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Abstract

The virulence factor pertactin (Prn) is a component of pertussis vaccines and one of the most polymorphic Bordetella
pertussis antigens. After the introduction of vaccination shifts in predominant Prn types were observed and strains with the
Prn vaccine type (Prn1) were replaced by strains carrying non-vaccine types (Prn2 and Prn3), suggesting vaccine-driven
selection. The aim of this study was to elucidate the shifts observed in Prn variants. We show that, although Prn2 and Prn3
circulated in similar frequencies in the 1970s and 1980s, in the 1990s Prn2 strains expanded and Prn3 strains disappeared,
suggesting that in vaccinated populations Prn2 strains are fitter than Prn3 strains. We established a role for Prn in the mouse
model by showing that a Prn knock-out (Prn-ko) mutation reduced colonization in trachea and lungs. Restoration of the
mutation resulted in a significant increase in colonization compared to the knock-out mutant. The ability of clinical isolates
with different Prn variants to colonize the mouse lung was compared. Although these isolates were also polymorphic at
other loci, only variation in the promoter for pertussis toxin (ptxP) and Prn were found to contribute significantly to
differences in colonization. Analysis of a subset of strains with the same ptxP allele revealed that the ability to colonize mice
decreased in the order Prn1.Prn2 and Prn3. Our results are consistent with the predominance of Prn1 strains in
unvaccinated populations. Our results show that ability to colonize mice is practically the same for Prn2 and Prn3. Therefore
other factors may have contributed to the predominance of Prn2 in vaccinated populations. The mouse model may be
useful to assess and predict changes in the B. pertussis population due to vaccination.
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Introduction

Bordetella pertussis causes whooping cough or pertussis, a

respiratory disease that is most severe in infants. Before childhood

vaccination was introduced in the 1950s, pertussis was a major

cause of infant mortality worldwide. Whole cell vaccines against

pertussis were introduced in the 1940s to 1960s and these were

replaced by more defined and less reactogenic acellular vaccines

(ACVs) in the 1990s [1,2]. All ACVs contain pertussis toxin (Ptx).

In addition, they may contain filamentous hemagglutinin (FHA),

pertactin (Prn) and serotype 2 and 3 fimbriae. Widespread

vaccination of children significantly reduced morbidity and

mortality. However, in the 1990s a resurgence of pertussis was

observed in countries with highly vaccinated populations and

pertussis has become the most prevalent vaccine preventable

disease in developed countries [2,3]. Although morbidity is highest

in newly born, pertussis is now recognized as a frequent infection

of adults [4,5].

The re-emergence of pertussis has been attributed to waning

vaccine-induced immunity and pathogen adaptation [3,6].

Pathogen adaptation is supported by several observations.

Antigenic divergence has occurred between vaccine strains and

clinical isolates with respect to several vaccine components; Ptx,

Prn, and fimbriae [3,6,7,8]. Further variation in Ptx and Prn has

been shown to affect vaccine efficacy in a mouse model

[9,10,11,12,13]. In addition to antigenic variation, increased Ptx

production has been associated with the resurgence of pertussis

[14]. Strains with a novel allele for the Ptx promoter (ptxP3)

emerged in the 1990s, replacing the resident ptxP1 strains. A role

of vaccination in driving shifts in B. pertussis populations is also

supported by recent genomic data [15,16].

Prn, the focus of this study, is one of the most polymorphic B.

pertussis proteins known and 13 prn alleles have been identified so

far [3,6]. Variation in Prn is mainly limited to two regions,

designated R1 and R2, which are comprised of Gly-Gly-X-X-Pro

and Pro-Gln-Pro repeats, respectively. The R1 region is located

proximal to a RGD motif implicated in receptor binding

[17] (Fig. 1A). Studies in a number of countries have reveal-

ed similar temporal trends in the frequency of Prn variants

[8,10,18,19,20,21,22,23,24,25,26,27,28]. In the last fifty years

three Prn variants have been found to predominate: Prn1, Prn2

and to a lesser extent Prn3. In the prevaccination era, essentially
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all analyzed strains produced Prn1. However in the 1980s, 20 to

30 years after the introduction of whole cell vaccination, Prn

strains were replaced by Prn2 and Prn3 strains. As most vaccines

contain Prn1 it was suggested that the emergence of Prn2 and

Prn3 was vaccine-driven [8]. Consistent with this assumption, it

was found that a whole cell vaccine containing Prn1 was less

effective against Prn2 strains compared to Prn1 strains in a mouse

model [13]. Prn2 strains now predominate in most vaccinated

populations. Njamkepo et al. [29] have analyzed strains from a

region in Senegal where vaccination was introduced only recently

(and where the coverage was still low). They found that, in contrast

to strains isolated in the same period in France (where vaccination

was introduced in the 1950s and where vaccination coverage is

high), all Senegalese strains carried the prn1 allele, characteristic

for prevaccination strains. This observation is consistent with the

theory of vaccine-driven shifts. Other arguments for the role of

vaccination in shifts of Prn variants have recently been reviewed

[3]. In the 1990s, whole cell vaccines were replaced by acellular

vaccines. Sporadically, in the acellular vaccine period, strains have

been isolated which do not produce Prn [30]. However, recently in

France a significant percentage (5.6%) of the strains isolated from

hospitalized children did not produce pertactin [31]. It was found

that the Prn gene was inactivated by deletion or insertion of IS481

[31]. Spread of such Prn-knock out strains may reduce vaccine

efficacy, in particular of acellular vaccines which induce a less

broad immunity than whole cell vaccines. Evaluation of this threat

is hampered by our lack of understanding of the role Prn plays in

the ecology of B. pertussis. Here we compare the ability of a Prn-

knock out strain with a wild type strain to colonize the mouse lungs

and trachea. We also assess the effect of variation in R1 of Prn on

colonization in this model.

Methods

Bacterial strains
B. pertussis strains were isolated from Dutch patients in the

period 1949 to 1996. Strains were grown on Bordet-Gengou agar

(Difco Catalogue no. 0048-17-5) supplemented with 1% (v/v)

glycerol and 15% (v/v) sheep blood at 35 uC for 3 days. Strains

were made streptomycin resistant to allow recovery on selective

plates from mouse lungs and trachea. Characteristics of the strains

used are shown in Table S1. Tohama I derivatives were used to

construct Prn mutants [32] (Table 1).

Construction of Prn knock-out mutants
To construct a Prn knockout mutant (Prn-ko), a fragment of prn

(469 bases in size) was amplified using primers PrnXba1F (GCT-

CTAGAGCCTGGCATCCAATGAACATGT) and PrnEcoR1R

(GGAATTCCTGTTCGCCGGCCACATAG), and cloned into

pSS1129 [33], resulting in pSR2.1. Subsequently, a kanamycin

resistance gene cassette was cloned into the RsrII site located in

the 469 base prn fragment of pSR2.1, resulting in pSR2-1.1. The

latter plasmid was used to introduce the kan gene into prn1 of the

Tohama I derivative B213 by allelic exchange [34]. Correct

insertion was checked by sequencing and one strain, B1686, was

selected for further studies. Expression of Prn in the knock-out

mutant was restored by allelic exchange using pSR2.1. Back

mutants were identified by PCR and DNA sequencing. One clone,

Figure 1. Variation in pertactin (A) and temporal trends in the frequency of pertactin alleles (B). The number in the pertactin sequences
indicates the amino acid position relative to the N-terminus. The RGD motif implicated in binding to host receptors has been underlined. Repeat
motifs are blocked. Dots and dashes indicate sequence identity with Prn1 and gaps, respectively. No strains were available from the period 1960-1964
to determine allele frequencies. Vaccination against pertussis was introduced in 1953.
doi:10.1371/journal.pone.0018014.g001
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B2576, was selected for studies in the mouse model. Expression of

Prn by B213 and its derivatives was assessed by immunoblotting.

Strain typing
Genotyping was focused on the following genes essentially as

described in [35,36]: prn, ptxP, ptxA and tcfA, coding for,

respectively, Prn, the Ptx promoter, the Ptx S1 subunit, and the

tracheal colonization factor. Typing of prn alleles is done by

sequencing of the repeat regions 1 and 2, and does not distinguish

between prn1 and prn7 which are identical in region 1 and 2 but

differ in a non-silent SNP outside these regions. Whole genome

sequencing has revealed that prn7 is associated with strains which

only circulated in the 1950s and 1960s and we assumed here that

all strains harbored prn1. Serotyping, which distinguishes between

strains producing type 2 or type 3 fimbriae (Fim2 or Fim3) was

carried out using the slide agglutination technique [37].

Mouse infection model
All animal was conducted according to relevant national and

international guidelines. Strains were grown on Bordet-Gengou

plates at 35uC for 24 hrs. After harvesting, the bacterial

concentration was adjusted to 56109 bacteria/ml. The bacterial

suspensions were flash-frozen in ethanol/dry ice in small aliquots

in Verwey medium [38] with 15% glycerol and stored at –80uC.

The viability of the frozen cell suspensions was determined prior to

infection. For infection, eight BALB/c mice (Harlan, OlHsd) 4–5

weeks old, were lightly anaesthetised with isoflurane and 40 ml of

the inoculum, containing 2*107 CFUs bacteria, was placed on the

nostrils and allowed to be inhaled. Three days after infection, mice

were sacrificed by intraperitoneal injection of NembutalR (Sanofi/

Algrin). To recover B. pertussis, trachea and lungs were removed.

The trachea was vortexed in 500 ml Verwey medium with 5 glass

pearls for 30 sec at RT. Lungs were homogenised in 900 ml

Verwey medium for 10 sec at 20,000 rpm with a homogenizer

(Pro Scientific, Pro200) at RT. Appropriate dilutions were plated

on Bordet-Gengou plates supplemented with streptomycin, and

the number of CFUs was determined. All animal experiments

were approved by the Institute’s Animal Ethics Committee.

Statistical analysis
CFU counts recovered from mice were log-transformed and

zero counts were considered missing values. The data were

analysed by Proc GLM in SAS 9.1 (SAS Institute Inc., Cary, NC,

USA). The significance among means was tested by the Student-

Newman-Keuls test at alpha = 0.01 or 0.05. Strengths of effects of

variation in fimbrial serotype, Prn, the Ptx promoter (ptxP), the Ptx

S1 subunit (PtxA) and TcfA on colonization were assessed by

ANOVA, followed by a Tukey post-test (Tukey Honest Significant

Differences). The ANOVA table can be found in the supporting

information section (Table S2). Based on this information, the

effect of variation in Prn was assessed in a subset of strains which

harbored the same ptxP allele, ptxP1.

Results

Temporal trends in prn alleles in the Netherlands
In a previous work, we analyzed the frequencies of Prn variants

in the Netherlands between 1949 and 1996 [8]. Here we extended

this analysis to 2009 and included more strains. Pertussis

vaccination in the Netherlands was introduced in 1953. The

strain composition of the whole cell vaccine was changed a few

times, but remained the same from the early 1960s on, when it was

comprised of two strains producing Prn1 and Prn7. Prn1 and Prn7

are identical, except for a single amino acid substitution outside

the two repeat regions [3]. In the period 1949–1975, Prn1 strains

predominated, representing 97% of the isolates (N 64) (Fig. 1B). In

this period only two other Prn variants were observed, each in a

single strain, Prn2 in 1950 and Prn10 in 1954. In the period 1976–

1985, Prn2 and Prn3 strains emerged. Initially, frequencies of both

Prn2 and Prn3 strains increased with similar rates. However, in

the mid 1990s Prn3 strains decreased in frequency, while Prn2

strains continued to expand. Since 2003, only Prn2 strains have

been detected in the Netherlands (N 203). These data suggest that

Prn1 strains are more fit in unvaccinated populations, while the

non-vaccine types, Prn2 and Prn3, strain are more fit in

vaccinated populations. However, of the two non-vaccine types,

Prn2 seemed to confer the greatest increase in fitness in vaccinated

populations.

The effect of inactivation of the prn gene on colonization
of the mouse respiratory tract

In a next step we aimed to determine the effect of variation in

Prn on colonization of the mouse respiratory tract. However, it

was not clear whether Prn played any role in this animal model.

To investigate this, mice were infected with the Tohama I strain or

a derivative in which the Prn gene was inactivated by insertion of a

kanamycin resistant gene cassette (Prn-ko strain). Subsequently,

colonization was assessed three days after infection (Fig. 2). The

Prn-ko mutation reduced colonization in trachea and lungs 6- and

4-fold, respectively (P,0.01). When the wild type phenotype was

Table 1. Characteristics of strains used in this study1.

Tohama I derivatives

Strain designation: Genotype: Remarks: Reference:

B0213 ptxP1, ptxA2, tcfA2, prn1, Fim2 Strep resistant Tohama I derivative [48]

B1686 ptxP1, ptxA2, tcfA2, prn::kan, Fim2 Prn knock out derived from B0213 This work

B2576 ptxP1, ptxA2, tcfA2, prn1, Fim2 Back mutant derived from B1686 This work

Vaccine strains

Strain designation: Genotype: Remarks: Reference:

Strain 134 ptxP1, ptxA2, tcfA2, prn1, Fim2,3 Used for the Dutch whole-cell vaccine [3]

Strain 509 ptxP1, ptxA4, tcfA2, prn7, Fim2,3 Used for the Dutch whole-cell vaccine [3]

1Alleles for ptxP, ptxA, tcfA and prn are shown in addition to the fimbrial (Fim) serotype produced. A table with clinical isolates is provided (Table S1).
doi:10.1371/journal.pone.0018014.t001

B. pertussis: Studies on Prn Variation

PLoS ONE | www.plosone.org 3 March 2011 | Volume 6 | Issue 3 | e18014



restored by back mutating the knock-out strain, colonization of

trachea and lungs was restored (Fig. 2). Although the back mutant

showed slightly lower colonization levels compared to the wild

type strain in trachea and lungs, the difference was not statistically

significant. In contrast, the back mutation significantly increased

colonization compared to the knock-out mutant in trachea and

lungs (P,0.01).

The effect of natural variation in Prn on colonization of
the mouse lung

To investigate the effect of natural variation in Prn on

colonization, mice were infected with clinical isolates producing

one of the three predominant Prn variants, Prn1, Prn2 or Prn3.

Colonization of lungs was assessed three days post infection. A

comparison of the colonizing ability of Prn variants was

complicated by the fact that, in addition to Prn, the strains

showed variation in a number of other surface proteins such as

PtxA, TcfA and fimbriae (Table S1). Further, strains also differed

with respect to the pertussis toxin promoter, ptxP. Three ptxP

alleles (ptxP1, ptxP2 and ptxP3) were present in this collection of

strains. We have shown that ptxP3 strains produce more Ptx than

ptxP1 [14] and Ptx has been shown to affect the colonization of

naı̈ve mice [39]. Thus any effect observed in mice could be due to

one or more of these polymorphic loci. Multivariate analyses

revealed that only variation in Prn and ptxP significantly affected

colonization of the mouse (P 0.007 and 0.024, respectively). Based

on this information, the effect of variation in Prn was assessed in a

subset of strains which harbored the same ptxP allele, ptxP1. Only

ptxP1 strains were used in these experiments because the changes

observed in Prn types occurred in a period when most strains

carried the ptxP1 allele. It was found that the ability of the strains

to colonize the mouse lung decreased in the order

Prn1.Prn2.Prn3 (Fig. 3). Only the difference between Prn1

and Prn2 was significant, however.

Discussion

The role Prn plays in the ecology of B. pertussis is still under

investigation. Prn is non-covalently attached to the outer

membrane and may play a role in adherence to monocytes and

other host cells [17,40]. Further, Prn may affect the host immune

response as it has been shown that it can augment the suppressive

effect of FHA on LPS-induced IL-12 production in vitro [41]. The

role of Prn in colonization of the mouse respiratory tract has been

studied with B. pertussis and the closely related species Bordetella

bronchiseptica. Nicholson and coworkers [42], used a swine isolate of

B. bronchiseptica to study the contribution of FHA and Prn to

respiratory disease in swine. They found that colonization of the

FHA-knock out (FHA-ko) mutant was lower than that of the wild

type in the nasal cavity, trachea and lungs. Further, the FHA-ko

mutant caused limited to no disease. In contrast, the Prn-ko

mutant caused similar disease severity relative to the wild type,

however, colonization of the Prn mutant was reduced relative to

the wild type during early and late infection. Inatsuka and

coworkers, studied the role of Prn in both rats and mice [43]. They

observed that, while a Prn-ko B. bronchiseptica strain did not differ

from a wild type strain in its ability to establish respiratory

infection in rats, it was cleared much faster than wild type bacteria

from the mouse lung. These authors went on to show that Prn

allows B. bronchiseptica to resist neutrophil-mediated clearance.

Studies with B. pertussis gave less clear results with respect to the

role of Prn. Roberts and coworkers [44] concluded that a Prn

mutant was able to colonize and grow in the lungs and trachea of

mice as well as the parent strain, BBC26, although it reached

slightly lower levels in both organs. In contrast, in two other

studies no effect of a Prn mutation on colonization of the mouse

lung was found [45,46]. Overall, these results suggested that the

role of Prn in colonization of the mouse was subtle.

In this study, inactivation of the Prn gene significantly reduced

colonization of both the trachea and lungs of mice (Fig. 2). Back

mutation restored the colonization ability. When clinical isolates

were tested for their ability to colonize the mouse lung, significant

differences were found. The clinical isolates differ at several other

loci making it difficult to assign phenotypes to particular

polymorphisms. Multivariate analyses indicated that only variation

in ptxP and Prn contributed significantly to the differences in

colonization. Ptx enhances colonization of the mouse respiratory

tract, presumably by suppressing host innate immunity [39]. Thus

the effect of ptxP on colonization is probably due to different levels

of Ptx produced in vivo, consistent with in vitro data [14]. When

strains were compared which carried an identical ptxP allele

(ptxP1), it was observed that the ability to colonize mice decreased

in the order Prn1.Prn2 and Prn3 (Fig. 3). This may be due to

differential binding of Prn variants to host receptors, as the

Figure 2. Role of Prn in colonization of the mouse respiratory
tract. Mice were infected intranasally with the Tohama I strain (wt), a
mutant derivative in which the Prn was inactivated (ko), or a back-
mutant in which the Prn gene was restored. Three days post-infection,
CFUs were determined in trachea and lungs. The experiment was
performed twice, and pooled data from both experiments are shown.
Error bars and asterisks indicate 95% confidence intervals and
significant differences (P,0.01), respectively.
doi:10.1371/journal.pone.0018014.g002

Figure 3. Effect of variation in Prn on colonization of the
mouse lung. Mice were infected with clinical isolates producing Prn1
(N = 15), Prn2 (N = 5) or Prn3 (N = 8). Three days after infection, the
number of CFUs in the lung was determined. Error bars and asterisks
indicate 95% confidence intervals and significant differences (P,0.05),
respectively.
doi:10.1371/journal.pone.0018014.g003
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variable region is located close to the RGD sequence implicated in

attachment [17,47] (Fig. 1A).

The effect of variation in Prn on colonization of mice lungs

shows interesting parallels with epidemiological data. In the

prevaccination era, essentially all strains analyzed produced Prn1.

Prn2 and Prn3 emerged in the 1980s, 20 to 30 years after the

introduction of vaccination and although the frequency of the two

variants was initially similar, Prn2 is now by far the most

predominant type. Coexistence of Prn1, Prn2 and Prn3 strains in

vaccinated populations has also been observed in Finland, Sweden

and the UK [28,48,49,50]. Invariably, Prn2 strains rose to

predominance. These data suggest that Prn1 strains are more fit in

unvaccinated populations, while the non-vaccine types, Prn2 and

Prn3, strain are more fit in vaccinated populations. However, of

the two non-vaccine types, Prn2 seemed to confer the greatest

increase in fitness in vaccinated populations.

Taking together, based on our results and those on vaccinated

mice previously published [9,10,11,12,13] we propose that of the

three Prn variants, Prn1 binds most efficiently to the host cells,

explaining its predominance in unvaccinated populations. Vacci-

nation with Prn1-containing vaccines may have shifted the

competitive balance between Prn variants allowing non-vaccine

types Prn2 and Prn3 to emerge. Regarding Prn2 strains, it is not so

clear that they colonized more efficiently than Prn3 strains;

however, other factors may have contributed to the predominance

of Prn2 strains in vaccinated populations. E.g. it is conceivable that

antibodies induced by Prn1 bind less well to Prn2 compared to

Prn3. Indeed the Dutch WCV was shown to be less efficacious in

the mouse model against Prn2 strains compared to Prn3 strains,

although the difference was not statistically significant [13]. In

addition to Prn1, Prn2 and Prn3, 10 other Prn types have been

found in low frequencies in a number of countries [3]. We

speculate that the frequency of these variants is the compound

effect of receptor fit and cross immunity with vaccine-induced Prn

antibodies.

The effect of the Prn-KO mutation in the mouse model was

relatively small, and one should be careful in extrapolating these

results to human populations. Continued strain surveillance in

human populations is required to address the question whether

Prn-ko mutants which have emerged in France [31] are less fit in

human populations and will have a limited ability to spread or

cause disease compared to wild type strains. The B. pertussis

genome contains many silent genes with unknown function [32]

and it is conceivable that compensatory mutations may occur in

Prn-ko mutants by gene reactivation or by other mechanisms.

In addition to variation in Prn, variation in ptxP was found to

significantly affect colonization of the mouse respiratory tract. The

long term effect of vaccination on pathogen populations generally

cannot be evaluated in the relatively short period in which clinical

trials take place. Our results suggest that the mouse model can be

used to explain and predict changes in the B. pertussis population

due to vaccination.
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