, 2, 3, d � 1, . . . , D, i � 1, . . . , Ixz, (43)

p
ξ
imd, q

ξ
imd ≥ 0 i ∈ S , ξ ∈ B, (44)

*e objective function minimizes regular work hours,
overtime hours, and the cost of idle hours. In this regard,
ϕ(ξ) is the probability of scenario ξ � 1, 2, . . . , B and
ξϵBϕ(ξ) � 1. Constraints (11)–(13) ensure that each nurse,
general practitioner, and specialist is assigned a maximum
of one shift per day. Constraints (14)–(16) state that if a
service provider is assigned to a night shift, he or she should
not work the following day. Constraints (17)–(19) specify
that each service provider be assigned at least n1 weekend.
Constraints (20)–(22) determine the maximum number of
night shifts per service provider. Constraints (23)–(26)
indicate that a service provider cannot work for more than
n3 consecutive days. Constraints (27)–(29) state that each
service provider with a full-time contract must work at least
one e1i shifts during the planning period. Constraints
(30)–(32) limit the maximum number of shifts per full-time
service provider (e2i ) in the planning period. Constraints
(32)–(34) determine overtime hours for nurses, general
practitioners, and specialists per shift in each scenario,
respectively. Constraints (35)–(37) specify extra hours for
nurses, general practitioners, and specialists per shift in
each scenario, respectively. Eventually, constraints
(38)–(40) define the model’s variables. *is research as-
sumes that the required hours of practicing skills on shiftm
per day (desm d) has a uniform distribution in the interval (a,
b). An exact solution can be obtained for small-sized
problems, but as the size of the problem increases, the
solution time increases too. *is study solves the SSPSP
with an improved sample average approximation algo-
rithm. A recourse action model is applied to formulate the
model of solving the problem with that algorithm. Section
3.3 delineates the basic properties of the new formulation
[36].

3.3. Stochastic Integer Programming with a Recourse Model.
Stochastic programming models have appeared as exten-
sions of optimization problems with random parameters.
Consider the optimization problem below[36]:

min cx,

s.t.Ax � b,

Tx � h,

x ∈ X,

x≥ 0.

(45)

In this model, x is the vector of decision variables,
Ax � b are deterministic constraints, and Tx � h are
uncertain constraints that the parameters T and h depend
on information and become available only after a deci-
sion is made on x. A class of stochastic programming
models, known as recourse models, is obtained by
allowing additional or recourse decisions after realizing
the random variables T and h. So, recourse models are
dynamic; the stages model the time discretely based on
the available data. If all the uncertainty is dissolved, a
recourse model captures it with two stages, namely,
“present” and “future.” Given a first-stage decision x, for
every possible (q,T, h) realized as (q, T, h), the infeasi-
bilities h − Tx are compensated at minimal costs with
second-stage decisions as an optimal solution of the
second-stage problem. *is specifies the minimal re-
course costs as a function of the first-stage decision x,
and the realization of ξ is denoted by υ(x, ξ). Its ex-
pectation, Q(x) � Eξ[υ(x, ξ)], yields the expected re-
course costs associated with the first-stage decision x.
*us, the two-stage recourse model is as follows:

min cx + Q(x),

s.t.Ax � b,

x ∈ X,

(46)

where the objective function cx + Q(x) indicates the total
expected costs of decision x [36]. *e SSPSP’s first stage
decisions include assigning service providers to work shifts.
*e decisions of the second stage are determined based on
the stochastic demand of the patients. *e following
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recourse model defines the stochastic model for the service
providers’ scheduling problem:

MinZ � 
D

d�1


M

m�1


Ixx

i�1


N

j�1
hjcajaaijxximd + 

D

d�1


M

m�1


Ixy

i�1


N

j�1
hjcbjabijxyimd+ 

D

d�1


M

m�1


Ixz

i�1


N

j�1
hjccjacijxzimd + E[Q(x, ξ)].

(47)

Constraints (11)–(34):
In this model, E[Q(x, ξ)] shows the recourse action

function, and

Q(x, ξ) � min 
ξϵB



D

d�1


M

m�1

iϵS

ϕ(ξ) c1ip
ξ
imd + c2iq

ξ
imd . (48)

Constraints (35)–(40):
*e ξ ∈ B vector contains numerous scenarios. So, to

obtain E[Q(x, ξ)], lots of similar integer linear programs
(ILPs) [38] must be solved, which is a difficult calculation
task. Since it is hard to provide an exact solution to the
SSPSP, the next section proposes an approximation.

4. Solution Approach

*is research expands on a two-stage method to solve an
ISPDSP. *e Bertsimas approach (see Section 3.1) describes
an SPDP based on the patients’ demand uncertainty in the
first step. Step two is calculating the minimum number of
service providers required under budget uncertainty. In the
third step, that minimum number serves as a basis to de-
termine the final number of the service providers and to
construct an SSPSP based on this number. *e objective
function of the SSPSP is to minimize the regular working
hours, overtime hours, and penalty for idle hours costs. In
the last step, the original SAA and I-SAA methods are
employed to solve the SSPSP. *is yields a near-optimal
schedule for service providers. Solving the model can help
managers determine appropriate service providers andmake
the corresponding schedules in uncertain environments.

4.1. /e Sample Average Approximation (SAA). *ere are
several solution methods, such as the SAA to solve stochastic
models. *e SAA method solves stochastic programming
problems based on the Monte Carlo simulation method. It
generates a random sample and approximates the expected
value function with the corresponding sample average
function. *e stop criterion determines how long the al-
gorithm will last. Over the years, various authors have
employed the idea of sample average approximation to solve
stochastic programs. For example, it was employed to solve
stochastic knapsack problems [39], stochastic routing
problems [40], supply chain problems [41], and investment
problems [42]. Due to the high applicability of the SAA
method, it has been selected to solve the model in this study.
*e method is delineated below.

Let M, N, and N′ be the number of replications, the
number of scenarios in the sample problem, and the sample
size used to estimate CTx + E[Q( X, ξ)] for a given feasible
solution x, respectively. So, the SAA method can be de-
scribed as follows [40]:

(1) For m� 1,..., M, repeat the following steps:

(a) Generate N random sample ξ1, ξ2 ,. . ., ξN.
(b) Solve the problem by the SAAmethod and let Xm

N
be the solution vector and Zm

N the optimal ob-
jective value.

(c) Generate independent random sample ξ1, ξ2 ,. . .,
ξN′ . Evaluate gN′(

X
m

N) and S2
g

N′(
X

m

N)
as follows:

gN′
X

m

N  � 

D

d�1


M

m�1


Ixx

i�1

N

j�1
hjcajaaijxximd + 

D

d�1


M

m�1


Ixy

i�1


N

j�1
hjcbjabijxyimd + 

D

d�1


M

m�1


Ixz

i�1


N

j�1
hjccjacijxzimd

+
1

N′


N′

n�1


D

d�1


M

m�1

iϵS

ϕ(ξ) c1ip
ξ
imd + c2iq

ξ
imd .

(49)

S
2
g

N′
X

m

N( 
�

1
N′ N′ − 1( 



N′

n�1


D

d�1


M

m�1


Ixx

i�1


N

j�1
hjcajaaijxximd + 

D

d�1


M

m�1


Ixy

i�1


N

j�1
hjcbjabijxyimd

⎡⎢⎢⎢⎣

+ 
D

d�1


M

m�1


Ixz

i�1


N

j�1
hjccjacijxzimd + 

D

d�1


M

m�1

iϵS

ϕ(ξ) c( 1ip
ξ
imd + c2iq

ξ
imd − gN′(X⎞⎠⎤⎥⎥⎦,

(50)

(2) Evaluate Z
M

N and S
Z

M

N

2 .
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Z
M

N �
1

M


M

m�1

Z
m

N , S

Z
M

N

2
�

1
(M − 1)M



M

m�1

Z
m

N − Z
M

N 
2
,

(51)

*e confidence interval for the optimality gap can be
calculated as follows:

gN′
X

m

N  − Z
M

N + Zα S
2
g

N′(X)
+ S

Z
M

N

2 
0.5

, (52)

Here is Zα � Φ−1(1 − α), where Φ(Z) is the cu-
mulative distribution of the standard normal
distribution.

(3) For each solution X
m

N, m� 1,...,M, estimate the op-
timality gap by gN′(

X
m

N) − Z
M

N , along with an esti-
mated variance of S2

g
N′(

X
m

N)
+ S

Z
M

N

2 . Choose one of the
M candidate solutions based on the least estimated
objective value.

In the algorithm, Z
M

N and gN′(
X

m

N) are the lower bound
(LB) and the upper bound (UB) of the optimal value, re-
spectively [43]. *e parameter Z

M

N shows an unbiased es-
timator of the optimal objective function E(ZN).
Here,ZM

N � E(ZN) and E(ZN)≤Z∗. Moreover, gN′(
X

m

N)

presents an unbiased estimator of the objective value E(ZN),
but E(gN′(

X
m

N))≥Z∗. An increase in the value of N causes
an increase in the accuracy of the response as well as an
exponential rise in the solution time [40]. *us, by selecting
sample sizeN, there is a trade-off between the computational
complexity and the qualities obtained through solving the
problem.*e next section introduces clustering as one of the
proposed methods to reduce the number of scenarios.

4.2. Clustering Techniques in Sample Average Approximation.
In real-world situations with large problems, the SAA al-
gorithm performs well, but the computation time is long
and the method is inefficient. So far, just a few studies have
been conducted on scenario clustering to solve optimiza-
tion problems. *ose who have tried to resolve this issue
use clustering algorithms to group similar scenarios and
generate samples. Crainic et al. [44] grouped progressive
hedging algorithm scenarios by a machine learning method
and applied the approach to a stochastic network design
problem. *ey used clustering techniques inside a partial
Benders decomposition algorithm to reduce the number of
feasibility and optimality cuts generated by the algorithm.
Emelogu et al. [45] employed clustering techniques to
improve the SAA algorithm. *ey update the sample sizes
dynamically and make high-quality solutions within a
reasonable time. Sim [36] focused on clustering algorithms
to categorize scenarios before selecting a random sample
for the SAA algorithm. *ey extracted the data from a
facility location problem. Clustering is the unsupervised
classification that divides data into groups of similar objects
[46]. Each group is called a cluster that contains similar
data. Clustering algorithms are divided into three main
categories: (1) partitional clustering; (2) hierarchical
clustering; and (3) density-based clustering. Partitional

clustering methods are divided into two subcategories,
namely, centroid and medoid. *e centroid algorithm
specifies each cluster based on the gravity center of in-
stances. Each cluster consists of the instances closest to the
gravity center in the medoid algorithm. In this method, the
numbers of the clusters are determined in advance. *e
hierarchical clustering method builds a tree of clusters
known as a dendrogram that organizes clusters from the
top-down. *e density-based clustering algorithm deter-
mines the number of clusters automatically. *is method
divides data based on different criteria, such as connec-
tivity, boundary, and region. Since in this research, clus-
tering is done for different scenarios of patients’ demand
and the number of clusters is determined in advance,
partitional clustering methods (e.g., K-means, K-means++,
PAM, and EM-GMM) have been used for clustering the
scenarios for the SAA algorithm. *en, a lower bound for
the problem is obtained through the clustered scenarios.
Figure 2(a) shows all the possible scenarios generated by a
stochastic program in a solution space. *e original SAA
takes a few scenarios as samples (N) from all the possible
ones and calculates the objective function iteratively until
M solutions are obtained. However, I-SAA groups the
scenarios in the form of a cluster where each scenario
highly represents that cluster (Figure 2(b)). *e number of
the scenarios (Nk) for the I-SAA algorithm is the reduced
form of each cluster (Figure 2(c)) [45].

*e implementation of the I-SAA method is summed up
as follows:

(1) For m� 1, ..., M, repeat the steps below:

(a) Generate NL random sample ξ1, ξ2,. . .,
ξNL(NL≫N).

(b) Use one of the clustering techniques described in
Section and cluster NL samples to yield Nk
scenario.

(c) Solve the problem by the I-SAA method and let
Xm
Nk

be the solution vector and Zm
Nk

the optimal
objective value.

(d) Generate an independent random sample ξ1, ξ2

,. . ., ξN′(N′ ≫NL). Evaluate gN′(
X

m

Nk
) and

S2
g

N′(
X

m

Nk
)
.

(2) Evaluate Z
M

Nk
and S

Z
M

Nk

2 .

Z
M

Nk
�

1
M



M

m�1

Z m
Nk

, S
2
Z

M

Nk

�
1

(M − 1)M


M

m�1

Z
m

Nk
− Z

M

Nk
 

2
.

(53)

(3) Estimate the optimality gap gN′(
X

m

Nk
) − Z

M

Nk
for

each solution X
m

Nk
and the estimated variance of

S2
g

N′(
X

m

Nk
)

+ S
Z

M

Nk

2 , m� 1, ..., M. Choose one of the M

candidate solutions based on the least estimated
objective value.

Sections 4.2.1 to 4.2.4 describe these clustering methods
used in the original SAA algorithm.
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4.2.1. K-Means. Lloyd [47] proposed the K-means algo-
rithm in 1957. Sometimes referred to as the Lloyd’s al-
gorithm, K-means is an easy, simple, efficient, and the most
popular unsupervised learning algorithm used to classify a
given dataset into a certain number of clusters in such a way
that each dataset belongs to one cluster with the same
properties. It has two phases. *e first phase chooses the
initial k centers at random. *e second phase assigns each
point in the dataset to the cluster consisting of the nearest
center and determines each cluster’s center value.
Depending upon the new values of the centers, the second
phase repeats until those values converge to the same value.
Some of the important features of the K-means algorithm
are being a common, fast, and well-known algorithm. It
reaches convergence quickly because of its simplicity.
Algorithm 1 demonstrates the steps of the K-means
clustering algorithm.

4.2.2. K-Means++. Although the K-means clustering algo-
rithm is fast and simple in practice, recent works have
mainly focused on improving the initialization procedure.
Finding a better way to initialize the clusters, changes Lloyd’s
iteration’s performance, and improve quality and conver-
gence properties. Ostrovsky et al. [48] found that a simple
procedure of selecting a good starting point could provide a
good theoretical guarantee for the quality of the solution.
*ey named this method the K-means++ clustering algo-
rithm. *e superiority of the K-means++ to the K-means
clustering algorithm is implementing a better initialization
approach to select the first k centers. In contrast to the
K-means algorithm, the K-means++ algorithm only selects
one cluster randomly. *e remaining (k-1) centers are
chosen systematically with a probability that is proportional
to their contribution to the overall error. According to
various datasets, the K-means++ algorithm makes consid-
erable improvements compared to the K-means clustering
algorithm, randomly selecting the centers. *e steps in-
volved in K-means++ clustering algorithm are illustrated in
Algorithm 2.

4.2.3. Expectation-Maximization Using Gaussian Mixture
Models (EM-GMM). *e Gaussian mixture models
(GMMs) consider the Gaussian distribution of clusters so
that a cluster can be described by its mean and standard
deviation [49]. GMMs are more flexible than K-means
because they assume that clusters are Gaussian, while the

K-means algorithm considers them circular. *e parameters
of the Gaussian distribution for each cluster are applied to
optimize the EM (expectation-maximization) algorithm.
*e E-step in the EM algorithm focuses on probability es-
timation and parameter initialization. *en, the M-step
maximizes the parameters through the probability estimates
calculated in the E-step. *e steps for the EM-GMM al-
gorithm are outlined in Algorithm 3.

4.2.4. Partitioning around Medoids (PAM). *e K-medoids
algorithm is a modified version of the K-means algorithm.
*e K-medoids and K-means algorithms partition the
dataset into groups and explore to minimize squared errors,
which calculate the distance between the point designated as
the center of that cluster and the points labeled to be in a
cluster. *e K-medoids algorithm chooses data points as
centers, in contrast to the K-means algorithm. One of the
best-known versions of K-medoids is PAM. It is a kind of
iterative optimization that combines relocating the points
between perspective clusters with renominating them as
potential medoids [50]. A medoid can be specified as the
object of a cluster whose average dissimilarity to all the
objects in the cluster is minimal (i.e., it is the most centrally
located point in a given dataset). *e PAM algorithm
operates in several steps. At first, the algorithm randomly
selects k of the n data points as the medoids. *en, it as-
sociates each data point with the closest medoid by con-
sidering a distance method (e.g., Euclidean distance,
Manhattan distance, and Minkowski distance). After that,
the algorithm swaps eachmedoid and nonmedoid data point
and computes the total cost of the configuration. Next, the
lowest cost option is selected. Finally, the algorithm repeats
until there is no change in the medoid. Algorithm 4 shows
the steps of the PAM algorithm.

5. Numerical Experiments

5.1. ExampleData. *is section reports a case study planned
at the Iranian Health Control Center, which provides pal-
liative services to cancer patients. It currently serves about
370 patients. Before doing this research, planning was done
manually by a care facilitator. Manual planning is very time-
consuming, and it is not possible to take into account all the
limitations. *erefore, the data are based on the Iranian
Health Control Center, which can help with better planning
in this center. Service providers with different skills, in-
cluding nurses, general practitioners, and specialists, work in

(a) (b) (c)

Figure 2: Representation of scenario aggregation performed in the I-SSA.
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this center for 24 working days a month. Each day contains
morning, afternoon, and night shifts. For the first model, the
rate of the change in dim and cajm is 5% of the nominal value.
*e corresponding data are obtained from the Iranian

Health Control Center to evaluate the distribution of the
demand for each skill per day and shift. *e demand has a
uniform distribution in the intervals of (24, 56), (12, 32), and
(6, 14) per hour for nurses, general practitioners, and

(1) X : set of data points
(2) k: number of clusters
(3) Randomly initialize k cluster centers(centroids) from X
(4) Repeat
(5) Expectation: assign each point to its closest centroid.
(6) Maximization: the mean of all points belonging to each cluster specifies the new centroid

Until the centroid positions converge to a constant value

ALGORITHM 1: K-means Algorithm.

(1) X : set of data points
(2) k: number of clusters
(3) Randomly initialize k medoids from X
(4) Repeat
(5) Expectation: assign each point to its closest medoid.
(6) Maximization: specify the new medoid for cluster k.

Until the medoids have no change

ALGORITHM 4: PAM Algorithm.

(1) X : set of data points
(2) k: number of clusters
(3) Randomly initialize 1 cluster centers(centroids) from X
(4) Select k-1 cluster centers(centroids) systematically with a probability that is proportional to their contribution to the overall error

from X
(5) Repeat
(6) Expectation: assign each point to its closest centroid.
(7) Maximization: the mean of all points belonging to each cluster specifies the new centroid

Until the centroid positions converge to a constant value

ALGORITHM 2: K-means++ Algorithm.

(1) X : set of data points
(2) k: number of clusters
(3) Randomly initialize k cluster centers (centroids) from X
(4) Set the Gaussian parameters
(5) Repeat
(6) Expectation: assign each point with a probability to a cluster
(7) Maximization: calculate the center of cluster(centroid) k

Until the centroid positions converge to a constant value

ALGORITHM 3: EM-GMM Algorithm.

Table 4: *e wage of each skill per hour ($).

Nurse General practitioner Specialist
Full-time 50 60 110
Part-time 60 110 150
Hourly 70 150 200

Computational Intelligence and Neuroscience 13



specialists on each shift, respectively. Table 4 shows the cost
per hour as contracted for different skills.*e additional cost
for a nurse, general practitioner, and specialist is 90, 160, and
240 dollars per hour, respectively. *e unemployment cost
for each one is 50, 70, and 110 dollars per hour, respectively.
*ere are also four holidays a month, and the working
duration of full-time, part-time, and hourly contracts is 160,
80, and 40 hours, respectively. Each service provider can
work for a maximum of five consecutive days.

5.2. Experimental Results. *is section describes the ex-
perimental results obtained by implementing the proposed
approach in the Iranian Health Control Center. *e cal-
culations conducted in this case are robust model calcula-
tions and two-stage stochastic programming model
calculations. *e proposed approach is implemented by the
GUROBI 9.1(http://www.gurobi.com/) optimization solver
on a Macbook pro with an 8-core CPU and an 8GB RAM.

In the first step, robust model calculations are performed
with different values of the conservatism level (Γ). Figure 3
shows the variation in the conservatism level (Γ) versus the
total cost. As can be seen, the total cost increases with an
increase in Γ (i.e., when the size of the uncertainty set in-
creases). *e results obtained for the total cost and the
robustness are presented in Table 5. *e robustness value is
proportional to the total cost, as determined by the robust
optimization and the deterministic method. *e total cost
remains constant when the conservatism level (Γ) reaches
7.6. In the following, the probability of violating the con-
straints will be determined by simulation.

Figure 4 illustrates the simulation results for the prob-
ability of violating the constraints with 10,000 repetitions.
More conservatism leads to increased costs, and the prob-
ability of constraint violation is close to zero.

Table 6 presents the probability of constraint violation
and a sample of the objective function value. As the pro-
tection level rises, the optimal value is marginally affected.
For instance, with an increase of the objective function by
6.96%, the probability of constraint violation is just 0.26%.

As shown in Table 6, an increase of Γ raises the total cost
to some extent; when the value of Γ reaches 7.6, the total cost
remains constant, but there is a rise of 19.38% in it compared
to certain conditions. In addition, the robustness value,
which represents the status of the objective function, is not
high enough to protect against the constraint violation. *e
computational time for solving the problem is reasonable.
*erefore, to solve the model in the next step, a case is
considered, in which the cost does not change. With a Γ
value of 7.6, the number of service providers is determined
for each skill and contract, and the input of the mathematical
model becomes known in the next step.

In the second part, the two-stage stochastic program-
ming model is solved based on the results obtained through
solving the robust model, which is designed to determine the
number of the required service providers. As mentioned in
Section 4.2, different methods have been used to cluster
scenarios. Based on the initial experiments performed by the
SAA method, N is 100. Besides, the Nk (number of clusters)

of 20 achieved by clustering methods has yielded better
results. *erefore, the model solution is based on these
values. In the approach proposed in this study, N� 100,
M� 10 and N′ � 20,000 for the original SAA algorithm
presented in Section 4.1, and Nk � 20, NL � 1000, M� 10
and N′ � 20,000 for the I-SAA presented in Section 4.2.
*ese results are reported in Tables 7 and 8.*e columns Z

m

N

and Z
m

Nk
specify the objective function’s optimal value

considering the N and Nk scenarios, respectively. *e time
column indicates the solution time in seconds. *e Gap
column shows gN′(

X
m

N) − Z
M

N , and the Var column shows
S2
g

N′(
X

m

N)
+ S

Z
M

N

2 for the original SAA. Also, gN′(
X

m

Nk
) − Z

M

Nk

and S2
g

N′(
X

m

Nk
)

+ S
Z

M

Nk

2 represent the Gap and the Var for the

I-SAA, respectively.*e original SAAmethod has the lowest
Gap and Var among all the methods. K-means++ has the
lowest Gap of the clusteringmethods, which indicates themost
convergence to the optimal solution. Also, the K-means++
method has the lowest mean Var, which denotes the lowest
mean-variance of the optimality gap estimate. Next to the
k-means++ algorithm, the K-means, PAM, and EM-GMM
algorithms have the lowest mean values of Var, respectively.

Figure 5 displays the boxplots of Z
m

N for the original SAA
algorithm and Z

m

Nk
for the I-SAA. *e original SAA algo-

rithm is shown to have the smallest distribution. *e
K-means algorithm has a small distribution, but it has
outliers farther from the mean. *e original SAA algorithm
has the largest Z

m

k of 435995.97 as well as the smallest
standard deviation at 878.61. *e K-mean++ is the next best
algorithm in terms of both Z

m

k and standard deviation, with
an average of 433530.4 and 1363.28. *e EM-GMM and
PAM algorithms have the largest standard deviations of
3220.57 and 3663.04, respectively.

In addition, gN′(
X

m

N) and gN′(
X

m

Nk
) are the upper

bounds of the optimal solution. Figure 6 presents the
boxplots of gN′(

X
m

N) for the SAA algorithm and gN′(
X

m

Nk
)

for the I-SAA with different clustering algorithms. *e
lowest value of gN′(

X
m

Nk
) in the K-means++ method is

437820.84, and the maximum value is 442507.77, which is
obtained through the EM-GMM method. *ere is a 1%
change in the upper bound limit.

*e highest value of the upper bound is 442507.77, cal-
culated with the EM-GMM, and the lowest value of the lower
bound is 422119, obtained through the PAMmethod.*ere is
a 5% change in the total cost. *e results show that
K-means++ and the original SAA have yielded the best re-
sponses. Figure 7 illustrates the mean of the upper bound and
lower bound of the original SAA and I-SAA with different
clustering algorithms. *e smallest gap between the mean of
upper and lower bounds among the clustering algorithms is
1.5%, which is observed in the K-means++ algorithm. *is
value for the original SAA algorithm is 0.5%, which has a very
small difference from the K-means++ algorithm.

*e objective of the SAA algorithm is to reduce com-
puting time. *e time taken by the original SAA and I-SAA
to solve the SSPSP is also considered to compare the al-
gorithms. Figure 7 shows the boxplots of the durations for
each algorithm to solve the SSPSP for every 10 trials.
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K-means++ has a better performance than the other algo-
rithms. *e K-means and PAM algorithms have the same
means, but the K-means++ algorithm has a lower mean and
variance. *e original SAA algorithm has the slowest run
time.*e K-means, PAM, and original SAA algorithms have
outliers. As Figure 8 suggests, the original SAA algorithm is

the slowest, averaging 4.52 seconds. It is also 2.89 seconds
slower than the next slowest algorithm, K-means.

*e Mann–Whitney test is employed to compare all the
solution time means pairwise to determine which ones are
significantly different from the rest. *e test has been per-
formed on the mean of the solution times, and the results are
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Figure 3: *e optimal value of the total cost as a function of Γ.
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Figure 4: Simulation results for the probability of violation.

Table 5: Price of robustness.

Γ Optimal value Robustness value (%) Γ Optimal value Robustness value (%)
0 4483.2 — 2.7 5059.2 12.8480
0.1 4540.8 1.2848 3.1 5102.4 13.8116
0.3 4564.8 1.8201 3.2 5112 14.0257
0.6 4694.4 4.7109 3.3 5131.2 14.4540
0.9 4718.4 5.2463 3.6 5136 14.5610
1.1 4737.6 5.6745 3.7 5155.2 14.9893
1.2 4795.2 6.9593 3.9 5179.2 15.5246
1.6 4814.4 7.3876 4.6 5208 16.1670
1.7 4838.4 7.9229 4.8 5212.8 16.2741
1.8 4896 9.2077 5.6 5280 17.7730
1.9 4920 9.7430 5.7 5304 18.3084
2 4977.6 11.0278 6.8 5313.6 18.5225
2.1 4982.4 11.1349 7.1 5328 18.8437
2.2 5035.2 12.3126 7.6 5352 19.3790
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provided in Table 9.*e first and second columns display the
algorithm pairs compared. *e third column shows the
difference between the means. Lastly, the fourth column
gives the p values for the likelihood of the cases. Considering

the significance level of 0.05, there are four cases in which an
algorithm in a pair has performed statistically better than the
other. All the clustering algorithms are statistically faster
than the original SAA algorithm.

Table 6: Probability of violation.

Γ Probability of violation Total cost Increase (%) Γ Probability of violation Total cost Increase (%)
0 0.9998 4483.2 — 2.7 0 5059.2 12.85
0.1 0.9927 4540.8 1.28 3.1 0 5102.4 13.81
0.3 0.9906 4564.8 1.82 3.2 0 5112 14.03
0.6 0.4717 4694.4 4.71 3.3 0 5131.2 14.45
0.9 0.4687 4718.4 5.25 3.6 0 5136 14.56
1.1 0.3115 4737.6 5.67 3.7 0 5155.2 14.99
1.2 0.2606 4795.2 6.96 3.9 0 5179.2 15.52
1.6 0 4814.4 7.39 4.6 0 5208 16.17
1.7 0 4838.4 7.92 4.8 0 5212.8 16.27
1.8 0 4896 9.21 5.6 0 5280 17.77
1.9 0 4920 9.74 5.7 0 5304 18.31
2 0 4977.6 11.03 6.8 0 5313.6 18.52
2.1 0 4982.4 11.13 7.1 0 5328 18.84
2.2 0 5035.2 12.31 7.6 0 5352 19.38

Table 7: Statistics for each algorithm (Z
m

N and time).

SAA
I-SAA

K-means K-means++ EM-GMM PAM
M Z

m

N Time Z
m

Nk
Time Z

m

Nk
Time Z

m

Nk
Time Z

m

Nk
Time

1 436132.5 4.49 429985.5 1.46 434269 1.57 424964.5 1.42 431521.5 1.64
2 437549.7 4.37 430258.5 1.4 432845.5 1.52 430353.5 1.48 425428 1.59
3 436823 4.52 429723.5 1.47 434158.5 1.56 427920.5 1.4 425048.5 1.52
4 436089.7 4.43 428564.5 1.45 434610.0 1.47 426269.5 1.46 428647.5 1.44
5 435876.9 4.56 424405 1.67 434269 1.5 425242 1.45 423996.5 1.75
6 435031.2 4.38 424265.5 2.83 430973.5 1.48 422452.5 1.59 424269.5 1.49
7 435771.1 5.14 427563 1.47 435059 1.42 430550 1.55 427605.5 1.5
8 435976.9 4.4 430788.5 1.48 431701.5 1.48 430101.5 1.54 422119 1.46
9 434353.6 4.43 429696.5 1.55 432895.5 1.51 432737.5 1.49 429652 1.48
10 436355.1 4.5 429849.5 1.53 434522.5 1.53 433758 1.61 431032 1.46

Table 8: Statistics for each algorithm (Gap and Var).

SAA
I-SAA

K-means K-means++ EM-GMM PAM
M Gap Var Gap Var Gap Var Gap Var Gap Var
1 2075.25 80444.81 11133.32 568383.3 7851.01 418813.5 11926.14 1344766 14691.07 1040081
2 1961.39 80396.81 10551.23 568258.7 8294.86 418848.3 11051.47 1344891 14744.03 1040044
3 2176.38 80457.34 12884.33 568204.2 6647.68 419070.2 11613.63 1344910 15398.69 1040167
4 1982.29 80502.21 12282.48 568329.2 6510.06 418948.4 14072.82 1344764 12930.52 1040268
5 1903.73 80389.55 11255.07 568203.6 8268.36 418854.7 10050.89 1345136 15007.42 1040214
6 2088.2 80406.9 11495.52 568620.8 6570.52 418978.3 11123.61 1345117 13632.48 1040255
7 2025.16 80484.91 10706.76 568439 4904.69 445945.4 10271.39 1344925 13020.84 1040212
8 1989.42 80422.1 12321.22 568252.2 6783.62 418997 11594.9 1344905 13331.85 1040315
9 2135.13 80453.57 11168.33 568115.2 6474.6 419029.8 11593.65 1344986 14044.61 1040176
10 1887.81 80461.3 10271.09 568299.9 7872.85 419019.8 11875.14 1344871 13728.78 1040055
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Figure 5: Boxplots of the optimal solution for each algorithm.
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Figure 6: Boxplots of the upper bound for each algorithm.
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Figure 7: Mean of the upper bound and the lower bound for each algorithm.
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Of all the cases, the K-mean++ algorithm shows the best
results regarding the solution time and the optimal value.
*us, 431701.5, as the lowest value of the objective function,
is selected as the best response. Tables 10–12 show the shift
scheduling of nurses, general practitioners, and specialists
performed based on the best response obtained. As the tables
suggest, morning (MO), afternoon (AF), and night (NI)
shifts are specified for each service provider; otherwise, he or
she will not be busy.

5.3. Managerial Implications. Long-term planning for ser-
vice providers is one of the most important issues in
healthcare organizations. Considering the uncertainties in
the demand of patients, especially cancer patients, an ap-
propriate approach to planning is the robust approach,
which conservatively determines the number of service
providers required. By planning at a strategic level, managers
face fewer tactical shortcomings. At the tactical level, where
decisions are made to schedule service providers’ shifts,

managers’ power increases to decide on stochastic patients’
demands and service providers’ working conditions.

In addition to the significant cost reduction resulting
from more efficient shift scheduling, the daily use of shift
schedules has important managerial implications for the
workload of home care, hospital administrators, and service
providers. It also frees those individuals to deal with other
tasks requiring more direct patient interactions. By setting
shift schedules, subjectivity can be excluded from the de-
cisions, and it is possible to use training courses and update
the service providers in their free time. Another advantage of
this planning is that it provides a robust program against
changes in patient demand. Continued use of this plan can
be beneficial for patients; necessary predictions have already
been made if a shortage of service providers ever occurs.
Based on clustered scenarios, managers can also make better
decisions in the future. More efficient plans can be made if
cooperation between the Iranian Health Control Center and
the university continues. Hospitals and other home care
centers can use these plans with more required constraints.

original SAA kmeans++ kmeans PAM EM-GMM
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Figure 8: Boxplots of the solution time for each algorithm.

Table 9: Mann–Whitney test on the mean time to solve.

μ1 μ2 |diff | p value

Original SAA K-means++ 3.018 0.00018
Original SAA K-means 2.891 0.00018
Original SAA PAM 2.891 0.00018
Original SAA EM-GMM 3.023 0.00018
K-means++ K-means 0.127 0.64903
K-means++ PAM 0.029 0.96977
K-means++ EM-GMM 0.034 0.76193
K-means PAM 0.098 0.76184
K-means EM-GMM 0.132 0.87955
PAM EM-GMM 0.034 0.49515
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6. Conclusion

*e major contribution of this research is to help healthcare
managers specify the minimum number of service providers
required. Since service providers’ daily and monthly
workloads fluctuate, the approach proposed by Bertsimas
and Sim [37] has been employed to determine the minimum
number of those individuals and solve the proposed SPDP.
Based on the most conservative responses obtained in the
first step of the research, the number of service providers
with different skills and contracts is determined for shift
scheduling. Real-world situations in this field often involve
different sources of uncertainty, such as patient demand.
Among those with this demand for uncertainty, one may
refer to cancer patients who experience unpredictable
conditions during their illness. *us, a two-stage stochastic
programming model has been presented for shift schedul-
ing, and the SAA and I-SAA methods are used to solve the
SSPSP. In the first stage, considering the conservatism level
of 7.6, the costs increase by 19.38%, which is shown by the
simulation that the probability of constraint violation is zero.
In the second stage, this research applies different clustering
methods (e.g., K-means, K-means++, PAM, and EM-GMM)
to the original SAA method and shows that the K-means++
method obtains a good upper and lower bound of the total
cost and achieves a near-optimal solution in the shortest
time. Also, the highest value of the upper bound is
442507.77, calculated with the EM-GMM method, and the
lowest value of the lower bound is 422119, obtained through
the PAM method. It shows just a 5% change in the total
costs. *erefore, this research makes the shift program of
service providers according to the uncertain patients’ de-
mands. A computer-generated provider’s schedule is better
than a manually generated one to fulfill the task. Apart from
the faster scheduling than the manual approach, an im-
portant advantage of the proposed approach is that it
eliminates subjectivities; no one is involved in providing
schedules in the proposed approach, and the level of the
available resources is the only factor affecting the final
schedule.

Finally, this study presents managerial implications for
healthcare authorities who have to solve the problems of
dimensioning and scheduling service providers in an un-
certain environment.

*ere are several recommendations for future research
in providers’ dimensioning and scheduling. *e specific
skills needed by individual patients can be considered as a
basis for assigning relevant service providers. Moreover, the
human factors involved in care provision seem interesting
topics to study. Other methods can also be tried to solve
stochastic programming models. Different robust optimi-
zation methods can be applied to providers’ dimensioning
problems. Disruptive situations can be considered in a
model with rescheduling procedures to deal with them.
Finally, models may be developed in other areas, such as fire
stations and emergency centers, where shift planning is
needed.

Data Availability

Data are available upon request to the corresponding author.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

References

[1] P. Zurn, C. Dolea, and S. Barbara, “World Health Organi-
zation Department of Human Resources for Health and In-
ternational Council of Nurses,” Nurse Retention and
Recruitment : Developing a Motivated Workforce, Interna-
tional Council of Nurses, 3, place Jean-Marteau, 1201 Geneva,
Switzerland, ISBN: 92-95040-24-4, 2005.

[2] U. Nations, D. of Economic, S. Affairs, and P. Division,World
Population Ageing 2019: Highlights, United Nation, NewYork,
NY, USA, 2019.

[3] P. De Bruecker, J. Van den Bergh, J. Beliën, and
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