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Abstract: Bacterial biofilms can enhance bacteria’s viability by providing resistance 
against antibiotics and conventional disinfectants. The existence of biofilm is a serious 
threat to human health, causing incalculable loss. Therefore, new strategies to deal with 
bacterial biofilms are needed. Bacteriophages are unique due to their activity on bacteria 
and do not pose a threat to humans. Consequently, they are considered safe alternatives to 
drugs for the treatment of bacterial diseases. They can effectively obliterate bacterial 
biofilms and have great potential in medical treatment, the food industry, and pollution 
control. There are intricate mechanisms of interaction between phages and biofilms. 
Biofilms may prevent the invasion of phages, and phages can kill bacteria for biofilm 
control purposes or influence the formation of biofilms. At present, there are various 
measures for the prevention and control of biofilms through phages, including the com
bined use of drugs and the application of phage cocktails. This article mainly reviews the 
function and formation process of bacterial biofilms, summarizes the different mechanisms 
between phages and biofilms, briefly explains the phage usage for the control of bacterial 
biofilms, and promotes phage application maintenance human health and the protection of 
the natural environment. 
Keywords: biofilm, phage, drug-resistant bacteria, antibiotic substitute, bacterial biofilm 
control

Introduction
Pathogenic bacteria pose severe threats to food, the medical system, and other 
industries.1 Consequently, biofilm production by bacterial strains increases their 
survival ability and virulence, making them more potent pathogenic factors.1–3 

Broad-spectrum antibiotics have gained momentum for preventing and controlling 
bacteria, resulting in the constant emergence of drug-resistant bacteria.4–6 Before 
the foreseeable problem of super bacterial infection, antibiotic substitutes that can 
be effectively used quickly become an important research field to deal with patho
gens potential hazards.

Phage is a green alternative to antibiotics isolated from the natural environment. 
Phages present varied characteristics, such as safe and environment friendly. 
Thousands of different bacteriophages are already present in the human body and 
environment.7,8 Future development of phages can focus on optimizing their effi
cacy and safety.9 It is crucial to understand the formation process of bacterial 
biofilm and the infection mechanism of bacteriophages for the better use bacter
iophages’ unique functions, which have a great significance for removing biofilm 
and the protection of biological safety in all walks of life.
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Therefore, it is needed to expand our understanding of 
phage disrupting biofilm and develop new safe and effec
tive biofilm treatment methods in deteriorating bacterial 
hazards.

The Bacterial Biofilm
Composition and Function of Bacterial 
Biofilm
The bacterial biofilm was first discovered on tooth sur
faces in 1676, observed by Van Leeuwenhoek with 
a simple microscope, describing microorganisms’ growth 
attached to bare surfaces.10 However, it was until 1978 
that the theory of biofilms was proposed by Costerton 
et al.11 Bacterial biofilms are aggregates of microorgan
isms and play a significant role in the persistence of 
bacterial infections.12 Bacteria multiply to form commu
nities and adhere to each other or on the surface. They 
secrete polysaccharide matrix, fibrin, lipoprotein, and 
other substances to form extracellular polymers and 
embed themselves in the self-produced extracellular 
polymer matrix to form a biofilm.13–15 Extracellular poly
mers are critical to the structure and stability of 
biofilms.16 In most bacterial biofilms, the proportion of 
microorganisms in dry matter is less than 10%. In com
parison, the matrix composed of different extracellular 
polymers can account for more than 90%, forming 
a three-dimensional structure of the biofilm responsible 
for supporting the surface adhesion of the biofilm and 
cohesion.17 The extracellular polymer matrix acts as 
a diffusion barrier or directly binds antibacterial agents 
to prevent it from entering bacterial cells.18 

Simultaneously, bacteria can adapt to the surrounding 
environment with biofilm, obtain nutrients, and discharge 
waste through the gaps between bacterial communities.

The Formation of Biofilm
The biofilm formation is a complex process and can be 
divided into three stages in general (Figure 1). Bacterial 
cells attach to a surface first and then grow into a fixed 
biofilm community. After this, the bacterial cells disperse 
from the biofilm community to the new surroundings and 
start a new cycle.19–21 In the first stage of biofilm formation, 
bacterial adhesion on an object’s surface is divided into 
reversible and irreversible attachment. Reversible adhesion 
is mediated by non-specific Vander Waals force, Lewis acid- 
based electronic force, an electrostatic force. In contrast, 
irreversible adhesion relies on bacterial specific adhesion 
pili flagella to the attachment surface.22–24 When free bac
terial cells attach to the surface irreversibly, they reproduce 
and are accompanied by an extracellular polymer matrix 
synthesis. The extracellular polymer matrix conduces to 
more bacterial cells, mutual adsorption and attaching to the 
surface of the object.16 The continuous growth of bacterial 
cells on the attached surface gradually matures, forming 
a biofilm consisting of millions of closely-spaced cells. 
The final stage of biofilm formation is that cells are sepa
rated from the biofilm population and diffuse into the envir
onment to form the next biofilm. This is an essential stage of 
biofilm formation, contributing to the biological spread, 
bacterial survival, and disease transmission.20,25

Biofilms can develop from the same bacteria, but also 
can form by different bacteria.26 For example, dental pla
que can be formed by hundreds of bacteria, and all kinds 
of bacteria colonization on the tooth surface follows an 
orderly development process.27 Early bacteria adhere to 
the tooth enamel surface, and later bacteria adhere to that 
already existed to form a new biofilm.28 Biofilm diffusion 
can also be divided into three different stages. First, the 
bacterial cells are detached from the biofilm colonies. 
Second, bacterial cells move to a new location. At last, 

Figure 1 Biofilm formation process. Free cells adsorb after contacting the cell surface and then gradually grow into a cell colony. After maturation, they are released into 
a new environment, and a new cycle begins.
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the bacterial cells move to a suitable location to finish 
attachment. Biofilm diffusion includes active and passive 
diffusion. The former is actively carried out by bacteria, 
and the latter is the transfer of biofilm cells due to external 
forces. Diffusion patterns include: erosion, sloughing, and 
seeding. The continuous release of single cells or small 
clusters of cells from biofilms at low levels is called 
erosion. The rapid massive loss of biofilm is known as 
sloughing. The rapid release of a mount of single cells or 
small cell clusters from a hollow cavity formed inside 
a biofilm colony are called seeding.20,29–33

Impact of Bacterial Biofilm Presence
Most bacteria can form biofilms; once the biofilm is 
formed, it will exacerbate the host’s immune mechanism 
and antibiotics resistance, improving bacteria’s survival 
rate. Bacterial biofilms that are difficult to remove from 
medical devices or wounds are more likely to cause infec
tion. When the body’s immunity or resistance is weakened, 
bacteria that survive in the biofilm can be released to cause 
new infections.34 The presence of biofilms allows bacteria 
to persist in pathological environments leading to chronic 
infections during the healing process.35 Bacterial biofilms 
have a significant impact on the virulence and viability of 
bacteria, not only in the medical field but also in industries 
that require a highly sterile environment, such as food 
processing, where biofilms can significantly affect peo
ple’s manufacture and life.36,37

Phage Interacts with Biofilm
Common disinfectants and antibiotics are more effective in 
removing free cells but do not readily penetrate and 
destroy biofilms and are less effective against antibiotic- 
resistant bacteria, with a reported 100–1000-fold increase 
in antibiotics concentration required to eradicate bacteria 
containing biofilms.38–41 Due to different microorganisms, 
the type of mixed biofilm increases with symbiotic micro
organisms, which are likely to be more resistant to anti
biotics and increase the therapeutic burden.42 

Simultaneously, antibiotics are being developed at 
a much slower rate than the rate at which bacteria develop 
resistance. There are many applications on clearing bio
films by physical and chemical methods, yet little is 
known about the interactions between biofilms and phages, 
and the role of phages as effective bacterial scavengers has 
not been developed, thus a deeper understanding of the 
mechanisms involved between phages and biofilms are 
necessary to facilitate phages application.

Mechanism of Phage Prevention and 
Control of Biofilm
Phages are considered to be the most abundant microor
ganisms on the planet. The diversity of phages comes from 
their dynamic adaptability in the face of selective 
pressure.43 Phages are viruses that only infect bacteria, 
and the number in nature is about 1031,at least ten times 
more than bacteria.44 There are two types of phages: the 
lysogenic phage and the other is the lytic phage. The 
lysogenic phage integrates itself with the host bacterial 
genome to achieve a coexisting state. In contrast, the 
lytic phage injects its genome into the host bacteria and 
utilizes the host ribosomes to manufactures its proteins.

Bacterial cell resources rapidly manufactured capsid pro
teins and viral genomes, which assemble into the phage pro
geny to lyse the host bacteria.45,46 Phages use receptor binding 
proteins (RBPs) to interact with receptors on the surface of 
bacteria. Following the initial reversible attachment, phages fix 
on the bacteria’s surface irreversibly and inject the phage 
genome into the host cytoplasm.47 The infection of phage 
into the host can be divided into several steps: (i) attachment 
to bacterial surface receptors (usually sugar or protein) through 
phage receptor binding proteins, (ii) injection of phage genome 
into bacterial cytoplasm, (iii) phage protein assembly, (iv) 
phage progeny release.48

Phages can clear biofilms in a variety of ways. (i) 
Lysogenic phages can integrate into the bacterial genome and 
affect the formation of biofilms.49 For example, the integration 
of phage Bxb1 inactivates the groEL1 gene of Mycobacterium 
smegmatis. After integration, the bacteria can float naturally 
but prevent the formation of mature biofilm.50 (ii) Phage clears 
bacterial biofilm and lyses cells by encoding lyase (Figure 
2).51,52 Lu et al 2007, designed and engineered 
a bacteriophage capable of expressing the enzyme DspB to 
degrade the β-1,6-N-acetyl-D-glucosamine during infection, 
which is a crucial adhesion needed for biofilm. Phage- 
encoded DspB is released into the environment with host cell 
lysis, causing more degradation of the biofilm, thereby con
trolling the formation of the biofilm. This engineered bacter
iophage attacks both on biofilm and the bacteria in the biofilm 
matrix, removing 99.997% of the biofilm with the dual action 
of DspB and phage. This phenomenon demonstrating the 
feasibility of using engineered phages with biofilm-degrading 
enzymatic activity to reduce bacterial biofilms.53 (iii) The 
phage expresses enzymes that degrade extracellular polymers, 
destroys the polysaccharide matrix and proteins in the biofilm 
that encapsulates the bacteria, and clears the bacterial 
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protective barrier, and then enters the biofilm to destroy the 
bacteria. Pires et al 2016, summarized 160 hypothetical depo
lymerises, including glucanase, acetylase, etc., and revealed 
the diversity of understanding depolymerases.54 Hanlon et al 
2001, found that phages can degrade Pseudomonas aeruginosa 
(P. aeruginosa) exopolysaccharides by the enzyme to reach the 
cell surface.55 The depolymerase produced by most phages 
only recognizes host-derived polysaccharides, and has certain 
limitations for expanding the host spectrum of phages.56 With 
the gradual maturity of genetic engineering technology, this 
limitation can be lifted using genetic engineering techniques to 
modify phage depolymerase and expand the future’s phage 
host spectrum.

Bacterial Biofilm Resists Phage Infection
Although phages have good results in the application of bio
film removal, there are still a large number of studies suggest
ing the limitations of phage applications. The prolonged arms 
race between bacteria and phages has likewise enabled bacteria 
to acquire the ability to resist phages, including alterations in 
phage-recognition receptors in bacteria, abortive infection sys
tems (Abi) that can lead to cell death or metabolic arrest 
(Figure 3). In contrast, phages infect the RM system and 
DISARM of bacteria following the phage genome’s entry 
and remove the genome by the CRISPR system.48,57–61 The 
complex material composition and interlocking membrane 
structure of the biofilm, as the first physical line of bacterial 

defense against phages, makes the invasion of phages more 
difficult. In general, bacteria utilize the over-expression of 
substances in the biofilm to capture viral particles to block 
the invasion of phages and protect them from damage.62 

Colonic acid is an extracellular polysaccharide (EPS); 
a mutant strain of Escherichia coli (E. coli) that over expresses 
colonic acid, which protects Enterobacteriaceae bacteria from 
phage invasion by forming protective capsules.63 Vidakovic 
et al 2015, used E. coli biofilms and lysing T7 phages as 
models. They found that CsgA (curli polymer) protects bac
teria by covering the cell surface and binding phage particles to 
prevent them from contacting the bacterial surface.64 The 
interaction of multiple bacteria will produce a biofilm that is 
more resistant to phage. The biofilm in which multiple bacteria 
coexist can be a mixture of multiple bacterial biofilms or 
dominated by a single bacterial biofilm. Biofilm mixture can 
effectively reduce phage invasion, but only specific strains can 
enhance the anti-phage effect. The competition between the 
bacterial strains may also reduce the resistance.65–67 Complex 
mixed biofilms are one of the critical barriers for phage clear
ance of biofilms.

The Other Relationship Between Phage 
and Biofilms
Phages are regarded as natural enemies of bacteria and bacter
ial biofilms; interestingly, some phages have a “cooperative” 

Figure 2 Phage removal method of biofilm. I. Lysogenic phages affect biofilm formation by integrating into bacterial genomes. II. Phage can clear biofilm by encoding lyase. III. 
Phages destroy biofilms by expressing polysaccharide depolymerase.
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relationship with the bacterial host. Secor et al 2015, reported 
that filamentous phage interacted with the host and microbial 
polymers to form a higher-order liquid crystal structure of the 
biofilm matrix, which enhanced the biofilm’s adhesion, the 
survival rate in the dry state, and antibiotic resistance.68 

Filamentous phage also affects biofilms, leading to tolerance, 
virulence, dispersion of biofilms, and colony variation.69 Rice 
et al 2019, demonstrated that filamentous phages play an 
important role in P. aeruginosa and biofilms’ virulence forma
tion process. P. aeruginosa that infects filamentous phages has 
shown more significant toxicity, while P. aeruginosa lacking 
filamentous phage’s gene cannot develop hollow centers or 
undergo cell death.70 The presence of phages may also cause 
changes in the structure of the bacteria themselves or the 
biofilm. Davies et al 2016, found that mild phages, especially 
transposable phages, may promote bacterial pathogens’ adap
tive changes in the host. They used an artificial sputum med
ium to simulate sputum after a cystic fibrosis lung infection. 
Cultivated phage-infected and phage-uninfected 
P. aeruginosa, the results show that both bacteria can adapt 
to the biofilm environment. However, the phage population 
showed a higher degree of parallel evolution and faster selec
tive elimination, which promoted the bacteria in the host’s 
faster adaptive evolution in the body.71 Bull et al 2018, demon
strated that spatially structured phage death provides cells with 
a means of protection that can boost cell densities an order of 
magnitude above that attained under mass action. The 

extracellular polysaccharides and cell fragments of the bac
teria produce high-density bacterial regions in the biofilm 
space structure environment. Phage sinks formed around this 
area, which prevented it from further infecting the living 
bacteria, reducing the infection of the living bacteria by the 
phage from the physical barrier. Besides, the presence of 
different phages has different effects on the development of 
biofilms.72 Tan et al 2015, found that Vibrio anguillarum 
(V. anguillarum) phage ΦH20 has an excellent inhibitory 
effect on biofilm. In contrast, phage KVP40 stimulates 
V. anguillarum to produce more biofilms to prevent the inva
sion of phage KVP40. The long-term co-evolutionary relation
ship between phages and bacteria exists which produces more 
complex mechanisms. There are many challenges in studying 
the interaction mechanism between phages and bacteria.73

Application of Phage for Prevention 
and Control of Biofilm
Application of Phage to Destroy Biofilm 
of Pathogenic Bacteria
Antibacterial drugs have a screening effect and inhibit the 
bacterial growth but if bacterial resistance occur, then 
antibiotics have no effect to bacteria. Antibiotic resistance 
has become a high concern in global public health.52,74,75 

Bacterial biofilms often involve many chronic infections 
that are difficult to treat and are associated with moist 

Figure 3 Biofilms capture phages through extracellular polymers.
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object surfaces. Bacterial biofilms are prone to develop 
tolerance to antibiotics and host immunity.76 It is estimated 
that more than 700,000 deaths occur each year due to 
resistant bacteria.77 Therefore, it is urgent need to develop 
new treatment methods for antibiotic-resistant bacteria and 
biofilms. Phage therapy is now accepted as a good way to 
inhibit antibiotic-resistant bacteria.78,79 Only a few coun
tries in the world use phages for bacterial therapy, and as 
technology continues to advance, other regions have been 
experimenting with phage therapies as well.79 Phages have 
shown great potential in the treatment of antibiotic- 
resistant bacterial infections.

Phage Clears Biofilm
Phage has been successfully used to reduce contamination 
in medical catheters and is being developed as a new drug 
to control bacterial biofilm infection.52 Proteus mirabilis 
(P. mirabilis) forms a dense crystalline biofilm on the 
catheter, thereby blocking the flow of urine. In the early 
stage of bacterial infection, the phage can eliminate 
P. mirabilis. Although the level of planktonic cells has 
not been reduced in the late stage of infection, it can 
significantly reduce the formation of coating.80 Patients 
who underwent total knee arthroplasty experienced recur
rent prosthetic infections due to the presence of Klebsiella 
pneumoniae biofilms. Fortunately, intravenous phage ther
apy has achieved a satisfactory outcome where antibiotics 
have not worked well.81 Biofilms formed by Enterococcus 
faecalis (E. faecalis) and other pathogenic bacteria in the 
oral cavity are compromising oral health.82,83 Khalifa et al 
2015, characterized a lytic phage EFDG1 that efficiently 
infects and kills planktonic and biofilm cultures of 
E. faecalis both in vitro and in vivo experimental model 
of tooth root canal infection.84 Advances in phage therapy 
may offer potential ways for better treatment of biofilm- 
derived oral infections. As a common Gram-negative 
pathogen in hospitals, P. aeruginosa has formed a highly 
stable biofilm and often exhibits antibiotic resistance, 
which has attracted widespread attention, designated as 
a key priority for developing new therapies by the World 
Health Organization.85–88 Phage φMR299-2 (podovirus) 
and φNH-4 (myovirus) have been shown to eliminate 
P. aeruginosa in the mouse lung and cystic fibrosis lung 
airway cells.89

Combination of Phage and Antibacterial Drugs
Using antibiotics that reduce biofilm will usually lead to 
the emergence of many antibiotic-resistant bacteria. In 

different treatment methods, the combination of phage 
and antibacterial drugs can significantly increase the leth
ality of bacteria.90–92 Lu et al 2009, used engineered 
phages to inhibit the SOS network in E. coli from enhan
cing the lethality of quinolones in vitro, proving that 
engineered phages can enhance the killing effect of anti
biotics on biofilms.93 Srinivasan et al 2019, found that the 
addition of calcium can enhance the lytic activity of Vibrio 
parahaemolyticus phage.94 Appropriate antibiotic treat
ment combined with phage can dissolve the biofilms of 
Staphylococcus aureus (S. aureus) and P. aeruginosa, 
while the effect on S. aureus is more obvious.95 The 
combination of phage PEV20 and ciprofloxacin has 
a synergistic antibacterial effect on eliminating 
P. aeruginosa and its biofilm, protecting the lung epithelial 
fibroblast cells from P. aeruginosa.96,97 The presence of 
antibiotics may interfere with bacterial metabolism activ
ity, and the activity of bacterial metabolism may affect the 
binding of phages.

Nevertheless, the antibacterial function of phages still 
exists.98 When phages are used in combination with anti
biotics, the ratio of the two and their administration 
requirements greatly impact the therapeutic effect. 
Therefore, it will be the focus of future research to ade
quately evaluate the therapeutic potential of phages in 
order to optimize the conditions of the combination and 
ensure its safety and efficacy.99,100

Application of Phage Cocktail Therapy to Prevent 
and Control Biofilm
Phage cocktail therapy treats bacteria with a mixture of 
multiple phages, and it shows great potential for treating 
complicated bacterial infections and other issues supported 
by the findings of recent successful compassionate treat
ments in Europe and the United States. Latz et al 2017, 
mixed three multi-drug-resistant P. aeruginosa phages and 
found that compared to a single phage, the mixed phages 
showed the best effect without the synergy antagonism.101 

Alves et al 2016, reported that a new type of phage cock
tail reduce and disperse P. aeruginosa biofilm under static 
and flowing conditions and can be used as an agent for 
treating P. aeruginosa infection.86 Forti et al 2018, 
designed a cocktail of six phages that worked well with 
P. aeruginosa isolates from clinical samples, demonstrat
ing the ability to clear multi-drug resistant strains of bac
teria. The release of bacteriophages was capable of almost 
complete clearance to form a biofilm for 48 hours. 
Meanwhile, in an attempt to treat respiratory tract 
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infections in mice with phages, it was found that the use of 
phage cocktails with different MOIs can reduce the 
P. aeruginosa infections in mice and that appropriately 
timed phage cocktails were effective in rescuing 
P. aeruginosa-infected wax moth (G. mellonella) through 
treating bacteremia.102 Alves et al 2014, found that phage 
DRA88 and phage K combination could lyse a variety of 
S. aureus.103 S. aureus multiple cocktails show 100% lysis 
efficiency against clinically resistant S. aureus.2 The use of 
phage cocktails allows more bacteria to be controlled, so 
more types of phage can be used as treatment options, 
therefore modification of phage will also become one of 
the promising fields for phage research. Technically, to 
screen multiple effective phages quickly may earn time 
for clinical treatment.

Application of Lysin to Remove Biofilm
Lysin is a phage-derived enzyme that can degrade bacterial 
peptidoglycan. Lysin has a vital role in controlling bio
films. Schuch et al 2017, evaluated the ability of phage 
lysin CF-301 to clear biofilms in a variety of situations, 
and CF-301 was able to completely clear S. aureus bio
films that were resistant to high concentrations of antibio
tics (daptomycin and ciprofloxacin). In experiments to 
treat S. aureus infection in vivo, low concentrations of 
CF-301 were effective in destroying all biofilms and kill
ing free bacteria, making it a good potential antimicrobial 
agent.104 Lysin P128 is a chimeric protein with potent anti- 
staphylococcal activity.105 Lysin P128 has a therapeutic 
effect on various Staphylococci and its biofilm, it is very 
effective in treating rats infected with S.aureus.106,107 

Díez-Martínez et al 2015, exchanged the structural com
ponents of two lysins and successfully constructed a new 
chimeric enzyme with high bactericidal activity and dif
ferent substrate ranges.108 The combination of lysin and 
antibiotics has a synergistic effect in treating 
Streptococcus suis biofilms and is expected to become 
a new anti-biofilm class drugs.109,110 Lood et al 2015, 
reported that phage lysin kill multi-resistant gram- 
negative bacterium Acinetobacter baumannii 
(A. baumannii) in a mouse bacteremia model.111 Thandar 
et al 2016, found that the thirty amino acids in the 
C-terminal portion of the phage lysin PlyF307 were suffi
cient to kill A. baumannii, and they subsequently modified 
this portion of the short peptide with amino acids and 
found that the bactericidal efficiency of the short peptide 
could be increased tenfold. The target of this lysin-derived 
short peptide seems to be the cell membrane, and it can 

significantly reduce A. baumannii activity in mouse 
skin.112 Yang et al 2016, reported that an engineered 
lysin ClyR, which has activity on Streptococcus mutans 
biofilm in vitro and in vivo, is expected to be a preventive 
or therapeutic agent prevention of dental caries.113 

Vázquez et al 2019, reported that the two lysins Cpl-711 
and PL3 have synergistic effects in promoting purified cell 
wall degradation, inhibiting bacterial cell growth in vitro, 
and killing plankton and cells in the biofilm.114 Extensive 
research on lysin has proved its potential ability to treat 
various pathogenic bacteria, and it is expected to be devel
oped as an alternative drug for future biofilms control.

Application of Phage for Prevention of 
Biofilm in Water Environment
Biofilms formed by microorganisms during waste water 
treatment are the main problems encountered during mem
brane filtration and are particularly serious in circulating 
aquaculture systems.115,116 Phages can solve aggravating 
water infrastructure corrosion and biological fouling due 
to the generation of bacterial biofilms. They can also 
selectively suppress the proliferation and foaming of bac
teria that can prevent sludge clarification and reduce the 
antibiotics-resistant strains in biological wastewater treat
ment systems diffusion.41

P. aeruginosa biofilms often clog filters in drinking 
water treatment plants and increase cleaning costs. Zhang 
et al 2013, achieved a removal rate of 89% using phage 
isolated from sewage to clean P. aeruginosa biofilm, and 
reached a 96% removal rate when used in combination 
with chlorine.117 Goldman et al 2009, found that phage can 
reduce the microbial attachment rate on ultra filtration 
membrane modules by 40% to 60% and proved that the 
simultaneous use of multiple phages could prevent multi
factorial formation biofilms.118 The use of phages to con
trol water pollution and potential biological threats caused 
by biofilms is a cost-effective and environmentally 
friendly new technology. Sewage contains a large number 
of microorganisms, including most pathogenic bacteria, 
and the large-scale use and discharge of antibiotics have 
also caused the continuous emergence of antibiotic- 
resistant, thus posing a great threat to species and 
environment.115,119,120 Increasing numbers of antibiotic- 
resistant virulent Vibrio species are being isolated from 
the dam, boreholes, and tap water, and the screening of 
phages that lyse antibiotic-resistant Vibrio species by Maje 
et al 2020, is essential for safeguarding the biosecurity of 
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water supplies.121 Aquaculture farmers usually rely on 
much preventive use of antibiotics in farmed fish to reduce 
pathogenic vibrio and its biofilm, which has gradually 
caused the emergence of vibrio resistance and increased 
the aquaculture industry’s burden. Nandita et al 2019, 
found a characteristic lysin in V. parahaemolyticus 
phage, with lytic activity against various vibrio species, 
thus expected to become a promising bio-bactericide pro
cess for the treatment of vibrio resistance to solve the 
problem of antibiotics overuse in aquatic industry.122

Application of Phage for Prevention of 
Biofilm in Food Industry
Listeria monocytogenes (L. monocytogenes) can cause 
food-borne diseases. It has a higher risk of treatment in 
the elderly, immuno-compromised, pregnant women and 
children, and the mortality rate is exceptionally high. The 
biofilm can colonize in the food production environment 
and help food-borne pathogens survive under harsh living 
conditions.123–126 L. monocytogenes is challenging to era
dicate. It’s ability to form a biofilm protects it from the 
effects of conventional cleaning, which is the critical fac
tor in the survival of L. monocytogenes in the food indus
try. The strong colonization ability of this bacteria could 
be easily detected in production environment.123,124,127 

Iacumin et al 2016, found that L. monocytogenes phage 
P100 was active against five strains or serotypes, and the 
bactericidal effect of phages at different concentrations on 
bacteria was counted. When the phage level was 8 log 
PFU/cm2, it had a bactericidal activity effect, and it can be 
used to reduce the concentration of L. monocytogenes.128 

Soni et al 2010, determined the activity of P100 against 21 
L. monocytogenes and determined that P100 could also 
reduce the cell population of L. monocytogenes in the 
presence of biofilm.129 The mixed-use of multiple phages 
to kill bacteria that are difficult to remove in the food 
industry shows good therapeutic potential. Phages and 
phage-lysing proteins that can eradicate biofilms are pro
mising to become future disinfectants.130,131

Side Effects of Phage Therapy
The success of phage therapy in humans is still being 
checked, and certain major hurdles remain to be studied. 
During phage therapy,132 phage insensitive mutants (BIM) 
can occur, which will contribute to several complexities in 
phage therapy. Recent researchers have shown, though that 
the advent of BIM can minimize bacterial virulence, 

making it easier to cleanse the immune system.133 

Phages are complex species that can transmit toxin genes 
among bacteria, particularly lysogenic phages.134 Hence, 
lytic phages must be chosen for phage therapy after 
screening and toxicity tests. Additionally, when infected 
with unfamiliar species or several infections, the clinical 
significance of bacteriophages is absurd. Furthermore, 
phage therapy requires a broad range of phages and high 
purity. Currently, commonly used approaches are very 
difficult and ineffective for extracting and purifying bac
teriophages. In addition, the processing of phage prepara
tions is complex and the procedure is complicated. For 
acute or special circumstances, phage therapy is also not 
appropriate.

Conclusion
Bacteria are ubiquitous in the natural environment. More 
and more health events are caused by bacteria and biofilm, 
which deserves more attention in recent years. The biofilm 
structure formed by the accumulation of bacterial commu
nities provides a barrier for bacteria, challenging to remove 
by conventional means. The traditional physical and chemi
cal disinfection methods cannot altogether remove the bio
film. Even the use of antibiotics will pressure the selection 
of bacteria, leading to the emergence of more resistant 
bacteria. The presence of bacteria causes severe problems 
in most industries that require aseptic environments, such as 
the food industry, medical, and pollution treatment. 
Bacteriophages are the virus against bacteria, and almost 
all bacteria have their corresponding phages. Therefore, the 
phage can be used as a promising substitute for antibiotics or 
other antibacterial drugs. Phages and bacteria in nature have 
experienced a prolonged arms race. Phages have been devel
oping methods to infect bacteria, and bacteria have also 
developed mechanisms to resist phages.135 With the 
advancements in identifying interaction mechanisms, such 
as the immune and evasive immune relationship between 
bacterial CRISPR and phage anti-CRISPR, being discov
ered. Phosphorothioation-sensing bacterial protection 
system,136 have been characterized in recent years, and the 
diversity of the arms race between the two is increasingly 
more clearly illustrated. This gives one a deeper understand
ing of the relationship between the two and offers a stronger 
foundation for the use of phages as removal/control biofilm 
formation.137

Bacteria can prevent the adsorption of phage by form
ing a complex biofilm. Therefore, making phages break 
through the defense of biofilm becomes a research hotspot 
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of prevention and treatment of phage biofilm. Some hos
pitals have begun to use aerosol phage environmental 
cleaners to remove drug-resistant bacteria. The research 
on phage cocktails has also shown good momentum. Some 
bacteriophage agents have been successfully developed to 
eliminate specific bacteria and control biofilm.138

However, the standard methods of biofilm removal are 
still physical and chemical. At present, there is no estab
lished phage-based method to eliminate biofilms, so we 
should continue to study the mechanism of phages and 
bacteria to explore potential and environment-friendly 
methods for biofilm control. Current phage measures 
used to prevent and control biofilm still have some limita
tions. For example, the host spectrum of bacteriophages is 
usually narrow. The biofilm is usually composed of var
ious bacteria, limiting the application of phages to 
a certain extent. At the same time, host bacteria can use 
their defense system to prevent phage reproduction, mak
ing it more challenging to find suitable phages that can 
break through the bacterial restrictions.

Future research should aim to expand the scope of 
application of phages by promoting phage mixtures and 
engineered phage transformation. Breaking through the 
restrictions of phages on biofilm control is essential. But 
the genome and function of most phages remain unknown. 
Many unknown bacteriophage enzymes are expected to be 
potential drugs for eliminating biofilms, and relevant func
tions should be emphasized to make them green alterna
tives of antibiotic drugs for prevention and control of 
biofilms. The evaluation of phage application should also 
be carried out. The mature phage strategy could be 
a powerful weapon against potential bacterial threats and 
receive government support and vigorous development.
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