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Abstract

Background: Two-sample Mendelian randomization (MR) allows the use of freely

accessible summary association results from genome-wide association studies (GWAS)

to estimate causal effects of modifiable exposures on outcomes. Some GWAS adjust for

heritable covariables in an attempt to estimate direct effects of genetic variants on the

trait of interest. One, both or neither of the exposure GWAS and outcome GWAS may

have been adjusted for covariables.

Methods: We performed a simulation study comprising different scenarios that could

motivate covariable adjustment in a GWAS and analysed real data to assess the influ-

ence of using covariable-adjusted summary association results in two-sample MR.

Results: In the absence of residual confounding between exposure and covariable,

between exposure and outcome, and between covariable and outcome, using

covariable-adjusted summary associations for two-sample MR eliminated bias due to

horizontal pleiotropy. However, covariable adjustment led to bias in the presence of

residual confounding (especially between the covariable and the outcome), even in the

absence of horizontal pleiotropy (when the genetic variants would be valid instruments

without covariable adjustment). In an analysis using real data from the Genetic

Investigation of ANthropometric Traits (GIANT) consortium and UK Biobank, the causal

effect estimate of waist circumference on blood pressure changed direction upon adjust-

ment of waist circumference for body mass index.

Conclusions: Our findings indicate that using covariable-adjusted summary associations

in MR should generally be avoided. When that is not possible, careful consideration of

the causal relationships underlying the data (including potentially unmeasured con-

founders) is required to direct sensitivity analyses and interpret results with appropriate

caution.
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Introduction

Mendelian randomization (MR) uses genetic variants to

assess the influence of modifiable exposures on health

outcomes.1,2 As germline genetic variants are generally in-

dependent of confounding factors and are determined at

conception, MR offers a more robust approach to con-

founding and reverse causation than other methods used in

observational studies.3

Two-sample MR is an extension to the one-sample MR

design, where estimates for the association of genetic var-

iants with exposure and with outcome are derived from

different (non-overlapping) samples from the same under-

lying population.4 These estimates are combined to obtain

the causal effect estimate of exposure on outcome.5 Given

that genetic variants typically explain a small proportion

of the variation in the exposure of interest, large sample

sizes are required for adequately powered MR studies.

Therefore in recent years, two-sample MR has substan-

tially grown in popularity6 since it capitalizes on the use of

publicly available summary association results from large

genome-wide association studies (GWAS).

In GWAS, estimates for the association of genetic var-

iants with the trait of interest are often conditioned on

covariables. As an example, GWAS of waist-to-hip ratio

have adjusted estimates for body mass index (BMI),7

GWAS of lung function have adjusted estimates for height

and stratified analysis by smoking status,8 and GWAS of

birthweight have excluded preterm births.9 Typically, the

aim of conditioning on covariables is to estimate the direct

effect of genetic variants on the trait (i.e. effects indepen-

dent of the covariable) or to improve statistical power by

reducing residual variance. However, this strategy could

introduce bias in GWAS association estimates if the covari-

able is a collider (or a descendant of a collider) on a path-

way linking the genetic variant to the trait of interest. It

has previously been shown that conditioning on heritable

covariables can bias GWAS association estimates and that

the magnitude of this bias is a function of the effect of the

genetic variant on the covariable and the correlation struc-

ture between the covariable and the trait of interest.10,11

The potential issue of adjusting for heritable covariates

is illustrated in Figure 1. In this hypothetical example, a

lung function GWAS would be adjusted for smoking in an

attempt to identify only the genetic variants with direct

effects (i.e. not mediated by smoking) on lung function. In

this example, one would hope that the GWAS would iden-

tify the single nucleotide polymorphisms (SNPs) SNP1 and

SNP3 as being associated with lung function (because both

have a direct effect on lung function), but not SNP2 (which

affects lung function only through its effect on smoking).

However, due to the presence of an unmeasured common

cause between smoking and lung function (represented by

U), smoking is a collider in the path SNP2 ! Smoking  
U ! Lung function, which links SNP2 and lung function.

Because adjustment for a collider opens the path on the

collider, SNP2 would be associated with lung function

even after adjustment for smoking (eliminating the associa-

tion would require additional adjustment for U, which is

not possible in this example because U is unmeasured).

This implies that the adjusted GWAS would be expected to

wrongly identify SNP2 as having a direct effect on lung

function, and to provide biased estimates for the direct ef-

fect of SNP3 on lung function (which would be a combina-

tion of the true direct effect and the bias due to collider

Key Messages

• Summary genetic association results from large genome-wide associations studies (GWAS) have been increasingly

used in two-sample Mendelian randomization (MR) analyses.

• Many GWAS adjust for heritable covariates in an attempt to estimate direct genetic effects on the trait of interest.

• In an extensive simulation study, we demonstrate that using covariable-adjusted summary associations may bias MR

analyses.

• The bias largely depends on the underlying causal structure, specially the presence of unmeasured common causes

between the covariable and the outcome.

• Our findings indicate that using covariable-adjusted summary associations in MR should generally be avoided.
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adjustment). The association between SNP1 and lung func-

tion would not be influenced by adjustment for smoking

because there is no open path between SNP1 and smoking.

Several two-sample MR studies have used summary as-

sociation data from GWAS that have estimated the effect

of genetic variants on the trait of interest conditioned on

heritable covariables (e.g. Dale et al., Emdin et al., Borges

et al., Au Yeung et al., Clarke et al.12–16). The use of such

GWAS data might have biased the findings of these MR

studies for the reasons outlined above. In addition, it is

challenging to predict the impact of such bias since data

from two independent GWAS (one for the exposure and

other for the outcome) may be used in two-sample MR

studies, meaning that the conditional estimates could be re-

stricted to the association of genetic instruments with the

exposure, with the outcome or with both exposure and

outcome. Despite there being many published studies using

covariable-adjusted summary associations12–16, few inves-

tigations have been made about how this could affect the

validity of results,12–14,17,18 particularly in the context of

two-sample MR. In this paper we explore how covariable

adjustment in GWAS affects two-sample MR findings us-

ing simulated and real data in scenarios that could moti-

vate conditioning on a heritable covariable in a GWAS.

Methods

Simulation study

We performed a series of simulations to evaluate the conse-

quences of covariable adjustment in MR. We were inter-

ested in evaluating situations where genetic variants (Z)

are marginally associated with both the exposure (X) and a

covariable (W) (Figure 2). This may be because: Z causes

W which causes X (Scenarios A, Figure 2); Z causes X and

W independently (Scenarios B and E, Figure 2); Z causes X

which causes W (Scenarios C, Figure 2); or Z causes an in-

termediate exposure (R) that causes both X and W

(Scenarios D and F, Figure 2). In these situations, the

GWAS analyst might decide to adjust for W as an attempt

to estimate the effect of genetic variants on X independent

of W, thus generating covariable-adjusted summary associ-

ation results that will be used by two-sample MR analysts

to estimate the effect of X on an outcome (Y), when they

do not have access to covariable-unadjusted results.

We performed simulations in two main ways:

• (i) All genetic variants have directionally consistent di-

rect effects on the same traits (hereafter referred to as

‘homogeneous genetic variants’). For example, if there

are 10 simulated genetic variants and one of them has

positive direct effects on both X and W (but in no other

variable in Figure 2), then all other nine genetic variants

also have positive direct effects on X and W only. In this

scenario, the genetic variants Z may have direct effects

on X, W or both, depending on the data-generating

model (explained below). These causal structures are

shown in Figure 2, where Z represents the set of genetic

variants.

• (ii) Some genetic variants have direct effects only on

some traits (hereafter referred to as ‘heterogeneous ge-

netic variants’). This also varies according to the data-

generating model (explained below).

The distinction between situations (i) and (ii) is further

clarified below, after presenting the causal structures un-

derlying the simulations.

Scenarios simulated under situation (i) are illustrated in

Figure 2. The measured variables are the candidate genetic

variants Z (which are not necessarily valid instruments for

the effect of X on Y, in which case an MR analysis using Z

as instruments would be biased), the exposure X, the out-

come Y, the covariable W, and (in Scenarios D and F) a

variable R that is a common cause of X and W. Although

multiple candidate genetic instruments are used in the sim-

ulations, Figure 2 only shows one for simplicity (this is be-

cause, in this scenario, all candidate genetic instruments

have the same causal structure, i.e. the homogeneous sce-

nario described above). In all situations, X and W are ge-

netically correlated (i.e. both are marginally associated

with Z). The aim is to estimate the causal effect of X on Y

using summary GWAS results in a two-sample MR frame-

work. Therefore, there are four possible combinations: no

adjustment for W; adjusted Z-X association but unad-

justed Z-Y association; unadjusted Z-X association but ad-

justed Z-Y association; or both Z-X and Z-Y associations

adjusted for W.

Figure 2 depicts the assumed causal structures that we

evaluated in the simulations. In Scenarios A1-A5, W fully

mediates the effect of Z on X. In Scenarios B1-B5, Z inde-

pendently affects both X and W (in other words, Z is a

confounder of the X-W association). In Scenarios C1-C5,

Figure 1 Hypothetical causal structures involving three genetic variants

(SNP1-3), smoking, lung function and an unmeasured common cause

of the latter two (U)
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Figure 2 Causal structures that were assessed in the simulation study.Z : genetic instrument; W : covariable; R: possible direct consequence of Z ; X :

exposure; Y : outcome: U: unmeasured common cause. Rows represent different causal structures between Z , X , W and Y as illustrated by

Scenarios A (W fully mediates the effect of Z on X ), B (Z independently affects both X and W ), C (X fully mediates the effect of Z on W ), D (effect of

Z on X and W is mediated by a common cause R), E (same as B except that W has a direct effect on Y ) and F (same as D except that W has a direct

effect on Y ). Columns represent different confounding structures between X , W and Y as illustrated by Scenarios A1-F1 (no unmeasured confound-

ers other than R), A2-F2 (presence of X -W confounder: UX ;W ), A3-F3 (presence of W -Y confounder: UW ;Y ), A4-F4 (presence of X -Y confounder UX ;Y )

and A5-F5 (presence of all three confounders simultaneously)
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X fully mediates the effect of Z on W. In Scenarios D1-D5,

the effect of Z on X and W is mediated by a common cause

R, so that the effect of Z on W is correlated with the effect

of Z on X, even though there is no causal effect from X to

W or vice-versa. In Scenarios A1-A5, B1-B5, C1-C5 and

D1-D5, the instrumental variable assumptions hold, so

that Z is a valid instrument to estimate the causal effect of

X on Y. However, this is not the case in Scenarios E1-E5

and F1-F5, which are identical to B1-B5 and D1-D5 (re-

spectively), except that W has a direct effect on Y (i.e. hori-

zontal pleiotropy). In our data-generating model

(explained in detail in the Supplementary Material, avail-

able as Supplementary data at IJE online), all direct effects

are independent of one another. Therefore, the Z-W and

Z-X associations are independent in Scenarios E1-E5,

meaning that in these scenarios there is horizontal pleiot-

ropy, but the InSIDE (Instrument Strength Independent of

Direct Effects) assumption holds. However, in Scenarios

F1-F5, the InSIDE assumption is violated because Z has an

effect on a common cause of W and X.

In scenarios A1-F1, there are no unmeasured confound-

ers (other than R). To isolate the implications of unmeas-

ured confounders when controlling for W, different

confounders were included in different scenarios: X-W

confounder UX;W in Scenarios A2-F2; W-Y confounder

UX;W in Scenarios A3-F3; X-Y confounder UX;Y in

Scenarios A4-F4; and finally all three confounders simulta-

neously in Scenarios A5-F5.

To simulate data under situation (ii), the same underly-

ing causal structure used for situation (i) was used, with

the exception that, in all simulations, there were four non-

overlapping subgroups of genetic variants: some with di-

rect effects on X only, some on W only, some on both X

and W (but not R) and some on R only (in scenarios that

include R).

It is now easy to clarify the distinction between situa-

tions (i) and (ii). In situation (i), all genetic variants have

direct effects on W only in Scenarios A1-A5; on X only in

Scenarios C1-C5; on both X and W (but in no other vari-

able) in Scenarios B1-B5 and E1-E5; on R only in Scenarios

D1-D5 and F1-F5. In situation (ii), some genetic variants

have direct effects on X only, other genetic variants have

direct effects on W only, and yet other genetic variants

have direct effects on both X and W (but in no other vari-

able) in all scenarios; in Scenarios D1-D5 and F1-F5, there

is another subset of genetic variants, which have direct

effects on R only.

All simulations generated data for 40 independent can-

didate genetic instruments and 100 000 individuals, and

the resulting dataset was divided into two halves at ran-

dom: one was used to estimate instrument-exposure associ-

ations, and the other to estimate instrument-outcome

associations, thus corresponding to the two-sample MR

context. Briefly, for each measured phenotypic variable, all

genetic variants with direct effects on the given phenotype

were combined into an additive allele score which had an

effect set to account for 10% of the variance of the given

phenotype. For measured phenotypic and unmeasured var-

iables with direct effects on the given phenotype, direct

effects were set to account for 20% of the variance of the

given phenotype. A detailed description on how effects

were generated is provided in the Supplementary Material.

Even though Figure 2 depicts X as a having a non-null

causal effect on Y, all of these scenarios were also simu-

lated for both a null and non-null causal effect from X to

Y. A detailed description of the data-generating model is

provided in the Supplementary Material.

For analyses using unadjusted variant-exposure sum-

mary association results (regardless of whether the variant-

outcome associations were adjusted for W), we selected

variants with an unadjusted association with the exposure

achieving a F statistic of 10 or more to ensure that only

variants relatively strongly associated with X (which is one

of the conditions required for MR to be valid) were in-

cluded in the analyses. The same logic was applied to

analysis using adjusted variant-exposure summary associa-

tion results.

Real data example: assessing the causal effect of

waist circumference on blood pressure

We conducted an illustrative analysis to explore the impact

of covariable adjustment in MR in a real data setting. The

exposure of interest was waist circumference (WC), the

outcome variables were systolic (SBP) and diastolic blood

pressure (DBP) and the covariable was BMI. We selected

genetic instruments of unadjusted WC and BMI-adjusted

WC from the Genetic Investigation of ANthropometric

Traits (GIANT) consortium7 and calculated the corre-

sponding instrument-BP summary association results using

an interim release of UK Biobank data.19 Details on the

data sources are provided in the Supplementary Material.

BMI was used as a covariable due to its strong correla-

tion with WC, meaning that variants that affect WC might

also affect BMI due to their effect on overall adiposity.

Here, we assume that two distinct causal structures

(Figure 3) are plausible. In panel A, the genetic variant has

a direct effect on a latent variable (which we refer to as adi-

posity), which manifests itself in measurable constructs

such as WC and BMI. Panel B depicts a scenario where the

genetic variant has a direct effect on WC rather than on ad-

iposity. Those mechanisms are not mutually exclusive,

since different genetic variants can present those different

direct effects, or even a single genetic variant can have
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direct effects on both. Of note, WC, BP, BMI and adiposity

are analogous to X, Y, W and R (respectively) in Figure 2.

We aimed at replicating scenarios in which the summary

association results (either unadjusted or adjusted for the

covariable) are already available. Therefore, we selected two

sets of WC genetic instruments: one using the unadjusted

GWAS results; and another using the BMI-adjusted GWAS.

In each case, independent genetic variants were selected as

WC instruments if P-value <5� 10–8. After quality control

(described in detail in the Supplementary Material), 37 single

nucleotide polymorphisms (SNPs) and 60 SNPs were

retained as genetic instruments for BMI-unadjusted and

BMI-adjusted WC, respectively. Before analysis, data were

harmonized following the steps described in Hartwig et al.6

(as detailed in the Supplementary Material). As in the simu-

lation study, four possible combinations were considered: (i)

unadjusted instrument-WC and unadjusted instrument-BP

associations; (ii) adjusted instrument-WC and unadjusted

instrument-BP associations; (iii) unadjusted instrument-WC

and adjusted instrument-BP associations; and (iv) adjusted

instrument-WC and adjusted instrument-BP associations.

Statistical analyses

Causal effect estimates were obtained using multiplicative

random effects inverse-variance weighting (IVW).5,20 In

the simulation study, coverage and average causal effect

estimates were obtained across 5000 simulated datasets.

Coverage was defined the proportion of times that 95%

confidence intervals included the true causal effect.

Results

Simulation study

Supplementary Table S1, available as Supplementary data

at IJE online, displays the number of select genetic

instruments and mean F statistic of the instrument-X asso-

ciation (among selected instruments) in analyses adjusted

and not adjusted for W. Since instruments are selected

from the exposure GWAS, the set of genetic instruments

varies according to the analysis. Taking row 3 of

Supplementary Table S1 as an example, on average 35 var-

iants were used for analyses using unadjusted instrument-

X associations, and 33 variants for analyses using adjusted

instrument-X association. The mean F statistic of 144.7

corresponds to the strength of association between the se-

lected variants (here, 35 on average) and X estimated with-

out adjusting for W, whereas the value of 135.3

corresponds to the strength of association between the se-

lected variants (here, 33 on average) and X estimated

adjusting for W. Of note, for homogeneous genetic var-

iants in Scenarios A1, A3 and A4, on average the number

of selected instruments was 0 upon adjusting the Z-X asso-

ciation for W. This is expected, since conditioning on W

closes all open paths between Z and X, without opening

new ones (as can be seen in Figure 2). Given that compar-

ing results with and without covariable adjustment is the

main goal of this study, we excluded Scenarios A1, A3 and

A4 from the presentation of results involving homogeneous

genetic variants.

Figures 4 and 5 display the bias of the IVW estimate

when instrument selection is performed among homoge-

neous and heterogeneous genetic variants, respectively

(coverage of the 95% confidence intervals is shown in

Supplementary Figures S1 and S2, available as

Supplementary data at IJE online). Although the absolute

bias was generally larger when simulating homogeneous

genetic variants, the results were generally in the same di-

rection in both situations.

In the absence of unmeasured confounders (Scenario 1),

using adjusted instrument-Y associations (especially in

combination with adjusted instrument-X associations)

Figure 3 Causal diagrams representing the assumed causal relationships in the two-sample Mendelian randomization analysis of waist circumference

(WC) on blood pressure (BP). The genetic instruments (SNPs) are assumed to influence WC by either affecting overall body adiposity (proxied by

body mass index (BMI)) [A] or by specifically changing body fat distribution [B]. The grey solid lines represent the effect of confounders between ex-

posure-outcome (UX, Y), exposure-covariable (UX, W) and covariable-outcome (UW, Y). The dashed lines represent the relationship being tested be-

tween WC and BP. IV: instrumental variable; SNP: single nucleotide polymorphism; U: unmeasured confounders
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Figure 4 Mean bias across 5000 simulations of the causal effect estimate using homogeneous genetic instruments. b : true causal effect of the expo-

sure (X ) on the outcome (Y ). Scenarios A-F assume different causal relationships among X , Y , the instrument (Z ), the covariate (W ) and a common

cause of X and W affected by Z (R). In Scenarios A1-F1, there are no unmeasured confounders. In Scenarios A2-F2, there is an unmeasured

common cause of X and W . In Scenarios A3-F3, there is an unmeasured common cause of W and Y . In Scenarios A4-F4, there is an unmeasured

common cause of X and Y . In Scenarios A5-F5, all these three unmeasured confounders are present. The scenarios are illustrated in Figure 2 and de-

scribed in detail in the ‘Simulation study’ section. Scenarios where no genetic variants are selected as instruments (because adjustment for W results

in no open path between Z and X ) are marked in grey

International Journal of Epidemiology, 2021, Vol. 50, No. 5 1645



Figure 5 Mean bias across 5000 simulations of the causal effect estimate using heterogeneous genetic instruments. b : true causal effect of the expo-

sure (X ) on the outcome (Y ). Scenarios A-F assume different causal relationships among X , Y , the instrument (Z ), the covariate (W ) and a common

cause of X and W affected by Z (R). In Scenarios A1-F1, there are no unmeasured confounders. In Scenarios A2-F2, there is an unmeasured

common cause of X and W . In Scenarios A3-F3, there is an unmeasured common cause of W and Y . In Scenarios A4-F4, there is an unmeasured

common cause of X and Y . In Scenarios A5-F5, all these three unmeasured confounders are present. The scenarios are illustrated in Figure 2 and de-

scribed in detail in the ‘Simulation study’ section
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eliminated bias due to horizontal pleiotropy (Scenarios E1

and F1). However, the presence of a W-Y confounder

(Scenario 3) resulted in bias in analyses using covariable-

adjusted instrument-Y associations even in the absence of

horizontal pleiotropy and under the causal null. Moreover,

in the presence of a non-null causal effect, the presence of a

X-W confounder (scenario 2) led to bias in analyses using

unadjusted instrument-X and adjusted instrument-Y asso-

ciations. Similar trends were observed in the coverage of

the 95% confidence intervals.

In cases where W does not have a direct effect on Y

(scenarios A-D, and thus none of the variants have hori-

zontal pleiotropic effects), the bias was generally consider-

ably lower in analysis using unadjusted than adjusted

instrument-Y association estimates. On the other hand, in

the presence of horizontal pleiotropy mediated by W,

analysis using unadjusted instrument-Y association esti-

mates presented more bias. This is because all direct effects

in our simulations were positive, thus causing the bias in-

troduced by adjusting for W (in the presence of unmeas-

ured W-Y confounding) to be negative and bias due to

horizontal pleiotropy to be positive. In general, bias was

larger and coverage lower when the true causal effect was

non-zero.

Real data example

In the unadjusted SNP-exposure and SNP-outcome analy-

sis, each standard unit increase in WC was related to an in-

crease of 0.06 mmHg in SBP [95% confidence interval

(CI): -0.01, 0.13] and of 0.12 mmHg in DBP (95% CI:

0.05, 0.19). These effects changed in direction when only

adjusting the SNP-outcome association for BMI (SBP:

-0.09, 95% CI: -0.17, -0.02; DBP: -0.11, 95% CI: -0.19,

-0.04). Effect estimates also changed direction, but were

consistent with the null when adjusting only the SNP-

exposure association (SBP: -0.06, 95% CI: -0.14, 0.01;

DBP: -0.02, 95% CI: -0.09, 0.05) or using both adjusted

SNP-exposure and SNP-outcome associations (SBP: -0.04,

95% CI: -0.11, 0.03; DBP: 0.01, 95% CI: -0.06, 0.08)

(Figure 6).

After excluding SNPs associated with BMI (P<0.05),

results were similar for the adjusted SNP-exposure analy-

ses. The exclusion of BMI-related SNPs dramatically re-

stricted the number of SNPs included in the unadjusted

SNP-exposure analyses (two out of 37 SNPs) and, as a re-

sult, estimates are highly imprecise (Supplementary Figure

S3, available as Supplementary data at IJE online).

Discussion

Our results indicate that the impact of covariable adjust-

ment in two-sample MR depends on the causal relations

and confounding structure between genetic instruments,

exposure, covariable and outcome. In addition, the magni-

tude and direction of bias will vary depending on whether

associations between instrument-exposure, instrument-

outcome or both are adjusted for the same covariables. In

an analysis using real data from GIANT consortium and

UK Biobank, the estimated causal effect of waist circumfer-

ence on blood pressure changed substantially upon adjust-

ment for BMI.

The strong dependence of the results on the underlying

causal structure was expected. In the absence of unob-

served common causes (confounders) between exposure-

covariable, exposure-outcome and covariable-outcome,

covariable adjustment eliminates bias due to horizontal

pleiotropy mediated by such covariable (Scenarios E and

F). However, absence of unobserved confounding is unre-

alistic in observational studies and is one of the primary

motivations for performing MR. In the presence of unob-

served confounding, mainly between the covariable and

the outcome, covariable adjustment will likely lead to bias

even in the absence of horizontal pleiotropy, due to collider

bias when genetic instruments are marginally associated

with the covariable. Therefore, minimizing horizontal plei-

otropy is generally an invalid justification for using

covariable-adjusted summary association results for two-

sample MR.

Bias was generally weaker when the true causal effect of

the exposure on the outcome was null among several sce-

narios we evaluated. Indeed, even in the absence of any

unmeasured confounding, covariable adjustment may lead

to bias when the true causal effect is not null. As an exam-

ple based on the directed acyclic graph (DAG) for Scenario

A1 in Figure 2 where W completely mediates the effect of

Z on X and there is no unmeasured confounding, adjust-

ment for W will block the path between Z and X. Results

from two-sample MR using unadjusted Z-X but adjusted

Z-Y estimates will be unbiased if X has no causal effect on

Y, but biased if X causes Y. Therefore, null results from

MR analysis using covariable-adjusted summary associa-

tion results are generally more reliable (in the sense of

being less likely to be a consequence of covariable-

adjustment bias) than non-null results, assuming that it is

generally unlikely that bias due to using covariable-

adjusted summary associations perfectly balances out a

given non-null true causal effect. Given that this assump-

tion may be violated (or near violated) depending on the

parametrization of the data-generating model, the notion

International Journal of Epidemiology, 2021, Vol. 50, No. 5 1647

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa266#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa266#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa266#supplementary-data


that null results are less likely to be a result of bias should

not be interpreted as a general rule.

Using covariable-adjusted instrument-outcome sum-

mary associations was also consistently related to

larger biases compared with using covariable-adjusted in-

strument-exposure summary associations. The exception

was scenarios where there was horizontal pleiotropy.

However, since attempting to minimize horizontal pleiot-

ropy via covariable adjustment is generally unjustified due

to the likely presence of unmeasured confounders, we are

primarily concerned with the scenarios where there is no

horizontal pleiotropy.

Results were generally consistent between simulations

with homogeneous and heterogeneous instruments. The

simulations with homogeneous instruments are useful to

isolate the effect of covariable adjustment according to

each underlying causal structure linking Z, X, and W illus-

trated in Figure 2. However, we believe that the most real-

istic scenarios are the simulations involving heterogeneous

instruments; in practice, it is likely that across the entire ge-

nome there are different subsets of variants affecting X via

different mechanisms, some of which may or may not in-

fluence the covariable W.

In an analysis using real data from GIANT consortium

and UK Biobank, the estimated causal effect of waist cir-

cumference on blood pressure changed substantially upon

adjustment for BMI. In this context, interpreting whether

covariable adjustment could have affected the validity of

results is particularly challenging, since adjustment for

BMI (as a proxy of overall adiposity) could remove bias

due to horizontal pleiotropy and/or introduce bias due to

conditioning on a collider (i.e. BMI) in the pathway be-

tween instrument-outcome and/or instrument-exposure.

As illustrated in Figure 3, the impact of BMI adjustment

would differ depending on the mechanism by which

genetic variants affect waist circumference, since bias could

result if genetic variants affect both waist circumference

and BMI (Figure 3A), but not if genetic variants affect

waist circumference only (Figure 3B). In practice, the net

bias from covariable adjustment will depend on the direc-

tion and magnitude of confounding and horizontal pleiot-

ropy, the mechanism by which genetic variants affect

exposure and whether adjustment was made in instrument-

exposure and/or instrument-outcome datasets.

To our knowledge, this is the first study to systemati-

cally assess the impact of covariable adjustment in (two-

sample) MR. Conditioning on a heritable covariable can

introduce bias when the covariable is a collider in the path-

way between instrument-exposure and/or instrument-

outcome. Collider bias can also be introduced in MR stud-

ies in other settings, such as in disease progression studies

which include a selected (i.e. case-only) group of

individuals17.

It is important to emphasize that using covariable-

adjusted GWAS summary association results in two-

sample MR studies differs from applying multivariable

MR (MVMR) on unadjusted GWAS summary association

results to estimate the effect of two or more exposures on

an outcome.18 The focus of our paper is to investigate bias

in two-sample MR due to using covariable-adjusted sum-

mary association results, especially in the case when those

are the only available option (e.g. when using summary

data from GWAS consortia that only performed

covariable-adjusted analyses). We are not primarily con-

cerned with whether using covariable-adjusted summary

associations reduces bias due to horizontal pleiotropy,

even though our results indicate that this is unlikely to be

the case in the presence of unmeasured confounding. For

this aim, MVMR should be preferred, because MVMR

uses genetically predicted variations in both the exposure

Figure 6 Two-sample Mendelian randomization estimates of the effect of waist circumference (WC) on systolic blood pressure (SBP) or diastolic

blood pressure (DBP) for different combinations of adjustments for BMI in SNP-exposure or SNP-outcome association. Effect estimates are expressed

as mean difference, and 95% CI, of SBP or DBP (in mmHg) per standard unit increase in WC; 37 SNPs and 60 SNPs were used as instruments for waist

circumference unadjusted and adjusted for BMI, respectively
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and covariable(s), and is therefore less susceptible to col-

lider bias.21

One of the strengths of our study was that our simula-

tions covered a wide range of scenarios, thus allowing a de-

tailed evaluation of covariable-adjustment bias in a variety

of situations. The simulation study was also complemented

with a real data example illustrating the strong influence

that covariable-adjustment may have not only on the mag-

nitude, but also on the direction of the causal effect esti-

mate. However, any simulation study is a simplification of

a reality that is likely to be much more complex. It is im-

possible to simulate all possible scenarios that might be of

relevance to this topic. Moreover some results, especially

quantitative estimates of bias and coverage, are highly de-

pendent on the data-generating model. Therefore, our

results should be interpreted qualitatively, as general indi-

cations of some of the main aspects related to covariable-

adjustment in MR. It was reassuring that some results (as

described above) were consistent across scenarios, which

indicates that they may apply generally (although not uni-

versally) to covariable-adjusted MR.

In conclusion, our findings indicate that using summary

association results adjusted for heritable covariables may

lead to bias in two-sample MR due to unmeasured con-

founding. We recommend avoiding adjustment for such

covariables in the context of MR. When only covariable-

adjusted data are available, it is important to carefully con-

sider the causal structure underlying the research question

to understand the potential impact on the results. In such

cases, we recommend that researchers refrain from inter-

preting the causal estimate too literally (which indeed

requires parametric assumptions in addition to the core in-

strumental variable assumptions even without covariable

adjustment). To account for horizontal pleiotropy due to

measured covariables, MVMR should be preferred over

non-genetic covariable adjustment.
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