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The immunological mechanisms that contribute to multiple sclerosis (MS) differ between

males and females. Females are 2–3 timesmore likely to developMS compared to males,

however the reason for this discrepancy is unknown. Once MS is established, there is a

more inflammatory yet milder form of disease in females whereas males generally suffer

from more severe disease and faster progression, neural degradation, and disability.

Some of these differences relate to genetics, including genetic control of immune

regulatory genes on the X-chromosome, as well as immune modulatory properties of

sex hormones. Differences in MS development may also relate to how sex interacts with

environmental risk factors. There are several environmental risk factors for MS including

late-onset Epstein Barr virus infection, low serum vitamin D levels, low UV radiation

exposure, smoking, obesity, and lack of physical activity. Most of these risk factors

impact males and females differently, either due to biological or immunological processes

or through behavioral differences. In this review, we explore these differences further

and focus on how the interaction of environmental risk factors with sex hormones may

contribute to significantly different prevalence and pathology of MS in males and females.

Keywords: multiple sclerosis, sex hormones, environmental risk factors, immune regulation, Epstein-Barr virus

(EBV), UV radiation, vitamin D

INTRODUCTION

The immunological impact of biological sex is highlighted by significantly different prevalences of
immune mediated diseases between males and females. Males are more susceptible to infectious
diseases, whereas females are more susceptible to autoimmune diseases such as multiple sclerosis
(MS) and systemic lupus erythematosus (SLE) (1). The impact of sex on disease prevalence stems
from both genetic and environmental factors as well as their interaction. Genetically, several
immunologically important genes are expressed from the X-chromosome such as TLR7 and FoxP3
(2). Environmentally, sex hormones are potent immune modulators and exert their function
through binding to extra- and intra-cellular receptors, widely expressed across the immune system.
Sex differences in responses to environmental cuesmay influence the initiation and/ormaintenance
of autoimmune diseases. The genetic differences in how the immune system operates have been
reviewed in detail elsewhere (1) as well as in the context of MS (3). This review will focus on the
specific impact of sex hormones on the immune system and their interaction with environmental
risk factors. The sex-specific impact of each environmental factor is summarized in (Figure 1).
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FIGURE 1 | Indication of how each environmental risk factor impacts males and females differently and whether each factor is likely to increase the risk of MS more in

females (F) or males (M) as indicated by the arrow.

MULTIPLE SCLEROSIS

MS is a chronic inflammatory and neurodegenerative disease
resulting in demyelination of neuron fibers, inefficient signal
transmission and reduced muscular mobility. MS affects
approximately 30 in 100,000 globally (4) and ∼100 in 100,000
individuals in Australia (5). Prevalence of MS has increased over
the last decades, particularly in females (6) who are now 2–3 times
more likely to develop MS than males (6, 7). At the beginning
of the century, prevalence was estimated to be proportional
between males and females (8), suggesting that changes to
environmental factors likely have impacted MS development
during the last decades.

There are two forms of MS. The majority of individuals
develop remittent relapsing MS (RRMS) where periods of
disease activity (flare-ups) are followed by periods of low-
symptomatic activity or absence of symptoms (remissions) (9).
In 10–15% of patients, primary progressive MS is established
and results in faster deterioration with no episodes of remission.
RRMS is significantly more common in females compared to
males, whereas there is less difference in incidence for primary
progressive MS (10). In RRMS, females display elevated levels
of inflammation in the CNS compared to males (11) whereas
males display signs of more severe neurodegeneration and more
disabling manifestations (11, 12). Over time RRMS converts
into secondary progressive MS where episodes of remission
cease; this appears to occur faster in males compared to females
(12). As the disease progresses, MS leads to a debilitating lack
of muscular mobility and cognitive deterioration. The main
therapies involve disease modifying drugs including interferon
(IFN)-β and biologicals such as B cell depleting monoclonals.
Available treatments can slow disease progression, but no
treatment is yet able to prevent or reverse disease progression.

There are several risk factors for MS, including genetic
polymorphisms, relating mainly to variants in HLA-DR, where
HLA-DRB1∗15:01 has the strongest link with increased risk
of MS (13). There are also several established environmental
risk factors including Epstein-Barr virus (EBV) infection, low

UV radiation (UVR) exposure, vitamin D deficiency, smoking,
obesity and reduced physical exercise (14–16). How these
impact MS risk and pathology in male and females will be
discussed below.

Immune Mechanisms of MS
Traditionally, MS is viewed as a T cell dependent disease,
particularly driven by activated and clonally expanded CD8+ T
cells that are found in CNS lesions. These are likely activated
in the periphery, potentially by an underlying viral infection
such as Epstein-Barr virus (EBV). Target antigens in the
CNS remain elusive but T cells specific for myelin-associated
proteins are regularly observed (17). CD4+ T cells, mainly
Th1, Th17 and Tregs, are also involved in MS pathology as
recently reviewed (18). Their involvement likely explains the
strong association of MS and HLA-DR haplotypes (19). MS
lesions also contain a considerable proportion of B cells and
monocytes. The role of the B cells in MS is still emerging
(20). Increased IgGs are commonly observed in CSF from
MS patients, however their contribution to MS pathology
remain unclear (21). Instead, antibody-independent functions
of B cells, such as antigen presentation or cytokine production
may be more relevant (22). Evidence to support this stems
from observations that MS patients benefit rapidly from anti-
CD20 therapy that depletes several B cell subsets except
antibody-producing plasma cells that lack CD20 expression (23).

IMPACT OF SEX HORMONES ON THE
IMMUNE SYSTEM

The contribution of sex hormones during the development of MS
remains unclear (24). Sex hormones have several distinct effects
across the immune system that are relevant for MS pathology.
Estrogen can promote either Th1 (25) or Th2 (26) differentiation
at low or high concentrations, respectively. Estrogen may also
expand FoxP3+ Tregs (27) while suppressing Th17 cells as
demonstrated in an EAE model (28). Estrogen is essential for
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generation of inflammatory DC (29) and may interfere with
B cell selection allowing for the escape of autoreactive B cells
(30). Progesterone appears to prevent inflammation through
reducing the activation of DC (31, 32), and inhibits Th1 and
Th17 differentiation (33) whilst promoting Th2 immunity at
high concentrations (34). This is likely important for fetus
tolerance during pregnancy. Testosterone has general anti-
inflammatory effects including dampening of macrophage and
DC activation (35) and inhibition of Th1 immune differentiation
(36, 37).

Impact by Sex Hormones on MS Pathology
In MS, the female sex hormones, estrogen and progesterone,
appear to have protective effects; this is surprising given the
increased prevalence ofMS in females. However, this is supported
by low risk of relapse during pregnancy (38) and the subsequent
increased risk of relapse once pregnancy hormones return to
normal (38). Decreased levels of estrogen are also associated
with disease relapse in female patients (39). The impact of
oral contraceptives remains unclear (40). Attempts to reduce
MS symptoms through administration of estrogen derivates
have shown some promise (41, 42), however further studies
are required. Progesterone has been suggested to promote
myelination in the CNS (43, 44) however does not appear
to have an effect on relapse rate as reviewed (45). Not all
female specific hormones may be beneficial in MS as exemplified
by prolactin which is increased in female MS patients and
promotes formation of autoreactive B cells (46). In male MS
patients, up to 40% display decreased levels of testosterone
compared to matched controls (47). Pilot studies further suggest
that testosterone may ameliorate MS symptoms in males (48),
however the mechanisms remain unclear but are likely mediated
through the immune regulatory properties of testosterone as
described above.

Given the importance of sex hormones in MS pathology,
transgender individuals who take sex hormones to align their
body with their gender may be subject to potential changes
in risk of MS and disease pathology. Although this is a
neglected area of research, a clinical records-based study
identified an increased incidence of MS in trans individuals
who were assigned as males at birth (49). These individuals are
likely to be on estrogen supplementation or anti-testosterone
treatment. No change in risk was observed for trans individuals
who were assigned as females at birth and likely received
testosterone treatment.

Together, these observations suggest that although the main
female sex hormones promote immune activation and females
are at increased risk of developing MS, female sex hormones
may still have a beneficial impact on MS pathology. Whether
the increased prevalence of MS in females instead relates to
differences in hormone receptor expression, genetic differences
related to the X-chromosome or sex-specific mechanisms in the
CNS, such as increased ability of microglia in females to induce
inflammation in response to cell damage, remains to be explored
(3). How sex hormones interact with environmental risk factors
are discussed below.

IMPACT OF ENVIRONMENTAL RISK
FACTORS ON MS RISK IN MALES AND
FEMALES

Do Female-Specific Viral Responses
Contribute to Skewed MS Prevalence?
Epstein-Barr virus (EBV) causes a chronic infection of B cells,
that reprograms resting B cells into a memory-like phenotype.
Over 95% of the adult population have serological evidence of
past EBV infection (50). EBV is associated with development
of several autoimmune diseases and B cell lymphomas (51).
It is one of the strongest environmental risk factors for MS
development. If EBV is acquired during childhood, the risk of
subsequent MS development is low. However, if EBV is acquired
during adolescence or early adulthood, there is a significantly
increased risk of MS development, particularly if the individual
experiences severe disease or hospitalization (52, 53). Severity
and EBV-specific antibody titres correlate directly to risk of MS
development (54). Modeling suggests that the difference in risk
between childhood and adolescence is related to puberty onset,
pointing toward a role for sex hormones (55). Females display
elevated levels of EBV reactive antibodies compared to males
also suggesting a more robust EBV response in females (56, 57).
Plasmacytoid DC (pDC) from females typically produce more
type I IFN following virus exposure, particularly through TLR7
(58), which together with TLR9 (59) recognizes EBV RNA and
DNA in infected cells (60). Type I IFN production is also directly
regulated by estrogen and associated with serum testosterone
levels (61, 62). EBV-induced type I IFN production is thought to
contribute to SLE development (60), whereas in MS, the ability
of pDC to produce type I IFN is reduced (63, 64). Interferon-β
treatment is successfully used to reduce relapse frequency and
delay neurological disability in MS (65, 66). Whether reduced
type I IFN responsiveness is an endogenous deficiency in MS
that predisposes an individual to more severe EBV infection or
if it relates to EBV’s ability to inhibit type I IFN signaling as
a mechanism for avoiding the immune system (67) remains to
be elucidated.

The Impact of BMI and Physical Activity on
MS Risk in Males and Females
Obesity during childhood/adolescence (68, 69) or adulthood
(70) as well as reduced physical activity (71, 72) have been
independently associated with an elevated risk of MS. There
appears to be no difference between the sexes in association with
MS and obesity in young adolescents (68). However, in adults, the
association between obesity and MS appears stronger in females
compared to males (73). Obesity leads to chronic inflammation
which may contribute to MS pathology. Obesity has dramatically
different consequences in males and females (74, 75); estrogen
has been implicated as a central modulator in these pathways
(76) whereas testosterone is likely beneficial in reducing adipose-
induced inflammation (77). The relevance of these mechanisms
for MS development remains unknown.

Vigorous exercise during adolescence is associated with a
reduced risk ofMS (71, 72). Long-termmoderate physical activity
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reduces inflammation and risk of infection over time (78, 79)
and its impact on the immune system may differ between male
and females (80). However, how sex hormones contribute has
been less investigated and there is little evidence to suggest that
physical activity impacts the risk of MS differently in males and
females (71).

The Impact of Smoking and Nicotine on
MS in Males and Females
Smoking increases the risk of developing MS, likely due to
its inflammatory properties in the airways that translate into
systemic and chronic inflammation (81). Smoking increases the
risk of MS although one of the main components, nicotine,
likely has protective effects (82). OnceMS is established, smoking
continues to contribute to MS pathology by increasing the rate
of relapses and decreasing the time to progressive MS (83).
Only a handful of studies have assessed the risk in males and
females, with trends suggesting that historical smoking may
increase the risk for MS more in males compared to females
(82, 84). However, levels of nicotine metabolites in serum was
more strongly associated with increased risk for MS in females
suggesting instead that females may bemore sensitive to smoking
(85). That smoking has differential effects onmales and females is
long established (86) and recent studies also suggest that sex may
be important in how smoking induces inflammation (86–88).
Smoking may also impact sex hormone production and signaling
(89). Increased rates of female smoking during the last decades,
and possibly increased sensitivity to smoking metabolites, have
been discussed as one of the reasons why MS has increased
significantly faster in females compared to males over the last
decades (85, 90).

UVR and Vitamin D – Their Impact on MS in
Males and Females
Decreased exposure to UV radiation (UVR) and vitamin D
deficiency are independent risk factors for MS (91). Exposure to
UVR modulates several aspects of the immune system (92, 93)
and is essential for generation of active vitamin D. Vitamin D can
also be obtained through diet and vitamin D itself has a range
of immune modulatory properties that may be beneficial for
reducing the risk of MS and other autoimmune diseases (94). The
impacts of UVR and/or vitamin D onMS risk are interconnected
and translate into a gradual increase in MS prevalence with
increasing latitudes (95). However, the association between
increased vitamin D levels and reduced risk of MS appears most
prominent in fair-skinned individuals whereas increased UVR
exposure is associated with reduced risk across several ethnic
groups (96, 97). Furthermore, because vitamin D levels correlate
with UVR exposure in fair-but not dark-skinned individuals, it
has been argued that MS protection is mediated through UVR
exposure (97). Nevertheless, vitamin D is protective in EAE
models, with dependency on genetic background (98) and several
studies suggest that intake of high-vitamin D foods reduces the
risk of MS (99). Clinical trials with vitamin D supplementation
have shown mixed results (100). Regarding sex-specific effects,
vitamin D supplementation mainly protects female mice from

EAE (101) and human in vitro studies suggest that vitamin D is
more effective in reducing CD4+ T cell proliferation in female,
compared to maleMS patients. The ability of vitamin D to induce
FoxP3+ Tregs may also be dependent on estrogen (102). How
these findings translate into clinical efficacy remains unclear.
Isolated studies have reported that vitamin D is only associated
with reduced disease incidence and severity in females compared
to males (103). However, this requires further investigation as
other studies report no sex-specific effects of vitamin D (104), or
indeed no clinical benefit at all (100).

The direct impact of UVR exposure onMS pathology through
its immunomodulatory properties has been less investigated
(105–107). In mice, UVR reduces the risk of EAE through a
vitamin D-independent mechanism (108). The interaction of
UVR exposure and sex is unclear. Isolated studies suggest that
UVR exposure may decrease the risk of MS more in females
compared to males (109), and that latitude may contribute to
the increase in females with MS (7) whereas others have found
no difference in sex ratios across latitudes (110). UVR exposure
may influence the production of sex hormones (111, 112) which
recently were associated with hormone-induced behavioral
changes (112).Whether the impact of UVR exposure on reducing
MS risk and pathology is mediated through sex hormones
remains to be investigated. There are a range of mechanisms
proposed for how UVR exposure impacts the immune system
(113) including induction of regulatory T cells, modulation
of skin resident DC and recruitment of anti-inflammatory
monocytes. UVR-induced immunoregulatory molecules such as
cis-urocanic acid and nitric oxide may also be involved (92, 93) as
may RNA-release from damaged keratinocytes (114). Our lab has
demonstrated that UVR impacts the abundance of circulating B
cell subsets and activation of TNF-producing B cells in patients
with early MS (106, 115), unfortunately these studies were not
powered to investigate the impact of UVR in males and females
separately. Although not uniformly found (116), UVR exposure
may also increase systemic type I IFN signaling (107), which may
be beneficial for reducing MS manifestations.

DISCUSSION

The impact of sex hormones on autoimmune disease is complex.
Not all female-dominated autoimmune diseases improve during
pregnancy or by supplemental sex hormones. A classic example
is SLE which is ∼8 times more common in females compared
to males (117). The risk of a SLE flare during pregnancy
appears increased (118) and hormone replacement therapy
increases the risk of mild flares (119). However, contraception
does not significantly impact disease activity (120). Both SLE
and MS are associated with previous EBV infection, reduced
physical activity, obesity, smoking and reduced levels of vitamin
D (121–124). However, the impact of sex hormones and
UVR exposure differs substantially (125). Whereas, estrogen
likely is beneficial in MS, the impact on SLE is less clear.
UVR exposure is also beneficial in MS but in SLE, UVR
exposure leads to a significant increase in manifestations,
including skin rashes, and sun exposure can trigger disease
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flares (126). Whether this relates to an increase in dying cells
from UVR exposure or UVR-induced type I IFN signaling
(127), remains to be clarified. Notably, type I IFN signaling
was upregulated in several immune cell subsets in MS patients
treated with UVR (107) suggesting this may be a common
response to UVR exposure. Avoidance of sun exposure is likely
also responsible for the low levels of vitamin D observed in
SLE patients.

With a change in environmental exposures, particularly in
terms of increased pollution, airway irritants and reduced
exposure to UVR through enhanced indoor lifestyles, the
prevalence of MS may continue to increase. If women are more
sensitive to these environmental exposures, we may continue to
observe a disproportional increase of MS in females and possibly
other autoimmune diseases.

CONCLUSION

The immunological impact of sex significantly contributes to
an increased prevalence of autoimmune disease in females
compared to males. However, the immunological mechanisms
driving this development likely differ across diseases and
may be related to both sex-specific genetic differences,

immunological impact of sex hormones and sex-specific
responses to environmental stimuli. The influence on disease
initiation and progression may vary. Further investigations
into the impact of genetic sex and sex hormones on disease
mechanisms are central. Targeting sex hormones and sex-specific
inflammatory pathways as a strategy to decrease inflammation
in autoimmune and rheumatic disease is becoming more
popular (128–130). As has been detailed in this review,
sex-specific mechanisms likely contribute to autoimmune
disease through several independent pathways, and mapping
these will be essential to better treat autoimmune diseases in
the future.
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