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Abstract

Asthma is a chronic respiratory disease characterized by reversible airway obstruction and airway
hyperresponsiveness to non-specific bronchoconstriction agonists as the primary underlying pathophysiology.
The worldwide incidence of asthma has increased dramatically in the last 40 years. According to World Health
Organization (WHO) estimates, over 300 million children and adults worldwide currently suffer from this incurable
disease and 255,000 die from the disease each year. It is now well accepted that asthma is a heterogeneous
syndrome and many clinical subtypes have been described. Viral infections such as respiratory syncytial virus (RSV)
and human rhinovirus (hRV) have been implicated in asthma exacerbation in children because of their ability to
cause severe airway inflammation and wheezing. Infections with atypical bacteria also appear to play a role in the
induction and exacerbation of asthma in both children and adults. Recent studies confirm the existence of an
infectious asthma etiology mediated by Chlamydia pneumoniae (CP) and possibly by other viral, bacterial and fungal
microbes. It is also likely that early-life infections with microbes such as CP could lead to alterations in the lung
microbiome that significantly affect asthma risk and treatment outcomes. These infectious microbes may
exacerbate the symptoms of established chronic asthma and may even contribute to the initial development of the
clinical onset of the disease. It is now becoming more widely accepted that patterns of airway inflammation differ
based on the trigger responsible for asthma initiation and exacerbation. Therefore, a better understanding of
asthma subtypes is now being explored more aggressively, not only to decipher pathophysiologic mechanisms but
also to select treatment and guide prognoses. This review will explore infection-mediated asthma with special
emphasis on the protean manifestations of CP lung infection, clinical characteristics of infection-mediated asthma,
mechanisms involved and antibiotic treatment outcomes.
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Background
Incidence and etiology of childhood and adult onset
asthma
Asthma incidence is highest in childhood and thereafter
decreases and remains stable at ~1–3 new cases per
1000 per year throughout late adolescence and adult-
hood [1]. In adult populations, the prevalence of active
cases of childhood-onset asthma (COA) and adult-onset

asthma (AOA) are approximately equal, or favor AOA
[2]. Reasons for this counterintuitive prevalence ratio
include (1) the propensity for COA to remit more
frequently than AOA and (2) the greater number of
years of adulthood in which to accrue new cases [2]. Of
relevance to clinical management and population disease
burden is the wide range of asthma severities, from mild
intermittent to severe persistent; the most severe 20% of
cases account for 80% of health care utilization and
morbidity [3]. Robust population-based data indicate
that around half of adults with asthma remain sub-
optimally controlled, even when treated with currently
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available anti-inflammatory medications, and ~15% of
adults with active asthma are severely uncontrolled [4–6].
These data indicate the need for novel therapies that are
effective in the most severe and treatment-resistant cases
of asthma that account for the majority of morbidity, mor-
tality and health care utilization. The emerging evidence
that a wide variety of microbes are present in the lower
airway and may play a role in asthma pathogenesis
suggests that manipulating the airway microbiome may be
a novel approach towards this goal. Studies confirm the
existence of an infectious etiology mediated by Chlamydia
pneumoniae (CP) [7] and possibly other viral [8], bacterial
[9] and fungal [10] microbes. Among the various infec-
tions associated with asthma, the obligate intracellular
respiratory pathogen CP is of particular interest, as it is
associated with both asthma severity and treatment resist-
ance [11–13]. Although this review focuses on CP we will
discuss Mycoplasma pneumoniae (MP) briefly under
Treatment (Section V). It is possible that microbes such
as CP and MP that have been implicated in recurrent
wheeze and asthma etiology may serve as cofactors for
viral infections, but certainly appear to act independently
in asthmatic disease. The etiology of asthma remains
unknown and is almost certainly multifactorial. Many
“triggers” for asthma attacks are well known (e.g., aller-
gens, viral respiratory infections, fumes, cold air, exercise)
but underlying mechanisms for why some exposed in-
dividuals develop asthma while most do not remain elu-
sive [14]. Genetic studies have failed to locate a unique
“asthma gene” and instead point towards complex multi-
factorial genetic and environmental factors [15]. A cur-
rently popular paradigm, the “Hygiene Hypothesis,” posits
that the increased incidence of allergies (hayfever and
eczema) and asthma noted in recent decades, is associated
with less exposure to childhood infections and bacterial
products (e.g., endotoxin). Emerging evidence supports
the Hygiene Hypothesis for hayfever and eczema but not
for asthma which appears instead to be related to infec-
tions throughout the life cycle [16–18]. The host lung and
gut microbiome as they relate to asthma are active areas
of research [19]. Yet it must be pointed out that studies of
bacterial rRNA may fail to detect CP due to low copy
numbers or sampling problems due to deep tissue intra-
cellular locations for this species [20, 21].

The human microbiome and asthma risk
An increasing number of studies have now confirmed that
the host microbiome has a significant impact on the risk
of asthma development. A study published in 2010 by
Hilty and colleagues using 16S RNA clone-library sequen-
cing showed that when compared with healthy controls,
patients with asthma had significantly more pathogenic
Proteobacteria and fewer Bacteroidetes [22]. Careful as-
sessment of both healthy controls and asthmatic patients

has confirmed the presence of bacterial communities.
However, the bacterial burden was significantly greater in
patients with asthma than in the healthy controls [23].
The microbial burden was even greater in asthmatics with
greater bronchial reactivity upon methacholine challenge.
These patients showed marked improvement in bronchial
reactivity to methacholine after 6 weeks on clarithro-
mycin. Importantly, greater bronchial reactivity also co-
rrelated with greater relative abundance of members of
certain bacterial communities known to exhibit character-
istics that contribute to asthma pathophysiology, including
species capable of inducing nitric oxide reductase, pro-
duce sphingolipids or have the ability to metabolize
steroid compounds [24, 25]. A recent study showed that
1-month old infants who had positive oropharynx cultures
of Streptococcus pneumoniae, Moraxella catarrhalis, or
Haemophilus influenzae showed increased susceptibility
for development of childhood asthma [19, 26]. Another
recent study concluded that the nasopharyngeal micro-
biome within the first year of life was a determinant for
infection spread to the lower airways and predicted the
severity of accompanying inflammatory symptoms, as well
as risk for future asthma development. The authors
showed that early asymptomatic colonization of the
nasopharynx with Streptococcus was a strong asthma
predictor [27]. These authors also demonstrated that anti-
biotic usage disrupted this asymptomatic colonization and
prevented asthmatic onset [27]. These findings support
the hypothesis that colonization of the developing airway
by certain microbes (both viral and bacterial) can signifi-
cantly alter the airway architecture and overall immune
function, influencing how the airway responds to a variety
of insults [28]. These findings also suggest that antimicro-
bial agents may represent an effective therapeutic tool with
the potential to curtail both the duration and severity of
asthma exacerbations initiated by a variety of microbes and
exposes the limitation of the hygiene hypothesis in this
regard [26]. The microbiome studies cited here have not
specifically targeted CP and MP in upper airways. Studies
that have specifically tested for these atypical organisms
have reported positive detection [29, 30]. Intracellular de-
tection of CP in adenoid tissue of symptomatic children
was extremely common [30] and raises questions regarding
a potential for CP-microbiome interactions.

Role of viral infection on wheezing and asthma
exacerbation
Infections in early life can act either as inducers of wheezing
or as protectors against the development of allergic disease
and asthma. Many young children have wheezing episodes
associated with early-life respiratory infections. The infec-
tions most likely to be associated with these wheezing epi-
sodes include respiratory syncytial virus (RSV), human
rhinovirus (hRV), human metapneumovirus, parainfluenza
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viruses and coronavirus [31]. The hygiene hypothesis
has proposed that, for some infants, frequent early life
infections may protect against asthma [17] and this
certainly appears to be the case for most infants, as
wheezing episodes with respiratory infections diminish as
the child ages. However, for others, early-life wheezing
episodes may mark the beginning of asthma. Regarding
established asthma, many types of viral respiratory infec-
tions have been shown to have a significant influence. In
fact, viral respiratory infections are diagnosed in 80% of
episodes of asthma in both children and adults [32, 33].
The question then remains; what factors determine if a
viral respiratory infection provokes the onset of chronic
asthma? Factors appear to include the type of virus and
the viral infectious dose as well as host susceptibility fac-
tors leading to inflammation, airway cellular infiltration
with neutrophils and eosinophils or the presence of aller-
gens in the airway and their interactions with the host im-
mune system. If this combination of host and pathogen
factors results in airway inflammation and hyperrespon-
siveness, the outcome could be asthma. Could CP play a
key role in this complex scenario? A clue to the answer to
this question was found in a secondary analysis [34] of
data from a community-based pediatric viral respiratory
infection study that identified viral infections in 80–85%
of exacerbations [33]. One hundred and eight children
with asthma symptoms completed a 13-month longitu-
dinal study in which exacerbations were recorded, and CP
PCR and CP-specific secretory IgA (CP-sIgA) antibodies
were measured both during exacerbations and during
asymptomatic periods. CP PCR detections were similar
between the symptomatic and asymptomatic episodes
(23% v 28%, respectively). Children reporting multiple
exacerbations remained CP PCR positive (P < 0.02) sug-
gesting chronic infection. CP-sIgA antibodies were more
than seven times greater in subjects reporting four or
more exacerbations compared to those who reported just
one (P < 0.02). The authors suggested that immune re-
sponses to chronic CP infection may interact with allergic
inflammation to increase asthma symptoms [34]. Notably,
MP was not found to be important in this study.

Chlamydia pneumoniae (CP) infections and asthma
initiation and severity
Emerging evidence links CP infection with both de novo
asthma (asthma onset during/after an acute lower re-
spiratory tract infection in a previously non-asthmatic
individual – also referred to as the “infectious asthma”
syndrome) and with asthma severity [11, 12, 35, 36].
This section will review what is known about CP in
asthma initiation and severity, and the multiple experi-
mentally established mechanisms that might mediate
these associations. Therapeutic implications are reviewed
in Section V.

De novo wheezing during an acute lower respiratory
tract infection is remarkably common [37]. Most of
these wheezing episodes appear to resolve without
chronic sequelae but sometimes chronic asthma de-
velops. Surprisingly, clinical studies report that asthma
onset after an acute respiratory illness is exceedingly
common (up to 45% of adult-onset asthma cases [38].
This strong temporal association of respiratory infec-
tions and asthma onset has been confirmed in a
population-based study [39]. The most reliable way to
establish whether a specific respiratory pathogen can
initiate asthma would be to perform large, long-term
prospective microbiological and clinical cohort studies
of the general (non-asthmatic) population. Such a study
would be very expensive and has not yet been un-
dertaken. A second approach would be to perform pro-
spective studies in selected non-asthmatic patients
exhibiting “risk factors” for asthma in clinical settings
[40]. If the selected “risk factors” do indeed identify
people at higher likelihood of developing the “infectious
asthma” syndrome, this type of study might be feasible.
Characteristics associated with CP/MP biomarker-
positive “infectious asthma” include patients with severe,
treatment-resistant asthma, exhibiting a neutrophilic
airway inflammation or test PCR positive for Cp or MP.
It should however, be noted that there is currently no
test or set of tests that will definitively diagnose who will
benefit maximally from azithromycin treatment. Factors
that predict risk in non-asthmatics for developing the
“infectious asthma” syndrome include a previous history
of self-limited lower respiratory tract illnesses such as
acute bronchitis (often with wheezing) and/or pneumo-
nia [35, 38, 39]. Other risk factors may be operative but
are poorly understood at this time.
Over a 10-year time period, Hahn et al. [35] collected

prospective CP microbiologic testing and clinical data
on 10 patients with de novo wheezing. Nine of these
subjects exhibited an acute bronchitic illness and one
had community-acquired pneumonia. All 10 met sero-
logical criteria for an acute primary (n = 8) or secondary
(n = 2) CP infection. Of the nine patients with acute
bronchitis and wheezing, four improved without treat-
ment and five progressed to chronic asthma. The patient
with pneumonia was treated with a traditional short
course of a macrolide with resolution of pneumonic in-
filtrate, yet developed chronic bronchitis and CP was
isolated by culture from his sputum 6 months later. This
type of study has not been replicated but raises several
questions. CP is well known to cause protean manifesta-
tions of acute respiratory illness; these observations
suggest that CP may also be capable of causing protean
manifestations of chronic respiratory conditions (e.g.,
asthma, chronic bronchitis and COPD, reviewed in [41]).
Whereas some of the CP infected patients with de novo
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wheezing resolved their acute illness without treatment,
others developed chronic sequelae; identification of
underlying protective and promoting factors might help
address the current asthma pandemic.
Once established, CP-associated asthma has been

linked with increased severity in several studies. Cook et
al. [42] first identified CP biomarkers in what they
referred to as “brittle asthma” (asthma that was hard to
control and more severe than average). An accumulating
body of evidence supports the association of CP infec-
tion with asthma severity [11, 12, 43] and with steroid
resistant asthma [44]. Multiple mechanisms support the
biologic plausibility of these associations (reviewed in
[45]). Exposure to cigarette smoke is an established
factor tied to steroid resistance in asthma [46]. Similar
to cigarette smoke, CP induces pulmonary bronchial epi-
thelial ciliostasis [47]. Additionally CP infects alveolar
macrophages and lung monocytes leading to enhanced
production of TNF-α, IL-1β, IL-6 and IL-8; infects
human bronchial smooth muscle cells to produce IL-6
and basic fibroblast growth factor (with potential effects
on bronchial hyper reactivity and lung remodeling that
have yet to be thoroughly investigated); and chronic
infection exposes tissues to chlamydial heat shock pro-
tein 60 (cHSP60) and bacterial lipopolysaccharide (LPS)
that have been associated with increased inflammation
and asthma (reviewed in [48]). Lastly, CP-specific
IgE has been demonstrated to be strongly associated
with severe persistent asthma (80% of cases) [43]
and other chronic respiratory illnesses in children
severe enough to justify undergoing bronchoscopy
[49]. Whereas exposure to recognized allergens can
be mitigated, exposure to unrecognized bacterial “al-
lergens” may result in chronic unrelenting exposures
that could contribute to severity [43, 50]. It may prove
difficult or even impossible to unravel exactly which
mechanism(s) contribute to producing an “infectious
asthma” phenotype.
In regard to the involvement of CP in asthma patho-

genesis, the controversy of whether the association is
causal or coincidental can be settled in two ways: (1)
patients diagnosed with asthma can be treated with the
aim of evaluating the effects of antibiotics in ameliorat-
ing asthma symptoms compared to untreated of placebo
controls and (2) animal models can be performed to
evaluate the role of CP in asthma initiation and/or ex-
acerbation. Experimental animal inoculation studies may
help to elucidate mechanisms underlying CP asthma
pathogenesis. Over the past three decades, animal models
of asthma have been extensively utilized to elucidate
mechanisms of the disease, determine the activities of
genes of interest, investigate cellular pathways and predict
the safety and efficacy of various drugs being considered
for asthma treatment.

Initial murine models of chlamydial lung infections
were carried out in adult mice and seemed to closely
represent acute human asthma. These studies utilized
the mouse pneumonitis biovar of C. trachomatis (MoPn)
since it is well known as a natural mouse pathogen [51]
and would therefore represent the best choice for inves-
tigating host-pathogen interactions in this context.
These early studies recorded extensive lung consolida-
tion after 7 days of airway infection and found signifi-
cant airway inflammation characterized by neutrophil
infiltration in airway exudates [52]. These early studies
also confirmed that multiple reinfections were required
to induce symptoms of chronic asthma and that a
Th1 immune response contributing IFN-γ and subse-
quently activated macrophages was necessary to clear
the infection [53, 54].
More recently, many studies have utilized neonatal

mouse models for infectious asthma since early studies
demonstrate that neonatal T cell immune responses in
both mice and human are skewed toward a Th2 cellular
phenotype as a result of placental immune pressure.
These Th2 cells are much less effective in the immune
response compared to their adult counterparts [55, 56].
Horvat, et al. later demonstrated that neonatal chlamyd-
ial lung infection induced mixed T-cell responses that
drive allergic airway disease (AAD) using a BALB/c
mouse model with ovalbumin to induce AAD [57].
Further work from this group confirmed that chlamydial
infection in neonatal and infant, but not adult mice,
exacerbated the development of hallmark features of
asthma in ovalbumin-induced allergic airways disease
models. Some of these notable features include increased
mucus-secreting cell numbers, IL-13 expression, and
airway hyperresponsiveness [58]. Studies from our own
lab confirm that early-life chlamydial airway infection in-
duces a Th2 immune response, both airway eosinophilia
and neutrophilia, and permanent alteration of lung
structure and function with concomitant enhancement
of the severity of allergic airways disease in later life
[59]. We confirmed that neonatally infected mice never
cleared the infection, showed dissemination to the liver
and spleen through the peripheral circulation, and the
development of Chlamydia-specific IgE antibodies in the
infected neonates but not adult controls [59]. Recently,
Hansbro et al. completed work using a bone marrow
chimera reconstitution that clearly demonstrated that
infant lung infection results in lasting alterations in
hematopoietic cells, leading to increased severity of AAD
later in adult life [60]. A significant study by Kaiko et al.
[61], demonstrated that infection of bone marrow-derived
dentritic cells (BMDC) promoted Th2 immunity and air-
ways hyperreactivity in a mouse model. Intratracheal pas-
sive transfer of infected BMDC but not uninfected control
BMDC into naïve Balb/c mice resulted in increased IL-10
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and IL-13 in the BAL fluid [61]. These animals also
showed significant increases in airways resistance and a
reduction in airways compliance compared to their unin-
fected counterparts. These are hallmarks of asthma and
further confirm the role of chlamydial infection in asthma
initiation and pathology, at least in mice. A further set of
experiments by Schröder et al. [62] demonstrated that
adoptive transfer of lung dendritic cells from CP infected
mice, but not from uninfected mice, produced eosinophilic
airway inflammation after challenge with an exogenous
allergen (human serum albumin) that was dose-, timing-,
and MyD88-dependent. Taken together, these findings
suggest it is plausible that CP infection solely of lung
dendritic cells may be sufficient to induce an asthma
“phenotype” that may demonstrate characteristics that
are both “infectious” and “allergic”.
These animal model studies have added significantly

to our understanding of the mechanisms involved in the
inflammatory process of chlamydial infection leading to
asthma initiation and exacerbation. It also appears that
the damage caused by chlamydial airway infections over
time leads to an exaggerated airway repair or airway wall
remodeling. The major features of this type of response

include epithelial cell shedding, goblet cell hyperplasia,
hypertrophy and hyperplasia of the airway smooth
muscle bundles, basement membrane thickening and in-
creased vascular density through angiogenesis [63]. The
functional and mechanical consequences of this type of
aberrant repair leads to bronchial wall thickening which
can uncouple the bronchial wall from the surrounding
parenchyma, significantly enhancing airway narrowing
and severe obstruction [63]. This type of airway damage
might prove irreversible even with long-term inhaled
steroid treatment. Moreover, it is well documented that
corticosteroid use drives CP out of a persistent state into
active replication, since corticosteroids negatively impact
several aspects of cell-mediated immunity while favoring
the shift from a Th1 towards a Th2 immune response
[64]. This shift in response significantly impedes the abil-
ity of the host to eradicate intracellular pathogens like CP
and may lead to the release of cHSP60 which exacerbates
the inflammatory process [11]. There is also evidence that
CP infection may promote airway remodeling by decreasing
the ratio of MMP9 to TIMP1 secreted by inflammatory
cells, and by altering cellular responsiveness to corticos-
teroids [65]. See Fig. 1 for a summary of established and

Fig. 1 Illustration of role of chronic CP intracellular infection in asthma pathogenesis. The figure illustrates multiple pathways whereby
chronic intracellular CP infection (1) is directly responsible for Immunopathologic damage and/or (2) indirectly influences allergic response
as demonstrated in multiple animal models. Effects on the clinical manifestations of viral infections and the microbiome as they relate to
asthma are speculative at this time. CP infection has also been shown to enhance histidine decarboxylase (HDC) to produce histamine as
shown in cell culture, and the production of Cp-specific IgE antibodies is demonstrated in human asthma patients. Finally, CP infection of
the airways (i) may induce hyperresponsiveness through infection of bronchial smooth muscle cells, (ii) produces inflammatory cytokines
and (iii) induces ciliostasis of bronchial epithelial cells similar to the effects of cigarette smoking
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suspected mechanisms whereby CP infection may contrib-
ute to asthma pathogenesis.

Asthma subtypes and infection
The concept that asthma is a syndrome with different
underlying etiologies is well accepted. The use of the
word “phenotype” to describe asthma subtypes based
primarily on the inflammatory composition of respira-
tory secretions and/or peripheral blood is more prob-
lematic. The original definition of “phenotype” referred
to relatively stable somatic manifestations of underlying
genetics (such as eye color) whereas current asthma in-
flammatory “phenotyping” is based on cross sectional
sampling of a dynamic physiologic process (host inflam-
matory response) and does not account for the fact that
inflammatory composition is not necessary a fixed char-
acteristic [66]. In the context of a review that focuses on
chlamydial infection we are reluctant to place too much
emphasis on asthma phenotypes based on inflammatory
cell compositions because well described host responses
to acute, sub-acute and chronic chlamydial infections
involve a wide array of inflammatory cells (including
eosinophils, neutrophils and monocytes) the compos-
ition of which varies significantly at different temporal
stages of the infection [67]. We have commented on
some fairly well defined asthma categories but even
these can change over time (e.g., mild asthma can be-
come severe, stable asthma can become uncontrolled).
The dynamic and often unpredictable nature of asthma
symptomatology is one of the factors that make asthma
research so challenging.

Atopic/non-atopic asthma
Historically asthma was categorized as either allergic or
non-allergic but this distinction was put into question as
early as the 1980s [68]. An early report of the association
between CP and asthma did find independent associa-
tions of CP biomarkers, clinical allergy and asthma [40]
yet in the clinical setting there is overlap between atopy
and CP infection [69]. The animal models described
earlier indicate that CP can promote both asthma and
atopy, thus an absolute distinction between these two
categories as indicators of differing underlying etiologies
may not be warranted. Macrolide treatment trials that
examine subgroup responses are one approach to exam-
ining the predictive value of this and other subgroups.

Eosinophilic/neutrophilic asthma
Asthma has also been characterized as either “eosino-
philic” or “neutrophilic” based on the cellular compos-
ition of respiratory secretions or bronchoalveolar lavage
fluid (BALF) [70]. Simpson et al. [71] performed an RCT
of a macrolide (clarithromycin) in severe refractory
asthma in adults and reported no overall benefit in the

group as a whole. However, there was a positive effect in
the pre-specified subgroup of patients with “neutro-
philic” asthma as defined by sputum IL-8 and neutrophil
numbers. The predictive power of these findings is
limited since it is unclear whether sputum composition
is stable over time in severe refractory asthma (or any
asthma, for that matter).

Treatment
The majority of people with asthma can be well controlled
with conventional guideline-based anti-inflammatory treat-
ments (mainly inhaled steroids, sometimes in combination
with an inhaled long-acting bronchodilator) [72]. Neverthe-
less, a significant minority of people with asthma is not well
controlled by guideline treatments [73, 74]. The proportion
of all people with “refractory” asthma (asthma that is not
responsive to guideline therapies) has been estimated at
between 5 and 15% but the contribution of refractory
asthma to asthma morbidity and mortality is considerably
greater, as the most severe 20% of asthma cases account for
80% of asthma morbidity and health care costs [3]. If
patients with the “overlap syndrome” (asthma and COPD)
are included, the numbers of people with refractory disease
increases significantly [75]. Of the various novel therapies
under consideration for refractory asthma [76], macrolides
appear to be one of the most promising. A 2013 meta-
analysis of 12 randomized, controlled trials (RCTs) of
macrolides for the long term management of asthma in
both adults and children found positive effects on peak ex-
piratory flow rate (PEFR – a measure of pulmonary func-
tion), asthma symptoms, asthma quality of life (AQL), and
airway hyper responsiveness (AHR), but not on forced
expiratory flow rate in 1 s (FEV1) [77]. The updated 2015
Cochrane review of 18 RCTs [78] reported positive benefits
on asthma symptoms and FEV1 but not on AQL (AHR
and PEFR were not analyzed). A joint European Respiratory
Society/American Thoracic Society (ERS/ATS) guideline on
severe asthma recommends against the use of macrolides
(“conditional recommendation, very low quality evidence”)
[79]. The ERS/ATS guideline states “this recommendation
places a relatively higher value on prevention of develop-
ment of resistance to macrolide antibiotics, and relatively
lower value on uncertain clinical benefits.” The inconsistent
findings of the meta-analyses, along with the uncertainties
surrounding the clinical benefits of macrolides, underscore
the need for higher quality evidence. This section adds
some evidence not included in the meta-analyses, re-
views what is known about macrolide side effects (in-
cluding the clinical consequences of resistance) and
suggests research approaches to obtain better evidence.
We conclude with some provisional recommendations
for clinicians who may be approached by patients with
new-onset, uncontrolled and/or refractory asthma who
are asking for macrolide treatment.
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Current evidence for all asthma treatments is limited
due to selection bias initiated by researchers, clinicians,
and even asthma patients themselves. Researcher bias.
The academic literature is replete with asthma efficacy
studies lacking in generalizability [80]. The efficacy trials
on which current asthma treatment guidelines are based
systematically exclude >90% of people with asthma
encountered in the general clinical population [81, 82].
Only pragmatic effectiveness trials, with minimal exclu-
sions, are able to provide evidence applicable to the
general population [44]. Clinician bias. A recent trial of
azithromycin for acute exacerbations of asthma (AZA-
LEA) is notable because over 95% of patients with an
exacerbation were not eligible for enrollment primarily
because they had received an antibiotic from a treating
clinician [83]. An accompanying editorial speculated that
one possible reason for the negative results of AZALEA
was that clinicians were somehow able to identify and
treat likely candidates, making them ineligible for the
research [84]. Be that as it may, AZALEA is an example of
asthma research made less informative due to non-
researcher clinician behavior. Patient bias. Hahn et al. [44]
performed a pragmatic trial of azithromycin for asthma
(AZMATICS) in which the likely candidates excluded
themselves from randomization. This unanticipated event
occurred because AZMATICS was an Internet-based
trial; people with severe, refractory asthma identified
themselves as likely candidates and contacted the PI
for enrollment; but upon learning that they had a 50%
chance of receiving placebo, they opted out of
randomization in favor of receiving a comparable

azithromycin prescription from their personal clin-
ician [85]. Rather than lose data on this “open-label”
(OL) group, the study protocol was altered to include
a third (OL) arm. Randomized results were similar to
AZALEA (negative – see Fig. 2); however, OL subjects
exhibited large and unprecedented improvements in
symptoms and quality-of-life (QOL) that persisted
long after treatment was completed (Figs. 2 & 3).
Because the OL group was not randomized, these
results do not appear in any meta-analysis of RCTs;
nevertheless they strongly suggest that future macro-
lide RCTs should focus on the severe end of the asthma
spectrum, as also recommended by others [42, 71, 86],
and preferably engage patient populations that are unlikely
to want to opt out of randomization.
Macrolide mechanisms of action in asthma are thought to

be directly anti-inflammatory, indirectly anti-inflammatory
(i.e., antimicrobial), or both. It is difficult to invoke dir-
ect anti-inflammatory macrolide effects as responsible
for large clinical benefits persisting to 9 months after
treatment completion. Antimicrobial effects, against spe-
cific respiratory pathogens or against the general lung
microbiome, remain likely possibilities. Circumstantial
evidence suggests that macrolide treatment effects may, at
least in part, be attributable to antimicrobial actions
against chronic atypical infections [9, 87]. This issue is by
no means settled and requires further research that may
be challenging given the selection biases noted above
coupled with likely low sensitivity of lung sampling
leading to false negative diagnosis of, for example,
chronic CP lung infection [20].

Fig. 2 Azithromycin improves asthma symptoms and patient quality of life. Subjects with severe refractory asthma treated with azithromycin
(Open Label) had fewer persisting asthma symptoms a and greater asthma quality of life b than groups with lesser asthma severity randomized
to azithromycin or to placebo [44]
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Azithromycin is generally well tolerated and is widely
used for a variety of acute respiratory illnesses. Concerns
about adverse effects of azithromycin include develop-
ment of antibiotic resistance, sudden cardiac death, hear-
ing loss and effects on the host mcrobiome. Development
of resistance is a possibility whenever antibiotics are used;
azithromycin is no exception. However, there are no
reports of patient harm from resistant organisms in any
cardiorespiratory trial performed to date [89]. Rather, the
only detectable clinical effects of azithromycin in these tri-
als were decreased incidences of sinusitis, acute bronchitis
and pneumonia, and less use of other antibiotics [88, 89].
Sudden cardiac death attributable to azithromycin (1 in
4000 prescriptions in high cardiac risk patients) was plaus-
ibly documented in an epidemiologic study of a Medicaid
population in Tennessee [91]. The same risk was also
present for a quinolone (levofloxacin). Subsequent
population-based studies in average risk populations
showed no increased risk of sudden death [92, 93]. Mild
hearing loss was reported in an excess of <1% of heart dis-
ease subjects randomized to 600 mg azithromycin once
weekly for 12 months [88, 90]. Hearing test changes lead-
ing to discontinuation of azithromycin occurred in 2.8% of
1142 severe COPD subjects randomized to 250 mg azi-
thromycin daily for 1 year [90]. The clinical significance
of these hearing test changes is unclear. Notably, it is likely
that daily azithromycin dosing is unnecessary [94] and
may lead to increased adverse events [91]. The prolonged
half-life of azithromycin within cells, including within im-
mune system cells, allows weekly dosing and may be

preferable to daily dosing when targeting either immune
cells or intracellular pathogens such as CP.
Although largely speculative at this time, it appears

that macrolide effects against the lung microbiome may
be potentially harmful or helpful in asthma. Segal et. al.
reported that an 8 week treatment with azithromycin
did not alter bacterial burden but reduced α-diversity
[95]. They also observed significant reduction in certain
pro-inflammatory cytokines, which might explain the
non-specific anti-inflammatory effects proven beneficial
in COPD and asthma [95]. Published findings from
Slater et al. that specifically evaluated azithromycin ef-
fects on the lung microbiome revealed a significant
reduction in bacterial richness in the airway microbiota
[96]. Importantly, reductions were most significant in
three pathogenic genera: Pseudomonas, Haemophilus
and Staphylococcus [96]. Overall, available data suggest
that azithromycin treatment of severe asthma, while con-
troversial, may benefit those with confirmed atypical bac-
terial infection [97]. Resistance, adverse events including
sudden death, hearing loss and changes in host micro-
biome should be monitored in future pragmatic trials.
Protean manifestations of chronic CP infection, that

may include asthma, chronic bronchitis, COPD, and the
“overlap syndrome” (asthma and COPD) argue in favor
of pragmatic trials with broad inclusion criteria that
include patients with lung multi-morbidity. At least nine
domains distinguish pragmatic (or effectiveness) trials
from explanatory (efficacy) trials (Table 1) [98]. In the
context of future RCTs of macrolides for asthma, we

Fig. 3 Asthma quality of life (AQL) improvement scores at 12 months (9 months after completing azithromycin). The minimum clinically
important score is ≥0.5; a score of 1.5 is considered a large important change [44]
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propose that the most important pragmatic domains are
(1) broad eligibility to account for the protean clinical
manifestations of both chronic reactive/obstructive lung
disease and CP infections as discussed previously and (2)
a comprehensive patient-centered primary outcome.
Asthma exacerbations are a current popular choice as a
primary outcome because they are clinically relevant
[99]. However, exacerbations are only one of many out-
comes that are important to asthma patients [100]. Com-
pared to exacerbations, asthma quality-of-life (QOL) more
comprehensively measures patient-important outcomes.
QOL includes, but is not limited to, the adverse effects of
exacerbations on patient well-being [100] and QOL has
proven robust in the sole pragmatic macrolide-asthma
trial performed to date [44] (Figs. 2 and 3). Many patients
in this pragmatic trial [44] had significantly decreased
asthma QOL at study entry and large important im-
provements in QOL after azithromycin, but did not
experience exacerbations. This significant subgroup
would have been either possibly ineligible for inclu-
sion or not counted as successes in a trial using exac-
erbations as the primary outcome.
Pragmatic trials primarily ask Does this treatment work?

Explanatory trials primarily ask What is the mechanism?
Addressing target groups/mechanisms in pragmatic trials
of macrolides is desirable and possible as secondary aims
by specifying a priori hypotheses coupled with subgroup
analyses. We recommend studying a wide array of bio-
markers using this approach. It is notable that RCTs of
macrolides have been performed and/or macrolides are
being recommended in the treatment of many chronic
lung conditions (diffuse pan-bronchiolitis, cystic fibrosis,
bronchiectasis, COPD, post-transplant bronchiolitis oblit-
erans) [101, 102]. A planned trial will test the effectiveness

of azithromycin in patients with the “overlap syndrome”
(asthma-COPD) [103]. It is time to add asthma to the
growing list of chronic respiratory conditions that are
being evaluated by robust macrolide RCTs that are
pragmatic in nature.
In the meantime, patients with severely uncontrolled

and/or refractory asthma, or new-onset asthma are
increasingly searching the Internet for new information
and are sometimes better informed than their doctor
about current evidence regarding macrolides for asthma
(Hahn: personal observations). Pending more robust
data from asthma RCTs that have yet to be performed,
how should practicing clinicians respond when such
patients request macrolide treatment? As stated above,
the ERS/ATS guidelines on severe asthma recommend
against the use of macrolides, albeit with caveats that
the evidence for this recommendation is weak and
provisional [79]. Informal guidelines from a pulmonol-
ogy research group state that they recommend macro-
lide treatment only for confirmed diagnoses of atypical
lung infection [104]. From a practical standpoint, their
recommendation limits treatment only to those who
have undergone bronchoscopy; even then the diagnostic
sensitivity is likely to be less than perfect due to sam-
pling issues discussed earlier. Both these recommenda-
tions have met resistance from patients who have read
and understood the evidence (Hahn: personal communi-
cation). We offer a third alternative recommendation,
repeated word for word from the conclusion of the sole
practice-based pragmatic trial of azithromycin for asthma
conducted to date [44]:

“Pending further randomized trials, given the relative
safety of azithromycin and the significant disease

Table 1 Proposed design for a randomized trial of azithromycin for the long-term management of asthma. Seven of nine PRECIS-2
[98] domains are recommended as pragmatic and two as explanatory

DOMAIN Pragmatic or Explanatory?a COMMENTS

Eligibility. Who is selected to participate in the trial? Pragmatic Exclusions only for safety; comorbidities included.

Recruitment. How are participants recruited into the trial? Pragmatic Recruited from practice sites (emergency rooms, clinics).

Setting. Where is the trial being done? Pragmatic Performed at the practice site.

Organization. What expertise and resources are needed
to deliver the intervention?

Pragmatic No extraordinary expertize required.

Flexibility: delivery. How should the intervention
be delivered?

Pragmatic Total weekly oral dose can be administered on any
schedule desired.

Flexibility: adherence. What measures are in place to
make sure participants adhere to the intervention?

Explanatory Adherence encouraged by frequent contacts by
the research team and monitored by patient report
and pill count.

Follow-up. How closely are the participants followed-up? Explanatory 3-monthly study visits to collect non-routine information
(e.g., spirometry, biomarkers, QOL)

Primary outcome. How relevant is it to participants? Pragmatic Outcome is patient-centered (see text for discussion).

Primary analysis. To what extent are all data included? Pragmatic Intention-to-treat.
aPRECIS-2 grades on a scale from 1 (extremely explanatory) to 5 (extremely pragmatic). Column 2 presents recommendations for which end of the spectrum
is emphasized
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burden from severe refractory asthma, prescribing
prolonged azithromycin therapy to patients with
uncontrolled asthma may be considered by managing
clinicians, particularly for patients who have failed to
respond to conventional treatment and as an
alternative to instituting immunomodulatory agents”.

Interested clinicians and others wishing more infor-
mation on patient experiences, scientific evidence and
treatment alternatives are referred to a book on the
subject [69].

Conclusions
Evidence supports a complex interaction between host
genetics/immune response and environmental factors
(e.g., viral infections, microbiome) in the development,
exacerbation and severity of asthma. Emerging evidence
from animal models and human studies points to Chla-
mydia pneumoniae (CP) as a key player in this complex
scenario. Future research is required to unravel the
quantitative contribution of CP to asthma pathogenesis,
and pragmatic treatment trials are recommended to
investigate therapeutic implications.
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