
1

Briefings in Bioinformatics, 22(3), 2021, 1–8

doi: 10.1093/bib/bbaa196
Problem Solving Protocol

Topoly: Python package to analyze
topology of polymers
Pawel Dabrowski-Tumanski, Pawel Rubach, Wanda Niemyska,
Bartosz Ambrozy Gren and Joanna Ida Sulkowska

Corresponding author: Joanna Ida Sulkowska, Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland; Faculty of Chemistry,
University of Warsaw, 02-093, Warsaw, Poland. Tel.: +48-22-55-43678 E-mail: jsulkowska@cent.uw.edu.pl;

Abstract

The increasing role of topology in (bio)physical properties of matter creates a need for an efficient method of detecting the
topology of a (bio)polymer. However, the existing tools allow one to classify only the simplest knots and cannot be used in
automated sample analysis. To answer this need, we created the Topoly Python package. This package enables the
distinguishing of knots, slipknots, links and spatial graphs through the calculation of different topological polynomial
invariants. It also enables one to create the minimal spanning surface on a given loop, e.g. to detect a lasso motif or to
generate random closed polymers. It is capable of reading various file formats, including PDB. The extensive documentation
along with test cases and the simplicity of the Python programming language make it a very simple to use yet powerful tool,
suitable even for inexperienced users. Topoly can be obtained from https://topoly.cent.uw.edu.pl.
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Introduction

The history of science provides dozens of cases when the prop-
erties of matter were dictated not by its composition, but rather
by its spatial arrangements. In the 20th century, great attention
was paid to monitor the chirality of the compounds. Recently,
researchers moved one step further and focused on the analysis
of the influence of the topology on the properties of polymers.
In particular, the effect of knots, slipknots and links in linear
polymers was studied in designed compounds [3, 5, 6, 55, 62, 66],
DNA [4, 57, 59] and proteins [10, 13, 19, 37, 63, 67]. The inclusion of

Pawel Dabrowski-Tumanski, PhD, is post-doc at the Centre of New Technologies, University of Warsaw, Warsaw, Poland.
Pawel Rubach, PhD, is an assistant professor at the Warsaw School of Economics, Warsaw, Poland.
Wanda Niemyska, PhD, is an assistant professor at the Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland.
Bartosz Gren, is a PhD candidate at the Faculty of Physics, University of Warsaw, Warsaw, Poland.
Joanna Sulkowska, PhD DSc, is the head of the Interdisciplinary Laboratory of Biological Systems Modelling at the Centre of New Technologies, University
of Warsaw, Warsaw, Poland.
Submitted: 14 May 2020; Received (in revised form): 15 July 2020

© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li
censes/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact journals.permissions@oup.com

branching points showed the existence of the θ-curve topology,
lasso motif or cystine knots [14, 18, 21, 49], where the depth of
the piercing affects the properties of the polymer [3, 51].

However, for complex structures, the identification of the
topologically nontrivial motif becomes a time-consuming and
hard task even for specialists. Therefore, a tool automatically
identifying the nontrivial topology is required. For some topolo-
gies (usually knots or links), one may use some dedicated web
servers [16–18, 32, 39, 41, 42, 64], plugins [25, 26, 43] or stand-
alone packages [23, 31, 33]. However, such an approach is not
sufficient when one needs to perform a meticulous analysis
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Figure 1. The exemplary structures, which can be identified using the Topoly package, and the methods suitable for their detection (below the schemes). The schemes

present (from left to right) 31 knot, Hopf link, 31 slipknot, L1 lasso, θ51θ-curve, H61 handcuff graph and a random polymer with 20 steps.

of the whole library of polymer structures, use non-standard
methods or analyze new topologies (such as branched polymers).
To address this need, we have developed a flexible and powerful
tool—the Topoly package (https://topoly.cent.uw.edu.pl).

Topoly is a Python3 package, allowing one to identify and
analyze any polymers’ topology studied so far. Apart from
standard knot-determining techniques (Alexander, Conway,
Jones and HOMFLY-PT polynomials [2, 34]) it includes less-
known methods (Kauffman and APS Brackets, Kauffman and
BLM/Ho polynomials [11, 20, 30, 35, 36]), a polynomial for the
analysis of spatial graphs (Yamada polynomial [65]), minimal
surface analysis to identify the lasso topology [49] or the Gauss
linking number (GLN) [46, 47, 56]. Exemplary structures, which
can be analyzed with Topoly, are presented in Figure 1. To
study statistics, or simply to test the behavior of the functions
provided, the user may also generate random loops and lassos
(tadpoles), θ-curves, two-component links and handcuff graphs
(dumbbells).

Apart from self-generated structures, Topoly as a versatile
tool accepts structures provided as a set of coordinates in various
formats (XYZ, PDB, mmCIF, Mathematica and other) or as an
abstract code (Planar Diagram or Ewing–Millett [24] code). For
open structures (such as protein chains), the package provides
the option of chain closure with various methods [48, 53]. As
usual in case of a Python package, Topoly’s results can be easily
captured and parsed further according to the needs of the user.
Topoly comes with a thorough manual (including the description
of all functions) and a tutorial project (https://github.com/ilbsm/
topoly_tutorial) that includes real-life examples of its usage.

Getting started
Topoly is available for Python3 running on 64-bit Linux or Mac OS
X. It is distributed using the standard Python package manager—
PyPI—and can be easily installed by invoking pip install topoly,
provided a recent version of the pip installer is used.

The easiest way to get started with Topoly is to download or
clone the tutorial project that we provide at https://github.com/i
lbsm/topoly_tutorial and follow the three-step instructions in
the README.

Topoly features
Input files and format translation

The main function of Topoly is to analyze the topology of the
structure given either as 3D coordinates (PDB, mmCIF, XYZ,
Mathematica formats) or as an abstract code (Planar Diagram or
Ewing–Millett [24] code). In case the structure is given as PDB
or mmCIF file (e.g. directly from the RCSB database), the coordi-
nates of Cα atoms are extracted. The user may also supply the

Figure 2. Decision tree with our proposition of choosing optimal invariant

for topology check. We recommend usage of other invariants only for more

specific goals, e.g. identification of topologies with more than eight crossings

and theoretical research of topological invariants.

spatial graphs (with branching points) with each arc separated
by a line without coordinates.

The coordinates and the codes for the structures are stored
in the memory and can be written out in the desired format.
In particular, this option can be used to translate between the
formats, e.g. PDB → Mathematica, or to obtain the abstract repre-
sentation, e.g. Mathematica → PD code. Currently, the recreation
of the coordinates (PD → Mathematica) is not possible, if the
coordinates were not given.

Knot and link analysis

The knots and links are in general well defined for closed com-
ponents. For such structures, the user may use the Alexander,
Conway, Jones, HOMFLY-PT polynomial, and Kauffman Bracket
but also less-known Yamada, Kauffman and BLM/Ho polyno-
mials, and APS Bracket, which, to our best knowledge, are not
implemented anywhere else (Table 1). In Figure 2 is our propo-
sition when to use each invariant. By default, the result of each
function is the knot type (e.g. 31) corresponding to the structure
analyzed. The knot type is obtained by comparing the polyno-
mial value with the local polynomial library, containing all knots
and links (prime and composite) with up to eight crossings. The
user may also request the chirality of the knot and link using the
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Table 1. Table of available invariants and their capabilities of distinguishing different chiralities, links, and spatial graphs. They are sorted by
relative speed when running with deterministic closure and no subchain analysis. Note that Conway and Jones polynomials are relatively faster,
when using probabilistic closure or during extensive subchain analysis

Invariant Speed rank Chirality Links Spatial graphs

Alexander polynomial 1st no no no
HOMFLY polynomial 2st yes yes no
Conway polynomial 3rd no no no
Jones polynomial 3rd yes yes no
Yamada polynomial 4th yes yes yes
BLMHo polynomial 4th no yes no
Kauffman polynomial 4th yes yes no
Kauffman bracket 5th yes yes no
APS bracket 5th yes yes yes

keyword argument chiral=True. In such case, the structure type is
returned with a sign (e.g. +31) if possible, where the Doll–Hoste
[22] convention is used for links.

Instead of the link type, the user may request the original,
untranslated polynomial value (e.g. q + q3 − q4) with the key-
word argument translate=False. This option may be used, e.g. to
calculate the polynomial for more complicated structures (e.g.
with nine crossings). Such a result can be then stored in a user-
created (external) dictionary of polynomials and included in
further calculations.

In the case of open-chain structures (such as proteins), the
chain usually needs to be closed first in order to analyze its
topology. The Topoly package provides several closure methods,
including stochastic closure, in which the topology is calculated
for many random closures (more examples are discussed below).
In such cases, the result of the calculation is a dictionary with the
obtained types of topologies and their probabilities (e.g. {’31’: 0.6,
’41’: 0.3, ’52’: 0.1}).

Spatial graphs

One of the key features of the Topoly package is the possibility to
analyze the topology of spatial graphs, i.e. polymers with branch-
ing points. Such structures appear naturally in biology (e.g. glyco-
gen, cystine knots and cyclotides, lasso proteins and peptides
[29, 44, 49] or replicating cyclic DNA [1, 52]). The analysis of such
structures may be performed using, e.g. the Yamada polynomial
or APS bracket, to the best of our knowledge implemented solely
in the Topoly package. In particular, one can analyze the topology
of θ-curves or handcuff graphs (Figure 1). The Topoly package
contains a local library of Yamada polynomials for all prime and
composite θ-curves as well as handcuff graphs with up to seven
crossings.

Spanning minimal surface and detection
of surface piercings

Another feature of the Topoly package is the ability to construct
a triangulated minimal surface spanning a closed loop. The
coordinates of the surface-forming triangles may be exported
or used to analyze piercings through the loop (minimal surface
method). This technique was used to analyze polymer rings in
melt [58] and to analyze the organization of chromatin domains
[45] or to identify complex lasso proteins [49], where the tail
pierces the loop closed by a disulfide bridge (Figure 1). To perform
such analysis, the user has to specify the indices of the loop
closing bridge. In the case of PDB or mmCIF files, the bridges are
recognized automatically. By default, only the disulfide bridges

are taken into account but the user may also include other
covalent bridges (e.g. amide) or the bridges mediated by ions.

Alternatively, the piercings through the loop may be analyzed
using the GLN. Originally, the linking number counts how many
times one loop pierces the other. It was initially defined only for a
closed loop; however, its integral definition may be also extended
to open structures [9]. In such a case, fractional values are
obtained and the significantly nonzero value of the GLN should
indicate a piercing [50]. The user may analyze either two parts of
the same chain (specified by the indices) or two separate chains.
The GLN was already used to study the conformation and entan-
glement of proteins [7, 8, 13, 27, 46, 47] and chromosomes [60].

Analysis of subchains

Apart from the analysis of the whole structure, in case of the
knotted chain and GLN approach, one can also analyze the
entanglement of each subchain. As the subchain is specified by
two indices—begin and end—the information about the topology
of each subchain can be encoded in a two-dimensional matrix,
indexed by the beginning and the end of the subchain. Such
an approach in the case of knots is called the knot fingerprint
matrix (Figure 3) [37, 61]. The representation of proteins’ chains
in the form of a matrix leads to the discovery of slipknots (the
overall unknotted structures which have a nontrivial subchain)
and a strict conservation of complex knotting patterns (compo-
sitions of slipknots) within and between several protein families,
despite their large sequence divergence [61]. The GLN matrix was
used, e.g. to spot high winding of the chain around closed loops
[50].

For the GLN and each knot polynomial function, the matrix
analysis may be invoked by using the keyword matrix=True. By
default, the matrix is presented as a dictionary indexed by each
subchain. The user may, however, plot the matrix and save in a
desired format (PNG, SVG, PDF).

Structure importing, generating and finding

Apart from the library of polynomial values, the Topoly package
includes also a library of planar diagram codes for knots/links
with up to eight crossings and θ-curves and handcuff graphs for
up to seven crossings. Therefore, the user has a vast library for
his/her own analysis.

Alternatively, Topoly allows sampling of random structures.
This option may be useful to study the statistics of random
chains. Topoly includes the possibility to sample random walks,
loops, lassos, θ-curves, two-component links and handcuff
graphs (Figure 1), generated using Cantarella et al.’s [12]



4 Dabrowski-Tumanski et al.

Figure 3. The exemplary matrices obtained with Alexander polynomial (left and middle) and GLN from Topoly package. Structures analyzed from left to right: 31

slipknot, composite knot 31#31 formed by artificial structures and L3 lasso formed by hyperthermophilic archaeal RNase HI (PDB code 2ehg). The visualization of the

analyzed structures was placed in the top-right corners of the matrices. In case of the 2egh structure (right panel) the loop (in blue) is closed by a cysteine bridge

(orange) between Cys58-Cys145 and pierced by the N-terminal tail (red).

Figure 4. The exemplary results of finding functions implemented in Topoly.

For the exemplary structure (top-left) with three disulfide bonds (marked as

orange stripes) exemplary results of find_loops, find_thetas and find_handcuffs are

presented. In total, four loops, one θ-curve and eight handcuffs were found in

this case.

algorithm. The structures may be presented as a Python list
or the coordinates may be saved to separate files.

On the other hand, the user may analyze complex, multi-
branched polymers (like proteins with disulfide bridges), extract-
ing loops, θ-curves, links and handcuff graphs using the appro-
priate find_ function (Figure 4). Such an approach was already
used to find θ-curves in proteins [14].

Finally, for a given matrix fingerprint, the user may also
identify the representative subchains, which may differ in topol-
ogy. Such analysis is currently used in the KnotProt database to
prescribe the knot fingerprint, as a concatenation of topological
types of each representative subchain (e.g.+61 + 6141 + 31 in the
case of an α-haloacid dehalogenase protein). In Topoly, the rep-
resentative subchains with their topologies are obtained using
the find_spots function.

Programmed speedup

Due to the run-time complexity of some algorithms (e.g. cal-
culating the topology of every possible subchain), the Topoly

calculation is accelerated on various levels of the implementa-
tion. On the algorithmic level, the sampling of subchains is opti-
mized. The knot fingerprint matrix calculation is divided into
two parts. In the first one, only a subset of points is calculated.
The size of the subset is controlled by the density parameter (the
higher the value, the less points are calculated in the first step).
The surroundings of these points are calculated in the second
step only if a nontrivial topology was identified in the first
step. Moreover, the planar diagram codes of the structures are
compared with the local library; therefore, only the yet unknown
structures are calculated. Furthermore, the calculation of the
matrix is done in parallel (governed by the keyword run_parallel)
using all the computational power available (unless the user lim-
its the number of cores by setting the value of parallel_workers).
Finally, for the Alexander polynomial (dedicated to matrix cal-
culation) the analysis may be also done using the GPU units that
support the CUDA technology.

Other options

Apart from the topological analysis, the Topoly package
provides some auxiliary functions helpful in the analysis. In
particular, for an open structure, the user may close it (with
close_curve function) using several methods, including closure
on a big sphere surrounding the structure, extending rays
in one direction or extending the termini from the center
of the mass (Figure 5). The closed structure may be then
reduced (reduce_structure function) with the implementation
of the Koniaris–Muthukumar–Taylor algorithm [40, 63] or by a
chain of Reidemeister moves. To visualize the effect of chain
closure or reduction, one may use the function plot_graph which
opens the Matplotlib window in which the structure is shown
(Figure 5).

For a structure in a given format (e.g. Mathematica-generated
file), Topoly allows one to translate it into different supported
formats (e.g. Cα PDB file) using the translate_code function. In
particular, this way one can obtain, e.g. the planar diagram code
of a 3D structure.

By default, the obatined matrix fingerprint is presented as a
Python dictionary. As the user may want to plot the result on
their own, it may be translated to a string (KnotProt format) or a
list applicable to Matplotlib or Gnuplot using the translate_matrix
function.
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Figure 5. The exemplary closure methods. From left to right—two-point closure on the sphere (two points are randomly chosen on a large sphere and connected with

an arc visible in the front), extending rays in one direction, extending the termini from the center of the mass, and connected with an arc visible in the front. In all

three panels, the same structure (with PDB code 1j85) was closed. The structures were drawn with the Topoly implemented function plot_graph.

Finally, the user may also use Topoly to find a match for a
given polynomial in the local library using the find_matching
function. This may be used to find the link chirality if the
appropriate polynomial was calculated with some external
software.

Exemplary cases
We will present four exemplary cases.

(i) Calculation of knot topology for UCH protein (PDB code 2len,
chain A, model 2) with the Conway polynomial.

>>>from topoly import conway, Closure
>>># statistics of knots for different closures
>>> print(conway(’2len.pdb’, pdb_chain=’A’,pdb_mo-
del=2))
{’5_2’: 0.61, ’0_1’: 0.22, ’3_1’: 0.035, ’4_1’: 0.035,
’Unknown’: 0.030, ’5_1’: 0.025, ’7_6’: 0.015, ’6_1’:
0.01, ’7_3’: 0.01, ’7_4’: 0.005, ’8_4’: 0.005}
>>> # the explicit Conway polynomial for closed
structure
>>> print(conway(’2len.pdb’, translate=False,
poly_reduce=False, closure=Closure.MASS_CENTER))

1 + 2z∧2

z We assume the file ’2len.pdb’ is stored locally during

the analysis after having been downloaded from the RCSB
server. We explicitly write the parameters. First, the statis-
tics of knots are obtained. In particular, the 52 knot is
obtained with a probability of 0.61 (in 61% of closures,
Figure 6A). In the last step, we calculate the polynomial
value (1 + 2z2) for the structure closed with arms extended
from the center of mass. We do not translate the poly-
nomial value to a matching knot type (52). This analysis
shows the diversity of the detected topology which is a
consequence of using a statistical approach to close the
chain as well as of the internal complexity of the protein
backbone.

(ii) Plotting and analyzing the knot fingerprint matrix for
UCH37 (PDB code 4i6n).

>>> from topoly import alexander, homfly, find_spots
>>> # calculating and plotting the matrix
matrix_result = alexander(’4i6n.pdb’, matrix_map=
True, map_arrows=False)
# finding the spot centers
spots = find_spots(matrix_result, map_cutoff=0.36)
>>> print(spots)
’5_2’: [(2, 228)], ’3_1’: [(5, 173), (6, 211)]
>>> # establishing chirality
>>> for knot in spots.keys():
... for spot in spots.get(knot):
... print(homfly(’4i6n.pdb’, chain_boundary=[spot],
chiral=True, closure=Closure.MASS_CENTER))
(2, 228) -5_2
(5, 173) -3_1
(6, 211) -3_1

We assume the file ’4i6n.pdb’ is stored locally during anal-
ysis and the indices are renumbered to start from 1. The
matrix is calculated with the Alexander polynomial (the
fastest, devoted to matrix calculations). Next, the spots
(representative subchains) are identified (with indices 2–228
for 52 knot, 6–211 for 31 slipknot and 5–173 for the most
deeply embeded 31 slipkot; Figure 6B). In the last step, we
analyze the chirality of each subchain found in find_spots
step. It turns out that the representative subchain with the
31 topology has the same chirality. As a consequence, the
composition of these commands allows one to determine
the fundamental topological properties of proteins, such
as depth of knots and slipknots, their locations, as well as
to compare the entanglement between different proteins.
Similar properties in the case of lassos can be determined
based on the GLN matrix.

(iii) Calculating the lasso type for all the loops in cerato-platanin
(PDB code 3sum).

>>> from topoly import lasso_type
>>># gathering information about lassos
>>> lassos = lasso_type(’3sum.pdb’, more_info=True)
>>> for lasso in lassos.keys():
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... loop = lasso

... motif = lassos[lasso][’class’]

... piercing_N = lassos[lasso][’crossingsN’]

... piercing_C = lassos[lasso][’crossingsC’]

... print(loop, motif, piercing_N + piercing_C)
(43, 80) L+1C [’+97’]
(83, 145) L+1N [’+72’]
(144, 153) L0 []

We assume the file ’3sum.pdb’ is stored locally during
the analysis. We calculate the lasso types and in the
last step, we print the result, loop by loop, including
the loop-delimiting indices, the topology of the lasso
and the indices of piercing residues. The Mathematica
visualization of surface files obtained for nontrivial lassos
are shown in Figure 6C. The composition of such commands
allows for a comprehensive analysis of the lasso type
topology—location of the loop and piercings and depth of
piercings. Both parameters are important to study kinetics
pathways [28, 54], stability [38] and statistical and biological
properties [15].

(iv) Generation of loops for statistics.

>>> from topoly import generate_loop, jones
>>> # for statistic analysis
>>> from collections import Counter
>>> # generating loops
>>> loops = generate_loop(100, 1000, output=’list’)
>>> # establishing the topology of the loops
>>> result = [jones(loop, closure=Closure.CLOSED) for
loop in loops]
>>> # printing the statistics
>>> print(Counter(result)) Counter({’0_1’: 700, ’3_1’:
170, ’4_1’: 27, ’3_1#3_1’: 23,...

We generate 1000 loops with 100 nodes each and calculate
the corresponding knot statistics. For a better visualization,
the results summarized using extarnal tool—Counter. The
results are presented in Figure 6D. Such analysis can be
useful in the comparison of statistical properties between,
e.g. proteins and random polymers.

Test project and package manual

The further growing, base of examples can be found in the
tutorial project, available at https://github.com/ilbsm/topoly_tu
torial. All the functions are described extensively in the manual,
present at https://topoly.cent.uw.edu.pl

Tool architecture
The Topoly package contains a set of libraries, executables and
Python3 modules. A significant part of the available algorithms
is implemented in C or C++ and wrapped using Cython with
Python3 code. Some algorithms, however, are directly imple-
mented in Python.

Requirements

The Topoly PyPI package contains both Python code as well as
executable binaries and compiled shared libraries written in
C and C++. Some algorithms have two implementations; one
of which is faster but requires a CUDA compatible GPU and
the CUDA framework version 8.0 or newer. The Topoly PyPI
package is compatible with Linux systems starting with CentOS
6 (following the ManyLinux2010 specification) and with Mac OS
starting with 10.9 Mavericks, making most Linux and Mac OS X
supported.

Both Linux and Mac OS X packages are built for Python3
(3.5, 3.6, 3.7 and 3.8) and require the following dependent pack-
ages: biopython, cycler, kiwisolver, matplotlib, numpy, pyparsing,
python-dateutil, scipy, six. In the case Topoly is installed using
pip, these dependencies should be installed automatically.

Package structure

The Topoly package contains

• Python modules that should be installed to the relevant
Python3 modules location: /usr/local/lib/python3.x/site-
packages (administrator installation) or $USER/.local/lib-
/python3.x/site-packages (user installation),

• executables and shared libraries that should be installed
in /usr/local/bin and /usr/local/lib or $USER/.local/bin and
$USER/local/lib,

• documentation and test examples available in /usr/lo-
cal/share/doc/topoly or $USER/.local/share/doc/topoly.

Figure 6. The graphical result of the exemplary cases. (A) The histogram of knots obtained for different closures of the UCH protein (PDB code 2len, test case 1). (B)

The knot fingerprint matrix obtained for UCH37 protein (PDB code 4i6n, test case 2). (C) The surfaces spanned on the main chain of cerato-platanin (PDB code 3sum)

closed by bridges 43–80 (left panel) and 83–145 (right panel) with the piercings indicated by the blue triangle (test case 3). The third bridge results in a trivial lasso. The

surfaces are visualized with Mathematica. (D) The histogram of different knot types obtained for 1000 random loops with the length 100 (test case 4).

https://github.com/ilbsm/topoly_tutorial
https://github.com/ilbsm/topoly_tutorial
https://topoly.cent.uw.edu.pl
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PyPI packages can also be installed in Python virtual environ-
ments such as venv or virtualenv. In that case, Python modules,
executables and libraries will be found in folders relative to the
main directory of the virtual environment.

Conclusions
In this work, we presented the Topoly Python3 package—a tool
which allows for calculating the topology of linear and branched
polymers. To make it most simple for even inexperienced users
we enhanced it with the possibility to read common file for-
mats (including PDB and mmCIF). The package includes all the
tools used so far to analyze the topology of proteins and many
more additions. According to our knowledge, it is the only tool
allowing for the calculation of the Yamada polynomial for the
analysis of spatial graphs. To facilitate the statistical analysis,
we also enhanced the package with methods for the generation
of random polymers and the identification of such structures in
complex spatial graphs. The tools are optimized to enable the
screening of many structures (e.g. conformations of a protein
during folding) or very long biopolymers (e.g. chromatin), as well
as the conduction of a detailed analysis of the knot fingerprint.

Therefore, we hope that the versatility of the package will be
appreciated by many users with different background, allowing
for a fundamental topological analysis, as well as the determi-
nation of parameters important to understand the biological
function or stability (e.g. depth of a knot, lasso, kinetics path-
ways). Topoly should also help in other applications including
the designing of new entanglements in investigated biopolymers
(new branch points, location of closed loops, etc.).

Key Points
• Comprehensive and easy to use Python3 package

enables the distinguishing of knots, slipknots, links
and spatial graphs through the calculation of different
topological polynomial invariants.

• It enables the creation of the minimal spanning sur-
face on a given loop, e.g. to detect a lasso motif or to
generate random closed polymers.

• Analyzes XYZ, PDB, mmCIF and Mathematica file for-
mats and Python lists, PD codes, and EM codes.

Package manual

Package manual is present at https://topoly.cent.uw.edu.pl
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