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Abstract

Accumulating evidence indicates that the human brain copes with sensory uncertainty in

accordance with Bayes’ rule. However, it is unknown how humans make predictions when

the generative model of the task at hand is described by uncertain parameters. Here, we

tested whether and how humans take parameter uncertainty into account in a regression

task. Participants extrapolated a parabola from a limited number of noisy points, shown on a

computer screen. The quadratic parameter was drawn from a bimodal prior distribution. We

tested whether human observers take full advantage of the given information, including the

likelihood of the quadratic parameter value given the observed points and the quadratic

parameter’s prior distribution. We compared human performance with Bayesian regression,

which is the (Bayes) optimal solution to this problem, and three sub-optimal models, which

are simpler to compute. Our results show that, under our specific experimental conditions,

humans behave in a way that is consistent with Bayesian regression. Moreover, our results

support the hypothesis that humans generate responses in a manner consistent with proba-

bility matching rather than Bayesian decision theory.

Author summary

How do humans make prediction when the critical factor that influences the quality of the

prediction is hidden? Here, we address this question by conducting a simple psychophysi-

cal experiment in which participants had to extrapolate a parabola with an unknown qua-

dratic parameter. We show that in this task, humans perform in a manner consistent with

the mathematically optimal model, i.e., Bayesian regression.

Introduction

The brain evolved in an environment that requires fast decisions to be made based on noisy,

ambiguous and sparse sensory information, using noisy information processing and noisy

effectors. Hence, decisions are typically made under substantial uncertainty. The main idea
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behind Bayesian brain hypothesis is that the brain uses the framework of Bayesian probabilistic

computation to make optimal decisions in the presence of uncertainty [1–3]. Despite various

counterexamples, e.g., [4], a large body of research has established that many aspects of cogni-

tion are indeed well described by Bayesian statistics. These include magnitude estimation [5],

color discrimination [6], cue combination [7], cross-modal integration [8, 9], integration of

prior knowledge [10, 11] and motor control [12–14].

Some experimental studies have considered more complex tasks, including visual search

[15, 16], same-different discrimination [17] and change detection [18], but most can be cast

into the problem of estimating a hidden quantity from sensory input. Much fewer experimen-

tal studies have been performed on regression tasks (but see [19] for an overview, and, e.g.,

[20–22]). In a regression task, the aim is to learn the mapping from a stimulus x to an output y
after having been exposed to a training dataset D ¼ fðxi; yiÞg

N
i¼1

of N associations between

stimulus xi and its corresponding yi. Since the mapping from x to y can be probabilistic, the

aim of regression is to find an expression for p(y|x, D). Classification tasks, such as object rec-

ognition, or self-supervised tasks, such as estimating the future position of an object from past

observations, are just a few examples of the many regression tasks performed by humans on a

daily basis.

The machine learning literature contains many solutions to the regression problem, includ-

ing nonlinear regression, support vector machines, Gaussian processes and deep neural net-

works (see [23] for an introduction). It is unclear, however, how humans perform regression

tasks. Most of the machine learning solutions rely on the assumption that the mapping from x
to y is parametrized by a set of parameters w, such that the original regression problem of find-

ing the posterior predictive distribution p(y|x, D) is replaced by a parameter estimation prob-

lem, i.e., finding the best set of parameters w� for the parametrized mapping p(y|x, w�).
However, this approach is not Bayesian since no uncertainty over the parameters w is included

in the regression model.

The Bayesian approach to regression proceeds in two steps [24]. First, the posterior distri-

bution over the parameters p(w|D) is computed from the observed data D. Then, this posterior

is used to compute the posterior predictive distribution by integrating over the parameters:

pðyjx;DÞ ¼
Z

pðyjx;wÞpðwjDÞdw ð1Þ

Taking into account the uncertainty over parameters is particularly relevant for predictions

when the size N of the dataset is small compared to the number of parameters. Indeed, taking

into account the uncertainty helps to generalize to unknown data and thereby alleviates

overfitting.

Parameter uncertainty also plays a key role in computing predictive distribution Eq (1), as

estimated, e.g., by the variance of the predictive distribution. In Bayesian decision theory, the

predictive distribution is used to minimize the expected cost with respect to the predicted vari-

able. This is important when rewards are unequally distributed, as is the case in many beha-

vioural tasks [25–27]. Some recent work supports the notion that humans make simple

decisions in a way which conforms to Bayesian decision theory [12, 28]. In more complex

tasks, it has been shown that humans respond suboptimally, which can be largely attributed to

noisy inference rather than noisy decision making [29]. A competing decision model to that of

Bayesian decision theory is probability matching, wherein random samples are drawn from

the predictive distribution. Several studies support the idea that humans use probability

matching in cognitive [30, 31] and perceptual tasks [32]. Despite the differences in how predic-

tion uncertainty is used in Bayesian decision theory and probability matching, uncertainty is
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nevertheless an integral part of the decision making process in both cases. Both of the afore-

mentioned potential pitfalls of the regression problem—overfitting to small datasets and lack

of prediction uncertainty—currently limit the power of deep neural network models [33, 34].

These models have millions of parameters and their performance improves with the number

of layers [35, 36]. To prevent overfitting, training requires ever larger and more expensive

training sets.

It is interesting to note that classic Deep Neuronal Networks (DNNs) do not use weight

uncertainty and are therefore limited in their ability to compute prediction uncertainty.

Recently, the idea of computing the probability distribution over weights in DNNs and using

the distribution for prediction has gained traction and has given rise to the so-called Bayesian

Neuronal Network (BNN), for example [37, 38]. Thus, the proposal of BNNs is simply to apply

Bayesian regression to DNNs. BNNs promise better performance in the low data regime.

Here, we ask the question whether human observers process parameter uncertainty in

accordance with Bayesian regression. We conducted psychophysical experiments in the low

data regime with a simple generative model and compared Bayesian regression to other regres-

sion models without fitting any hyperparameters other than participant-specific noise. The

experimental design made use of the fact that Bayesian regression predicts an uncertainty-

modulated transition from a unimodal to a bimodal response distribution. In each trial, we

presented participants with 4 points from a hidden, noisy parabola. The task was to correctly

extrapolate the parabola, i.e., to find the vertical point of intersection of the parabola with a

given horizontal location. The quadratic parameter of each parabola was drawn from a

bimodal prior distribution, designed to make the parabolas face either upwards or downwards.

After recording the participant’s response, we showed the parabola from which the stimulus

dots were generated as feedback. This feedback enabled the participants to learn both the prior

and the generative model. Because we wanted to test to what extent participants make deci-

sions in accordance with Bayesian regression, we varied the level of noise of the parabola. The

rationale is that the higher the noise level, the higher the uncertainty about the correct parame-

ter and, according to Bayesian regression, the more participants should rely on the prior and

produce a bimodal response distribution. We found that Bayesian regression indeed explains

participants’ responses better than maximum likelihood regression and maximum a posteriori

regression. Moreover, we compared a loss-based decision model with a sampling-based deci-

sion model and found clear evidence for the latter. Indeed, a loss based model with exact infer-

ence cannot explain the bimodality of participants’ response distributions.

Results

A novel paradigm to test regression

We designed a novel psychophysical experiment in which participants had to extrapolate a

noisy parabola displayed on a computer screen. In each trial, we chose the parameter w of the

parabola y = wx2 from a bimodal prior distribution π(w) where the two modes are centered at

w = 1 and w = −1 and the variances are given by s2
p

(see Eq 5). The parameter w was either pos-

itive (parabola facing upwards) or negative (parabola facing downwards), with the same proba-

bility, i.e., 0.5. We selected four dots on the parabola with x-positions close to the parabola’s

vertex and added zero-mean Gaussian generative noise σg to the dots’ y-positions (see Eq 4).

We then presented a fifth dot to the right of the stimulus, always at the same x-position x? = 2.

Participants could move the fifth dot up and down along the y-axis by using the up and down

arrow keys. Participants were asked to adjust the y-position so that the dot correctly extrapo-

lated the parabola. During the adjustment task, participants saw only the 4-dot stimulus but

not the generating parabola. After the the participant had validated his/her response, we
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showed the generating parabola and the adjusted point as feedback. Participants were naive to

the purpose of the study. They were not informed about the existence of a prior distribution of

the parabola’s quadratic parameter, the parabola’s bimodality nor the level of generative noise.

In our main experiment, we set the standard deviation of each prior mode to σπ = 0.1 (if not

specified otherwise, assume this value throughout this work) and fixed the values of x-posi-

tions to x1 = −0.3, x2 = −0.1, x3 = 0.1 and x4 = 0.3. We generated j 2 (1, . . ., 20) unique stimuli

Dj ¼ fx
ðjÞ
i ; y

ðjÞ
i g

4

i¼1
at a low (0.03), medium (0.1) and high (0.4) value of the generative noise σg.

The rationale is that the higher the noise level, the higher the uncertainty (the lower the likeli-

hood) and the more participants rely on the prior if they act consistently with a Bayesian

regression model. At each noise level, we ran 400 trials, repeating each unique stimulus Dj 20

times. The stimulus presentation order was randomized within each noise level (Fig 1B). Thus,

we obtained a set of responses for each noise level and for each of the 20 stimuli

Rj ¼ fr
ðjÞ
1 ; . . . rðjÞ20g. The advantage of observing several responses for the same exact stimulus is

that we can compare the observed response distribution to the response distributions pre-

dicted by the different models.

Fig 1. Experimental protocol. (A): Procedure of a single trial. First, a fixation dot was presented for 1s before the 4-dot stimulus

appeared. Observers then had unlimited time to adjust the fifth dot with the up and down arrow keys. They then clicked the space bar to

confirm the final position of the adjustable dot. After the response, the generative parabola was shown for 1s as feedback. (B):

Experiment 1: The experiment consisted of two sessions on two separate days. Both sessions began with 10 practice trials with virtually

no noise (σg = 10−5), followed by 4 blocks of 50 trials of low noise (σg = 0.03). In session 1, the low noise blocks were followed by 8 blocks

of 50 trials of medium noise (σg = 0.1), while in session 2, the low noise blocks were followed by 8 blocks of 50 trials of high noise (σg =

0.4). In total, each participant completed 400 trials per noise level, with 20 repetitions of 20 unique stimuli. In this experiment, σπ was set

to 0.1. (C): Experiment 2: the experiment consisted of a single session which began with 20 practice trials with very low noise (σg = 10−2),

followed by 10 blocks of medium noise (σg = 0.1) trials. Each block consisted of 20 trials, with the generative parabola shown as feedback,

as in Experiment 1. Half of the 200 trials consisted of stimuli which were presented just once, while the remaining 100 trials consisted of

10 repetitions of 10 unique stimuli. In this experiment, σπ was set to 0.5. See Materials and methods for more details.

https://doi.org/10.1371/journal.pcbi.1007886.g001
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Seven naive participants took part in the experiment. We denote the set of all responses of

participant k by RðkÞ
¼ fRjg

20

j¼1
. The stimulus presentation order was identical for each partici-

pant. At the beginning of each experimental session, we showed a virtually noiseless 4-dot

stimulus σg = 10−5 to familiarise the participants with the task and to estimate their internal

noise sources (explained in more detail below).

In a second experiment, we set the prior standard deviation to σπ = 0.5 and the generative

noise to the medium level of σg = 0.1. Instead of using fixed x-positions for the stimuli we

added weak Gaussian noise (see Material and methods). We repeated 10 unique stimuli 10

times each, which yielded a total of 100 trials. Four naive participants (different from those

recruited for the first experiment) completed the experiment. The key difference to the σg = 0.1

condition in the first experiment was that here, the prior provided much less information

about the curvature of the parabolas.

In total, we studied four different conditions: three with σπ = 0.1 and σg 2 {0.03, 0.1, 0.4} in

experiment 1, and one with σπ = 0.5 and σg = 0.1 in experiment 2.

The regression models

We considered five regression models (see Materials and methods). The Maximum likelihood

regression (ML-R) model computes only the point estimate of w that maximizes the likelihood

p(Dj|w) and does not make use of the prior distribution at all. The maximum a posteriori

model (MAP-R) combines the likelihood with the prior distribution to compute the mode of

the posterior distribution p(w|Dj). Despite the fact that it uses the bimodal prior, MAP-R can-

not produce bimodal responses because it relies on a point estimate of w. The Bayesian regres-

sion (B-R) model MBR takes the entire posterior distribution into account:

pðy?jx?;Dj;MBRÞ ¼

Z

pðy?jx?;wÞpðwjDjÞdw ð2Þ

In B-R, the noise level σg plays the crucial role of modulating the relative strength of unimodal

likelihood and bimodal prior, and hence determines the transition between a unimodal and a

bimodal response distribution. Relaxing the assumption that the true generative noise is

known, we included an additional variant of B-R that (deterministically) estimates the genera-

tive noise ŝg for the current stimulus Dj. We indicate this variant of B-R with a subscript: B-Rσ.

Note that technically, this trial-by-trial noise estimation could also be applied to the other

models such as MAP-R. However, MAP-R reduces the posterior distribution over the qua-

dratic parameter to a point estimate. Therefore, an additional trial-by-trial noise estimation

would not change its prediction substantially, i.e., it would only shift the unimodal prediction

but would not induce a bimodal predictive distribution. Thus, we did not consider a corre-

sponding “MAP-Rσ” variant. As a null model, we included prior regression (P-R), which

replaces the posterior with the prior, i.e., it does not use the likelihood.

For all models considered here the predictive distribution depends deterministically on the

4-dot stimulus. In this sense, they rely on exact inference. Noisy inference is an alternative

which assumes that the inference process is corrupted by noise [29]. This alternative would

require an additional noise parameter which governs the level of inference noise (see S1 Text).

Here, we constrain ourselves to models with exact inference to remain fitting-free, i.e., model

predictions for a given stimulus Dj have no free parameter. We used the true values of the

hyperparameters because we assume that the participants learned the generative model within

a few trials (see S1 Text). Thus, the model predictions require no fitting. For more details, see

Materials and methods.
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In the plots, we denote the models by the arguments of their predictive distributions, i.e., y|
x, wML for Maximum Likelihood regression (ML-R); y|x, wMAP for Maximum a Posteriori

regression (MAP-R); y|x, D for Bayesian regression (B-R); y|x,D, σg for Bayesian regression

with noise estimation (B-Rσ) and y|x for prior regression (P-R).

The decision models

We considered two decision models that turn the predictive distributions into a response dis-

tribution: probability matching and Bayesian decision theory. In the case of probability match-

ing, it is assumed that participants draw random samples from the predictive distribution:

y? � pðyjx;D;MÞ. If not stated otherwise, we use sampling-based decisions throughout this

work. Meanwhile, according to Bayesian decision theory, participants select a response by

minimizing the expected loss function y? ¼ arg miny?hLðy; y?Þipðyjx;D;MÞ. Here, we considered

only the square loss, which is equivalent to the choosing mean of the predictive distribution

y? ¼ hyipðyjx;MÞ. Independently of the form of the loss function, the Bayesian decision theory

generates responses from the predictive distribution deterministically. When we use loss-

based decision models, we indicate this by adding the prefix “L”: to the model, e.g., L: y|x, D
for a loss-based decision model applied to Bayesian regression.

To model participants’ responses, we also accounted for internal sources of noise, i.e., noise

which is inhere to neural processing, decision making and the execution of motor action [29,

39]. We call the sum of these noise components motor noise for brevity. The motor noise is

not a model parameter but a participant-specific parameter. We computed the motor noise σm
for each participant from the 20 responses to the noiseless stimulus. To ensure robustness to

outliers, we used the average value between the 16% and 84%-percentile of the response distri-

bution. The values of motor noise for the seven participants of the main experiment were

sð1;...;7Þm ¼ ð0:22; 0:3; 0:74; 0:88; 0:34; 0:37; 0:54Þ, respectively while for the second experiment,

we used the average of these values, i.e., 0.48 because the noise-free responses of experiment 2

were not available. The motor noise was included in the models by convolving the predictive

distribution with a Gaussian of variance s2
m. In the case of loss-based decision models, motor

noise was the only source of response variability.

Modality of predicted and observed response distributions

Fig 2(A) shows the responses of a representative participant along with the predicted response

distributions of the different models. Both ML-R and MAP-R ignore one of the modes (here,

the mode corresponding to a downward-facing parabola). In addition, the parabola predicted

by ML-R has lower curvature than the parabolas predicted by any of the other models (i.e., the

absolute value of the ML-R parabola’s quadratic parameter is lower) than that of the parabola

that the participant responded with. A potential explanation for this finding is that, while

ML-R does not take the prior into consideration, humans do make use of the prior. In the low

noise regime (σg = 0.03, Fig 2(B)), the discrepancy between the participant’s response distribu-

tion and the prior regression model’s predicted response distribution in terms of the number

of modes (unimodal and bimodal, respectively) rules out the explanatory validity of the latter.

In the higher noise regimes (σg 2 (0.1, 0.4), Fig 2(C) and 2(D)), MAP-R and ML-R fail to

account for the fact that the participant’s responses are distributed across both modes. The

finding that at σg = 0.03 MAP-R matches the participant’s responses often with high accuracy

provided implicit evidence that participants used the prior and had learned the parabola’s gen-

erative model.

Fig 2(E) illustrates the participant’s responses in the condition when σπ = 0.5. The partici-

pant’s responses cover a wider range of values than in the conditions of experiment 1 when σπ
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is smaller (i.e. σπ = 0.1). While the generative noise σg = 0.1 is the same as in Fig 2(B), this con-

dition is more difficult because the prior is less reliable. As a consequence participants rely

more strongly on the noisy stimulus and produce more response variability. In this example,

the responses are closely clustered around the center. B-Rσ is attracted more strongly to the

Fig 2. Example responses. B-R is the only model that can explain the transition from unimodal response (at low noise,

(B)) to bimodal response distribution (at high noise, (D)). (A) A sample stimulus (green dots) at high noise level (σg =

0.4). For this specific stimulus, contours indicate the response distributions predicted by ML-R, MAP-R, B-R and B-Rσ
(not shown to the participant) at various x?. At x? = 2, we recorded the participant’s responses (gray dots). The cross

section at x? = 2 is shown in (D). (B—E) The predicted response distributions at x? = 2 of ML-R (blue), MAP-R

(orange), B-R (red), B-Rσ (dark red), P-R (green) and observed responses (gray). As σg increases (B—D), the data

becomes less informative. Consequently, and in accordance with B-R, the response distribution becomes more

bimodal. (E) Due to the weak prior the predictions of B-R and B-Rσ respond more strongly to the data and diverge

from the modes of P-R more stronlgy than in the previous conditions. The skewness of B-Rσ results from the mixture

of both Gaussian components.

https://doi.org/10.1371/journal.pcbi.1007886.g002
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center than B-R because the former is more driven by the stimulus due to underestimating the

noise.

B-R outperforms the other models

Fig 2. In order to formally assess model performance, we next conducted a quantitative model

comparison across all participants. For each of the seven participants individually, we com-

puted the log probability that the participant’s responses arise from the given model. We

summed these log probabilities for all of the unique stimuli Dj as a measure of the quality of

the model. Fig 3(A) shows these values relative to the B-R baseline value for each noise level,

averaged across participants. Negative values indicate poor performance relative to B-R. A sub-

ject-level analysis showed that the model comparison results were not driven by any single par-

ticipant’s data (see S1 Text). Because our model comparison is fitting-free, we do not need to

account for different levels of model complexity. Indeed, in the present case, the log likelihood

comparison is equivalent to using the Bayesian Information Criterion.

As Fig 3(A) shows, B-R is among the highest performing models for all conditions. As the

task difficulty increases (left to right), P-R performance approaches that of B-R. This is because

the parameter uncertainty encoded in the prior becomes more important and the response dis-

tribution becomes bimodal. Neither MAP-R nor ML-R can capture this and therefore perform

Fig 3. Model comparison. The model comparison shows that the B-R model best explains the data (A, B) and that

sampling-based decision models outperform loss-based decision models (C). (A) Difference in log likelihood with respect

to B-R averaged over participants for different experimental conditions. Negative values mean that B-R wins the

comparison. B-R is either winning (σg 2 (0.03, 0.1)) or equivalent to P-R because the two coincide at high levels of

parameter uncertainty (σg = 0.4 and σπ = 0.5). (B) The expected likelihood of each model for a randomly selected

participant shows what fraction of participants are best described by a model. Overall, B-R and B-Rσ describe the

population best. (C) Log likelihood difference between a sampling and a loss-based decision model. Negative values

favour sampling. At all other conditions and for all regression models, sampling explains the data better than loss-based

decision models with exact inference. For B-R, B-Rσ and P-R, loss-based models do not predict bimodal responses. At low

noise σg = 0.03, loss-based models underestimate the response variance. Error bars represent the SEM across participants.

https://doi.org/10.1371/journal.pcbi.1007886.g003
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poorly. These results are consistent across participants (see S1 Text for a subject-level

analysis).

At low noise σg = 0.03, participants give unimodal answers and the mean predictions of B-R

and MAP-R are indistinguishable. Then the model that better captures the response variability

wins. In general, B-R explains the variability of the responses better. The variability is also the

reason why P-R performs relatively well under the more difficult conditions, i.e., σg = 0.03 and

σπ = 0.5.

The averaged results are largely consistent with a subject-level analysis. A notable exception

is that at σg = 0.03, MAP-R emerges as the best model (closely followed by B-R) for participants

3, 4 and 7 (see S1 Text). A Bayesian random effects analysis confirms this. Specifically, we used

the model posterior pðMjRðkÞ
Þ averaged over a randomly selected participant k. This measure

reflects the ratio of participants for which model M wins. Fig 3(B) shows that the responses of

the majority of participants are best modelled by B-R or B-Rσ. Since B-R interpolates between

MAP-R (at low noise) and P-R (at high noise), as expected, at σg = 0.03, i.e., the easiest condi-

tion, the responses of some participants are also well modelled by MAP-Rwhile at the most dif-

ficult condition, i.e., when σπ = 0.5, the responses of half of the participants are best described

by P-R (and the other half by B-R).

Next, we investigated if sampling or the loss function perspective explains the responses

better. Fig 3(C) depicts the log likelihood of loss-based decision making compared to sampling

for each model. Negative values indicate that sampling wins. Sampling explains the data better

for all models and in all experimental conditions. One explanation is that the loss mechanism

turns bimodal predictive distributions into unimodal predictive distributions. Here, we use

the square loss such that the (unimodal) response distribution is centered on the mean of the

predictive distribution. In the case of P-R, the mean of the predictive distribution lies at the

center of both modes. Clearly, this method does not capture bimodal responses. This is why

the performance difference between the two decision models is smallest at σg = 0.03, where all

models except for P-R make predictions which are close to unimodal.

The second explanation for the better performance of sampling is that the loss function

approach with exact inference underestimates response variability. The response variability

differs from one stimulus to another and is often higher than σm. This explains the better per-

formance of sampling for MAP-R and ML-R, since the effect of turning a bimodal response

distribution into a unimodal one is absent. In these cases, the sampling-based decision model

has the effect of increasing the variance of the predicted response distribution by s2
g . This leads

to better model performance on variable response data, even in the experimental conditions σg
= 0.03 where participants respond unimodally.

In conclusion, from the models considered here, B-R with sampling best explains partici-

pants’ responses.

B-R explains the generative noise-dependent increase in response variance

A key characteristic of B-R is the transition of the model’s posterior predictive distribution

from unimodality to bimodality as σg increases, i.e., as the data become less informative. To

analyse this transition, we used the participants’ response variances at the different levels of

generative noise.

The variance of the response distributions is sensitive to bimodality. For example, if all

responses are distributed evenly across both modes, the variance is close to 16, which corre-

sponds to the variance of the prior P-R. If all responses are located in a single mode, the vari-

ance is typically smaller by a factor of ten (e.g., see Fig 2(B)). We explain this in more detail

below.
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For each stimulus Dj and for each participant, we computed the variance of the 20 observed

responses s2
rjDj

. Because we have 7 participants, this yields a distribution over 7 × 20 = 140

empirical variance values at each value of σg. We compared this distribution with the response

variance distribution predicted by the models. To achieve a higher resolution and show the

dynamics of the variance as a function of the generative noise, we generated 5000 unique sti-

muli from a densely spaced σg instead of relying on the small number of stimuli and noise lev-

els used in the experiment (see Materials and methods).

The empirical variance distribution (gray) and its median (black) are shown in Fig 4 along

with the predicted median of the variance distribution for each model (color coded). For B-R

and B-Rσ, we plotted the distribution in Fig 4(A) and 4(B), respectively.

The median of the B-R variance distribution increases with the noise level. This is due to

the fact that B-R’s predicted response distribution transitions from unimodal to bimodal; this

transition is modulated by the generative noise, which determines the relative contribution of

the prior and likelihood to the response distribution. Consequently, the B-R model is the only

one for which the variance values smoothly transition from the MAP variance at the low noise

level (σg = 0.03) to the P-R variance at the high noise level (σg = 0.4). The P-R variance remains

constant and the MAP-R variance increases very weakly as a function of the generative noise.

The variance analysis provides further evidence for the superiority of both B-R variants over

the other models.

While B-R captures the general trend in the data, it fails to account for two key characteris-

tics. First, the median variance increases slower than B-R would predict, and secondly, at high

levels of generative noise, B-R fails to reproduce the lower part of the distribution (where

response variances are close to zero). A potential explanation for this discrepancy is that partic-

ipants estimate the noise on a trial-by-trial basis. When the noise added to the 4-dot stimulus

was, by chance, such that the dots appeared to be well-aligned on a parabola, participants

would, presumably, underestimate the generative noise and respond in a way which was con-

sistent with a unimodal distribution. The fact that the B-Rσmodel captures the empirical

Fig 4. Response variances of predicted and empirical distributions, as a function of generative noise. B-R best

explains the increase in response variance as a function of the generative noise σg. Variances of the empirical response

distributions from all participants (gray dots, median: gray line) and predicted response distributions, corresponding to

the two B-R variants (median: red line, log probability: heatmap). B-R (A) Interpolating between MAP-R and P-R, only

the B-R variants capture the upward trend in the data. At σg = 0.4, B-R fails to account for the empirical responses with

close-to-zero variances. (B) At σg = 0.4, B-Rσ predicts a bimodal variance distribution because, in trials with low noise

estimates, the predicted response distribution is unimodal and thus variance is low. Because of these low-variance trials,

the median of B-Rσ increases slower than the median of B-R and captures the empirical median better. Because ML-R and

MAP-R behaved identically, the MAP-R represents both regression models.

https://doi.org/10.1371/journal.pcbi.1007886.g004
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variance better than B-R provides some evidence for this idea. On some trials, B-Rσ underesti-

mates the true σg and applies the B-R formalism with high confidence in the stimulus data. In

these cases, the model relies strongly on the likelihood and bimodality, which normally enters

through the prior, is not achieved. Rather, the resulting response distribution is unimodal and

has low variance.

Despite the fact that B-Rσ describes the qualitative features of the variance distribution bet-

ter than B-R, it performs worse in terms of log likelihood. This shows that the low variance

responses of humans and of B-Rσ do not always coincide on a trial-by-trial basis.

To better understand the relation between response variance and bimodality, we dissect the

variance of a bimodal response distribution to stimulus Dj into its components:

s2

rjDj
¼ s2

m þ s
2

yjDj
þ cð1 � cÞðm1 � m2Þ

2
; ð3Þ

where μ1 and μ2 are the means of the modes of the posterior predictive distribution, c is the

mixture coefficient and s2
yjDj
þ s2

m corresponds to the variance of both modes. The unimodal

contribution is not mode-specific because we chose a symmetrical prior. The first two terms

constitute a unimodal contribution and the last term a bimodal contribution. The latter is con-

trolled by the mean dispersion (μ1 − μ2)2 and a prefactor c(1 − c) that is equal to zero for c 2 {0,

1} and is maximal for c = 1/2. To determine to what extent each component of this dissection

is present in the response data, we defined the empirical counterparts of μ1, μ2 as the means of

the upper and lower modes of the response distribution and c as the mixture coefficient, corre-

sponding to the fraction of positive responses r> 0. For the unimodal variance contribution

s2
yjDj
þ s2

m, we used the variance of the mode which contains the majority of responses (see

Methods for more details). The comparison between data and models shows that both B-R

variants correctly predict the driver of the observed variance to be the transition to bimodality.

Fig 5(A) shows the predicted positive coefficient c (median) of the models as a function of the

empirically-observed coefficient across all participants and stimuli (in the main experiment).

As further evidence for the validity of the B-R perspective, both B-R variants correctly predict

the fraction of positive responses. Indeed, the smooth transition from a unimodal to a bimodal

distribution is nicely captured by B-R. In contrast, MAP-R transitions sharply and is more

reminiscent of a step function while P-R predicts equally strong modes across all noise level

conditions.

The bimodal distribution of responses depends on the prefactor c(1 − c) and the mean dis-

persion. Fig 5(B) shows the median value of the prefactor as a function of generative noise

(across all participants and stimuli). Data and model predictions qualitatively match the

behaviour of the variance in Fig 4. Indeed, the other contributions to the variance are less

important. The mean dispersion, shown in Fig 4(C), plays the role of a large constant. The

unimodal contribution to the variance, shown in Fig 5(D), is small compared to the bimodal

contribution. In conclusion, the coefficient c plays the dominant role in determining the vari-

ance of the response distribution. Because the two B-R variants estimate c sufficiently well,

they best match the empirical variance distribution.

Interestingly, all models overestimate the unimodal variance, with the exception of MAP-R

in the low noise condition (Fig 5C). The B-R variants predict larger variance than MAP-R

because they translate the posterior parameter into response uncertainty. P-R predicts even

larger response variance because it uses the prior parameter uncertainty which is generally

larger than the posterior one. Despite the fact that MAP-R best describes the median variance,

it performs worse than B-R in terms of log likelihood. Fig 5(C) reveals that one factor contrib-

uting to the poorer performance of MAP-R is the occurrence of unimodal, high variance

responses.
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In summary, the variance analysis provides further evidence that B-R captures the way in

which generative noise induces a transition from unimodality to bimodality in participant

responses. However, B-R overestimates response variance. Trial-by-trial estimation of the

noise offers a potential explanation for why participants cluster their responses more unimod-

ally than predicted.

Unimodal responses are overall best explained by B-R

Thus far, the main factor behind the superiority of the B-R model’s performance relative to the

other models is the ability of B-R to capture the bimodality of responses, i.e., to correctly set

the mixture coefficient. However, the previous analysis showed that unimodal variance

decreases as a function of generative noise while B-R predicts an increase. It remains unclear if

B-R still wins the model comparison in a unimodal setting where performance is independent

of the mixture coefficient.

To address this question, we conducted a model comparison on a unimodally conditioned

dataset. For each stimulus Dj, we considered only responses in which the dominant response

mode and the dominant mode of the model predictions coincided (see Methods for details).

The conditioning yields a unimodal dataset in the sense that all predictions and responses

belong to the same mode. To make the model comparison fair for the bimodal predictive

Fig 5. Median of each of the bimodal response distribution variance components across all participants and stimuli.

(A) Predicted coefficient of positive mode as a function of the empirical coefficient (across all noise levels). ML-R behaves

identically to MAP-R. Thus, the MAP-R curve represents both models. The shaded area shows the 40% and 60%

quantiles. (B) Prefactor of bimodal contribution as a function of generative noise. Data jittered for visibility. (C)

Unimodal contribution to the variance. Empirical variance computed on mode with majority of responses. (D) Mean

dispersion. Only trials with bimodal responses included. As the stimulus becomes more noisy, human responses and B-R

variants conform to the prior.

https://doi.org/10.1371/journal.pcbi.1007886.g005
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distributions of P-R and the B-R variants, we removed the inferior mode and normalised the

remaining probability mass to one.

At the group level, B-R wins the model comparison across all conditions, as shown in Fig 6

(A). B-R clearly outperforms the other models in two conditions in particular: at σg = 0.03 and

at σπ = 0.5.

Interestingly, in the bimodal dataset, B-R did not emerge as a clear winner at σπ = 0.5

because P-R performed similarly well. Thus, B-R is not better than P-R at modelling how par-

ticipants balance the two modes, but once the mode is chosen, it performs better. At σg = 0.1,

B-R and B-Rσ outperform the other models. B-Rσ wins by a small margin (see axis scaling).

However, a subject-level analysis (see S1 Text) shows that the average is mostly driven by par-

ticipant 1, while in the case of other participants all models perform similarly well. At σg = 0.4,

no clear winner emerges. Intuitively, this makes sense because the stimulus is not informative

and all models rely mostly on the prior information about w. Here, B-R wins or performs simi-

larly to other models.

The Bayesian random effects analysis (results shown Fig 6(C)) confirms the previous

results. The ratio of participants whose responses are best described by a given model

hpðRðkÞjMÞik indicates that B-R describes the population at σg = 0.03 and at σπ = 0.5 well. As

in the bimodal dataset, MAP-R reflects the responses of some participants well at σg = 0.3. At

Fig 6. Unimodal model comparison. The unimodal analysis confirms previous results: overall B-R with sampling

wins the model comparison. (A) Differences in log likelihood on unimodal data, averaged over participants. Negative

values mean that B-R wins. ML-R is omitted because its poor performance complicates visualisation. (A) B-R wins at

σg = 0.03 and σπ = 0.5, but not in the other conditions. (B) All models use the quadratic loss function to select

responses, with response variance given by the motor noise s2
m. B-R with sampling explains the unimodal data best for

most participants. High subject-level variability results in large errors (see S1 Text for a subject-level analysis). (C, D)

The fraction of participants best described by a given model. At σg = 0.4, several models perform well. Error bars

indicate SEM across participants.

https://doi.org/10.1371/journal.pcbi.1007886.g006

PLOS COMPUTATIONAL BIOLOGY Bayesian regression explains how human participants handle parameter uncertainty

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007886 May 18, 2020 13 / 23

https://doi.org/10.1371/journal.pcbi.1007886.g006
https://doi.org/10.1371/journal.pcbi.1007886


σg = 0.1, the log likelihood performance (Fig 6A) of all models is similar but B-Rσ and MAP-R

win by a small margin (see S1 Text for a subject-level analysis). Hence, B-Rσ and MAP-R per-

form best in the Bayesian random effects analysis (Fig 6C). No clear winner emerges at σg =

0.4.

Next, we revisit the question of whether participants sample or use a loss function. In the

bimodal data, the loss function approach was at a disadvantage because it could only produce

unimodal response distributions. This disadvantage is not present in the unimodal dataset. To

make the performance of models in Fig 6(A) and 6(B) comparable, we use B-R with sampling

as the baseline in both plots. Fig 6(B) shows that, averaging across participants and conditions,

B-R with sampling outperforms the loss-based models. The large errors in (B) reflect large

intersubject variability. The Bayesian random effects analysis in Fig 6(D) confirms that B-R

also wins at the subject-level at σg = 0.03 and at σπ = 0.5. One exception is L:B-Rσ at σg = 0.1.

Indeed, the subject-level analysis (S1 Text) shows that in terms of the averaged log likelihood

at middle and high noise σg 2 (0.1, 0.4) participant 1 is an outlier. For other participants, the

performance of B-R with sampling and the loss-based models is very similar. Despite the

higher intersubject variability in the case of the unimodal dataset than in the bimodal dataset,

the unimodal analysis provides convincing evidence of the superiority of B-R with sampling

over other models considered here. In contrast to the model comparison in the bimodal analy-

sis, in the unimodal case B-R clearly wins the model comparison at σπ = 0.5.

Discussion

In our experiment, participants adjusted a dot such that it coincided with on a parabola deter-

mined by four other dots. We used the log likelihood to compare participants’ responses to the

predictions of ten models: five regression models ML-R, MAP-R, P-R, B-R and B-Rσ combined

with two decision models, i.e., probability matching (sampling) and Bayesian decision theory

(loss-based). B-R with sampling best explained the responses across various experimental con-

ditions. An analysis of the observed and predicted response variance showed that the model

comparison results were mainly driven by the transition from unimodal to bimodal responses.

Only the B-R variants were able to capture this aspect of the data. However, participants clus-

tered their responses more often in one of the mode than B-R predicted. This resulted in a dis-

crepancy between the predicted and empirical response variances. For B-Rσ, this discrepancy

was smaller. Thus, one possible explanation for the discrepancy is that participants were esti-

mating noise on a trial-by-trial basis. Since in the variance analysis we considered the response

variance from all trials, the relatively better performance of B-Rσ here did not translate into

superior performance in the log likelihood analysis, in which we analyzed responses on a trial-

by-trial basis. B-R without noise estimation was more accurate in predicting the mean and var-

iance of the data trial-by-trial. In a final analysis, we conditioned the responses to a single

mode to eliminate the effects of bimodality which was the driving factor behind model com-

parison results in the first two analyses. This allowed us to study the performance of B-R based

on its mean and variance. The analysis of the unimodal dataset generally confirmed the previ-

ous results. B-Rσ with sampling either outperformed or performed similarly to the other

models.

Our results suggest that humans turn the posterior predictive distribution into a response

via probability matching rather than Bayesian decision theory. The loss function approach

fails to explain the bimodality of responses to repeated identical stimuli. One way to interpolate

between Bayesian decision theory and probability matching is to present distributions by sam-

ples [40]. The number of samples used to approximate the (predictive) distribution interpo-

lates between both decision models. If the number of samples is sufficiently large, the
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approximated distribution converges to the true distribution, and we enter the domain of stan-

dard Bayesian decision theory. However, if only a single sample is used for the approximation,

probability matching is recovered. This is because applying Bayesian decision theory to a one-

sample distribution returns the location of this sample as a response. The number of samples

takes the role of a transition parameter between classical Bayesian decision theory and proba-

bility matching.

[29] In the context of a categorical decision task, Drugowitsch et al. [29] showed that noisy

inference (rather than noisy decision making or noisy perception) explains the largest fraction

of participants’ response variability. Indeed, noisy inference offers an interesting way to recon-

cile Bayesian decision theory with bimodal responses. Conceptualising the choice between two

modes as noisy inference over two unimodal models leads to a bimodal response distribution

(see S1 Text). At low generative noise, the noisy inference procedure yields a unimodal

response distribution because the difference between the two model evidences is large. At high

generative noise, the evidences for both models are similar such that the inference noise

becomes the decisive factor in the participant’s response. In this case, noisy inference predicts

a bimodal respsonse distribution. As in Bayesian regression, the transition from unimodal to

bimodal response distribution depends on generative noise. However, the speed of the transi-

tion also depends on the inference noise, i.e., a free parameter. In Bayesian regression, this

transition speed is computed as a function of the stimulus and the parameters of the generative

model, and no fitting is required. Because we wanted to study how humans process parameter

uncertainty in a fitting-free context, we did not test the noisy inference model quantitatively.

Future work is required to further explore the relationship between Bayesian regression and

noisy inference.

Throughout this study, we assumed that the generative model is known. In real world

regression tasks, this assumption is typically not justified. Instead, subjects must simulta-

neously learn the generative model and its parameters. For example, in the context of our

experiment this would translate to not informing participants ahead of time that the 4-dot sti-

muli were generated from parabolas. Bayesian regression extends naturally to tasks with

model uncertainty. The Bayesian approach to making predictions makes use not only of the

expectation over the posterior over the parameters but also of the expectation over the poste-

rior over the models. Thus, Bayesian regression with model uncertainty requires subjects to

infer the posterior over models and to average over this posterior. Compared to Bayesian

regression with a known generative model, this multiplies the computational burden by the

number of relevant models. It is an interesting question whether subjects solve regression tasks

with model uncertainty by taking advantage of Bayesian regression or whether they rely on

point estimates such as the MAP-estimator of the model posterior. A study in the context of

sensory fusion suggests the latter [41] but it is unclear to what extent this is also the case in the

domain of function fitting.

Compared to toy examples, real world tasks typically involve complex models with high-

dimensional parameter spaces. This makes the evaluation of the integral in Bayesian regression

particularly difficult. Sampling offers a potential solution because it scales well to high dimen-

sions and integrals reduce to the evaluation of a sum. Recent advances in neuronal algorithms

[42, 43] suggest that, in theory, the brain can efficiently encode probability distribution via

samples. Thus, sampling provides an intriguing direction to further explore potential links

between psychophysical experiments and neuronal implementation of uncertainty.

For a given generative model, Bayesian regression and other regression models prescribe

how to make prediction when parameter uncertainty is present. For example, MAP-R uses a

point estimate of the posterior while B-R uses the entire posterior. Thus, the performance of a

regression model in terms of its ability to model human responses depends on two factors: the
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ability of the regression model to describe how humans handle uncertainty and the degree to

which the theoretically-chosen generative model is true to the generative model inferred by

the observer. The predictions of the regression models in our study are limited in that they

assume a parabolic generative model. A previous study reiterated the formal equivalence of

Bayesian regression and Gaussian processes and demonstrated the flexibility with which

Gaussian processes can model human responses in a complex function fitting task [19]. In the

case of the Bayesian regression model, the authors fit various hyperparameters, and it was

unclear how they controlled for the complexity of the fit. Thus, the study could not answer if

the Bayesian regression model performed well because of its flexibility in representing different

generative models or because it captured how humans process parameter uncertainty. In our

work, we removed the confounding factor by enforcing a simple generative model through

feedback in every trial. Instead we remained fitting-free and could, thus, study directly how

participants processed parameter uncertainty. The rationale of simplicity rather than complex-

ity has advantages for the analysis as well. The different models are analytically tractable and

thus can be studied systematically. Additionally, the one-dimensional response space was easy

to visualize and the amount of data needed to compare the predictive and empirical distribu-

tions was limited.

To remain fitting-free, we assumed that participants know the generative model, including

the prior over the parameters. Without this assumption, we would have had to account for

potential temporal dynamics of learning with a participant-specific, time-dependent prior. For

instance, it might take participants a non-negligible amount of time to learn the generative

model or their responses could be influenced by immediately preceding trials. To avoid such

complications, we showed the generative parabola after each trial and we chose a function that

humans can learn [21], i.e., a parabola. Indeed, after having run the experiments, we found

that there was no substantial learning taking place between the first and the last trials except

for some mild learning at σg = 0.1 (see S1 Text). To extend our study to continuous learning, it

would be interesting to relax the i.i.d. assumption of the stimuli in the generative model, as in

[44], and investigate if a Bayesian framework models the evolution of posterior parameter

uncertainty as well.

We presented and analysed our experimental task within the framework of regression.

After seeing the training data, i.e., the 4-dot stimuli, participants were asked to make predic-

tions. Then, one way of making predictions is to compute the posterior predictive distribution

by marginalising over the posterior of the model parameters. Alternatively, the task can be

interpreted as inference of the point where the parabola intersects a vertical line at a chosen x-

position given the 4-dot stimulus. The posterior predictive corresponds to the posterior of the

response location given the data. Indeed, there is a formal equivalence between Bayesian

regression with linear Gaussian generative models and Gaussian processes with a kernel that

encodes the generative model (e.g. [19]). Algorithmically, however, Bayesian regression and

Gaussian process inference differ. B-R focuses on the compression of training data into model

parameters or a distribution of model parameters, e.g., the MAP estimator or posterior. The

training data does not need to be stored to make new predictions. In contrast, Gaussian pro-

cess inference requires that the training data is stored. Thus, the memory requirements grow

linearly with the size of the training data, which constitutes an important drawback of Gauss-

ian process models. To distinguish between the B-R and Gaussian process inference perspec-

tives, one would need to design regression tasks that cannot be reformulated as inference

because observers can neither see nor remember the entire stimulus when they make predic-

tions. One could achieve this by sequentially presenting many training data such that memori-

zation is not a viable option but sequential updates of the posterior are.
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Our work was inspired by the growing emphasis on parameter uncertainty in the machine

learning community; however, it is important to highlight that function learning and extrapo-

lation have been studied before. The function learning literature has addressed which types of

functions humans can learn [45], how batch or sequential data representation affects learning

[22], to what extent human behaviour can be modelled by parametric functions [46] and how

well humans extrapolate [21]. However, to the best of our knowledge, these studies have so far

failed to conduct a minimal experiment to establish that humans process parameter uncer-

tainty in accordance with Bayesian regression. Our contribution will help to better understand

the brain’s remarkable ability to learn and generalise from very little data and underpins the

power of Bayesian regression as a framework in psychophysical modelling.

Methods and materials

Stimulus generation from the bimodal prior

Here, we describe in detail how stimuli are generated. On the jth trial, participants are pre-

sented with a stimulus consisting of N = 4 points in a 2-dimensional space:

Dj ¼ fðx
ðjÞ
i ; y

ðjÞ
i Þg

N

i¼1
. For the main experiment (with σπ = 0.1, see below), we fixed the x-values

to (−0.3, −0.1, 0.1, 0.3) respectively. For the additional experiment (with σπ = 0.5, see below),

we drew the x-values from Gaussians with means (−0.18, −0.09, 0, 0.09) and standard devia-

tion 0.09 but resampled if the minimal distance was less than 0.1 between any two points. In

both cases, we then generated the y-coordinates from a Gaussian generative model with a para-

bolic non-linearity and the generative parameter, wj:

pðyjx;wjÞ ¼ N ðy;wjx
2; s2

gÞ ð4Þ

The parameter wj is drawn from a mixed Gaussian prior

pgðwjÞ ¼ ðcN ðwj; mp; s
2

p
Þ þ ð1 � cÞN ðwj; � mp; s

2

p
ÞÞ ð5Þ

where the parameter set g ¼ ðmp; s
2
p
; cÞ consists of the mean μπ = 1, mixing coefficient c = 1/2

and the standard deviation σπ = 0.1 for the main experiment and σπ = 0.5 for the additional

experiment. We denote the total set of hyperparameters (suppressed for notational clarity),

from the prior and the generative probability, by a ¼ ðg; s2
gÞ. Each parameter wj corresponds

to a generative parabola. Given this model and given a stimulus Dj, we asked participants to

predict the y-component y? at x? = 2, which is equivalent to mentally fitting a parabola to the

four stimulus points and estimating the point of intersection with a vertical line at x?.
To train participants on the generative model and the prior, we showed participants the

generative parabola after each trial. In the main experiment, we showed a set of 20 unique sti-

muli for each of the three noise levels σg 2 {0.03, 0.1, 0.4}, and each unique stimulus was

repeated 20 times. We denote the set of the 20 responses to the jth stimulus as

Rj ¼ fr
ðjÞ
1 ; . . . rðjÞ20g. This amounts to a total of 400 trials per noise level. The order of the stimuli

was randomized. For the additional experiment, we set σg = 0.1 and showed 10 unique stimuli

10 times. Fig 1 shows the experimental paradigm.

Regression models

In each trial, we model the participant’s computation by a consecutive inference and predic-

tion step. During the inference step, the model assumes that the participant infers information

about the quadratic parameter wj based on the presented data (i.e., stimulus) Dj. The inferred
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information is then used for a subsequent prediction y?. We describe the participant’s overall

task as computing the predictive distribution: pðy?jx?;Dj;MÞ.
Prior regression (P-R) is our null model. P-R assumes that participants make predictions

based on their prior belief but disregard information from the stimulus:

pðy?jx?;Dj;MPRÞ ¼

Z

pðy?jx?;wÞpðwÞdw ð6Þ

Maximum likelihood regression (ML-R) relies only on the likelihood maximizing parameter,

wML:

pðy?jx?;Dj;MMLÞ ¼ pðy?jx?;wMLÞ

with wML ¼ arg max
w
pðDjjwÞ

ð7Þ

Maximum a posteriori regression (MAP-R) uses the parameter that maximizes the posterior p
(w|Dj) = p(Dj|w)π(w)/p(Dj):

pðy?jx?;Dj;MMAPÞ ¼ pðy?jx?;wMAPÞ

with wMAP ¼ arg max
w
pðwjDjÞ

ð8Þ

Bayesian regression (B-R) uses the entire posterior for making predictions by marginalizing

over it:

pðy?jx?;Dj;MBRÞ ¼
R
pðy?jx?;wÞpðwjDjÞdw

with pðwjDjÞ ¼ pðDjjwÞpðwÞp� 1ðDjÞ
ð9Þ

Bayesian regression with noise estimate (B-Rσ) loosens the assumption that participants treat

σg as a hyperparameter and instead assumes they use an estimate ŝg on a trial-by-trial basis.

Using the maximum likelihood estimator and the number of pointsM = 4:

ŝ 2

g ¼ M
� 1
XM

i¼1

ðyi � w
?x2

i Þ
2 with w? ¼

XM

i¼1

x4

i

 !� 1
XM

i¼1

yix
2

i : ð10Þ

After substituting the estimate ŝg for the hyperparameter σg in Eq (9), the posterior predictive

distribution is computed analogously to B-R.

Participants’ internal noise

To predict the participants’ responses r from the regression models’ output y?, we had to

account for the internal noise of the participants. We did this by showing a noise-free stimulus

20 times and fitting a Gaussian with variance s2
m to each participant’s response distribution:

pðrjy?Þ ¼ N ðr; y?; s2
mÞ. To be robust against outliers, we took the average of the 16% and 84%

percentiles of the response distribution as motor noise. The predicted response distribution is

then

pðrjDj; x
?;MÞ ¼

Z

pðrjy?Þpðy?jx?;Dj;MÞdy
? ð11Þ
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Model comparison

We used the log-likelihood and the variance to compare the predicted and empirical response

distributions.

Log likelihood. To compute the log likelihood for a model M across all response at a

given noise level σg, we summed the individual log likelihoods of each response r (the log of Eq

(11)) across all stimuli Dj:

LM≔
X20

j¼1

X

r2Rj

log pðrjDj; x
?;MÞ ð12Þ

Bayesian random effects. The winning model of the participant averaged log likelihood

must not necessarily win the model comparison for each participant. The Bayesian random

effects analysis quantifies what fraction of participants are described by a model [47]. Specifi-

cally, we report the expected likelihood of each model for a random participant (Eq. (15) in

[47]), i.e., the normalised Dirichlet parameter: aM.

Variance prediction. As a independent comparison of the data and the predicted

response distribution, we used the variance of the responses. For each of the 20 stimuli Dj we

obtained a single empirical value from the 20 responses recorded:

s2

rjDj
¼ 1

19

X20

k¼1

ð�r ðjÞ � rðjÞk Þ
2

ð13Þ

where high variance values reflect ambiguous and difficult stimuli while low values indicate

easy stimuli, prompting participants to give very similar responses across repetitions. Hence,

at each noise level σg, we have an empirical variance distribution that corresponds to the 20 sti-

muli fDjg
2

j¼1
0.

For the predicted variance distribution, we use the variance predicted by a model M in

response to a stimulus Dj:

s2

rjDj;M
¼ Var½rjDj; x

?;M�; ð14Þ

where we used Eq (3) for an analytical computation of the variance. To improve the resolution,

we increased the number of stimulus samples Dj to 5000 for the theoretical prediction. We use

the resulting distribution over s2
rjDj;M

to compute the median in Fig 4 and the log density in the

background.

Determining the components of the variance in the response data

To compare the components of the predictive variance in Eq 3 to data, we make the following

definitions for a set of response Rj. The empirical mixing coefficient is the fraction of positive

responses:

c ¼
jfr > 0jr 2 Rjgj

jRjj

If only one of the modes is present in the data (c 2 {0, 1}) the bimodal contribution vanishes

and we do not require the means for the total variance. If both modes are present we compute

their means:

m1 ¼ E½rjr > 0� m2 ¼ E½rjr < 0�;
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We define the unimodal variance contribution as the variance of the dominant mode:

s2

y þ s
2

m ¼ Var½rj ~R�;

where ~R is the set of responses in the dominant mode, i.e., the mode that has the majority of

responses. If no dominant mode exists we omit the stimulus. We did not use the inferior mode

to have sufficient samples (at least 11) to estimate the variance.

The unimodal dataset

To obtain a unimodal dataset from the full dataset, we consider only responses and model pre-

dictions if they have the same dominant mode, i.e., parabolas facing either upwards or down-

wards. We define the dominant response mode as the one containing more than half of the

responses and the dominant mode of the model as the one carrying more than half of the prob-

ability mass. For example, if 11 responses fall into the upper mode but the models predict a

downward parabola, all responses are disregarded. However, if the models predict an upward

parabola the 11 responses enter the unimodal dataset. Note that the symmetric prior ensures

that B-R, B-Rσ and MAP-R share a dominant mode. Because the models use the same likeli-

hood term, they process the stimulus as evidence for the same mode and break the symmetry

in the same direction.

Averaged over participants, the fraction of trials per condition retained for the unimodal

dataset is 0.994, 0.849, 0.596 and 0.703 for σg 2 {0.03, 0.1, 0.4} with σπ = 0.1 and σg = 0.1, σπ =

0.5, respectively.

Participants

Seven naive participants (3 females, 4 males, ages 21-27) participated in the main experiment

and four naive participants (all males, ages 21-30) took part in the second experiment. The

experiments were programmed using custom software implemented in MATLAB. Stimuli

were presented on a 1920x1080 (36 pixels/cm) monitor with a refresh rate of 120 Hz. Partici-

pants viewed the display binocularly. Each trial comprised a fixation dot presented for 1 s fol-

lowed immediately by presentation of the stimulus (with 5 arcmin point diameter).

Participants moved a red point up or down using the up and down arrow keys to indicate the

vertical position of the parabola at the given horizontal location. See S1 Text for more details.

Ethics statement

All participants gave informed consent in accordance with protocol 384/2011 “Commission

cantonale d’éthique de la recherche sur l’être humain”. Participants provided written consent

prior to the experiment.

Supporting information

S1 Text. Derivations and additional details.

(PDF)

S1 Data. The file contains one folder for each participant N 2 {1, . . .11}. Within each folder,

the name of the text file indicates the parameters. The participants 1. . .7 completed four condi-

tions of generative noise σg 2 {0, 0.03, 0.1, 0.4} and the variance parameter was σπ = 0.1. For

example, the file subj1_sig_g = 0.1.txt contains all trials of the first participant with generative

noise σg = 0.1. The participants 8. . .11 completed only one condition: σg = 0.1 and σπ = 0.5.

Since the variance parameter is different from its default value, we indicate it explictely in the
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file name, e.g. subj8_sig_pi = 0.5_sig_g = 0.1.txt. Each data file contains 11 columns. The first

eight columns describe the x and y coordinates of the stimulus points. The last three columns

contain (in that order) the stimulus index j 2 {1, . . .20}, the generating quadratic parameter wj
and the vertical location of the observed response.

(ZIP)
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