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A B S T R A C T

P-Rex family Rho guanine-nucleotide exchange factors are important regulators of cell motility through their
activation of a subset of small GTPases. Both P-Rex1 and P-Rex2 have also been implicated in the progression of
certain cancers, including breast cancer and melanoma. Although these molecules display a high level of
homology, differences exist in tissue distribution, physiological function, and regulation at the molecular level.
Here, we sought to compare the P-Rex2 pleckstrin homology (PH) domain structure and ability to interact with
PIP3 with those of P-Rex1. The 1.9 Å crystal structure of the P-Rex2 PH domain reveals conformational differ-
ences in the loop regions, yet biochemical studies indicate that the interaction of the P-Rex2 PH domain with
PIP3 is very similar to that of P-Rex1. Binding of the PH domain to PIP3 is critical for P-Rex2 activity but not
membrane localization, as previously demonstrated for P-Rex1. These studies serve as a starting point in the
identification of P-Rex structural features that are divergent between isoforms and could be exploited for the
design of P-Rex selective compounds.

1. Introduction

Rho guanine-nucleotide exchange factors (RhoGEFs) of the Dbl fa-
mily, comprised of around 70 members, are critical regulators of sig-
naling by small GTPases such as Rac, Cdc42, and Rho (Aittaleb et al.,
2010; Cook et al., 2014). Within this family, the phosphatidylinositol
3,4,5-trisphosphate (PIP3)-dependent Rac exchanger (P-Rex) subfamily
RhoGEFs P-Rex1 and P-Rex2 act as important regulators of cell mi-
gration (Welch, 2015). P-Rex1 is mainly expressed in neutrophils and
the brain and is responsible for functions such as neutrophil migration,
production of reactive oxygen species, and neurite differentiation
(Waters et al., 2008; Welch et al., 2002, 2005). P-Rex2 is more widely
expressed, and it has been shown to play an important role in Purkinje
cell morphogenesis and motor coordination (Donald et al., 2004, 2008).
P-Rex1 and P-Rex2 have been knocked out in mouse models, both se-
parately and in combination, and this results in overall healthy mice
with mild symptoms that result from neutrophil defects and/or

deficiencies in motor coordination (Donald et al., 2008; Dong et al.,
2005; Welch et al., 2005). Interestingly, both isoforms have been im-
plicated in human cancers, wherein they act as pro-metastatic factors.
P-Rex1 has been shown to be overexpressed in prostate cancer, breast
cancer, and melanoma, and this is associated with tumor metastasis and
poor patient outcome (Lindsay et al., 2011; Montero et al., 2011; Qin
et al., 2009; Sosa et al., 2010). P-Rex2 is commonly mutated in breast
cancer and melanoma, with mutations distributed throughout the
length of the protein (Berger et al., 2012; Nik-Zainal et al., 2016). One
study identified PREX2 as one of the most mutated genes in human
metastatic melanomas (Berger et al., 2012). Of these mutations tested,
most appear to be activating, resulting in increased tumor incidence
and decreased survival rates (Berger et al., 2012; Deribe et al., 2016).
Understanding how these proteins are regulated at the molecular level
is thus an important step toward identifying their function in cancer
and how one might target them therapeutically.

At their N-termini, P-Rex proteins contain Dbl homology (DH)/
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pleckstrin homology (PH) domains, a tandem arrangement found in
nearly all Dbl family RhoGEFs. These domains are referred to as the
catalytic core, although the DH domain harbors the nucleotide ex-
change activity of the enzyme. Following the DH/PH module are two
dishevelled, Egl-10, and pleckstrin (DEP) domains and then two post-
synaptic density protein, Drosophila disc large tumor suppressor, and

zonula occludens-1 protein (PDZ) domains, ending with a large, C-
terminal inositol polyphosphate 4-phosphatase (IP4P)-like domain with
no identified enzymatic activity (Welch et al., 2002). Evidence in the
literature suggests that the accessory domains C-terminal to the DH
domain contribute to autoinhibition, as removing them results in in-
creased RhoGEF activity (Hill et al., 2005). However, lack of data on the

Fig. 1. Structural comparison of the P-Rex2 and P-Rex1 PH domains. (A) Protein sequence alignment of the P-Rex1 and P-Rex2 PH domains with the labeled loops in
(B) shown boxed in corresponding colors. (B) Ribbon diagram representation of the structure of the P-Rex2 PH domain (PDB: 6BNM). N- and C-termini are labeled, as
well as loops that are discussed in the main text. The anti-parallel β-strands of the core fold are sequentially numbered, and the loops decorating this core are named
by the strands they connect. The dashed line indicates an unstructured loop. (C) Structural alignment of all of the available P-Rex1 PH domain structures (PDB: 5D27,
PDB: 5D3V, PDB: 5D3W, PDB: 5D3X, and PDB: 5D3Y) with the P-Rex2 PH domain structure (blue), which highlights conformational differences in the β1/β2 and β5/
β6 loops. Domains were aligned in PyMOL. (D) The P-Rex1 PH domain from an Ins(1,3,4,5)P4 -bound structure (5D3X chain A, yellow) and the P-Rex1 PH domain
structure with nothing bound in the PIP3 site (5D27, grey) are shown aligned with the P-Rex2 PH structure (blue). (E) Alignment shown in (D), but without the
ligand-free P-Rex1 PH domain, zoomed in on the β1/β2 and β5/β6 loop region. Select homologous residues between P-Rex1 (italics) and P-Rex2 (bold) are labeled to
serve as reference points. There are substantial mainchain Cα position deviations for some of the residues here. For example, P-Rex2 His318 and Ser319 are 4.9 Å and
8.3 Å away from P-Rex1 His349 and Ser350, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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ternary structure of the domains outside of the catalytic core (Cash
et al., 2016; Lucato et al., 2015) and the molecular details of how they
interact with the DH/PH tandem limits our understanding of this au-
toregulation. P-Rex1 and P-Rex2 are overall 58% identical (alignment
of the PH domains is shown in Fig. 1A), with most sequence divergence
occurring in the IP4P domain. Both enzymes are synergistically acti-
vated by PIP3 and heterotrimeric G protein βγ heterodimers (Gβγ)
(Barber et al., 2007; Hill et al., 2005; Li et al., 2005; Mayeenuddin et al.,
2006; Urano et al., 2008; Welch et al., 2002). Previously, we char-
acterized the molecular interaction of the P-Rex1 PH domain with in-
ositol-1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4], a soluble analog of
PIP3 (Cash et al., 2016). We determined that PIP3 binding to the PH
domain is absolutely required for P-Rex1 activity in cells but is dis-
pensable for its membrane localization, leading to the hypothesis that
PIP3 allosterically activates P-Rex1 by inducing a conformational
change upon binding. In contrast, the exact location of the Gβγ binding
site and its mechanism of activation have not been elucidated.

P-Rex proteins have been shown to be regulated by other molecules
in addition to PIP3 and Gβγ. For example, the regulatory subunit of type
I PKA interacts with P-Rex1 through the PDZ domains, whereby P-Rex1
localizes PKA to the plasma membrane, and PKA stimulation causes
phosphorylation and inactivation of P-Rex1 (Chávez-Vargas et al.,
2016). P-Rex1 has also been shown to be activated and localized to the
cell membrane by Norbin, a G protein-coupled receptor adaptor pro-
tein, through the PH domain (Pan et al., 2016). In some cases, P-Rex
regulatory interactions are restricted to a particular isoform. P-Rex2 has
been shown to interact with the tumor suppressor phosphatase and
tensin homolog (PTEN) in a co-inhibitory fashion, a relationship that
has been shown to be specific to P-Rex2 over P-Rex1 (Hodakoski et al.,
2014; Mense et al., 2015). We have shown that P-Rex2 associates with
HEK293T cell membranes at higher levels than P-Rex1, albeit through
an unknown mechanism (Cash et al., 2016). We went on to show that
residue divergence in the β3/β4 loop of the PH domain results in a
more positively charged loop in P-Rex1 that acts as a nonspecific
membrane localization element. When this loop sequence is swapped
into P-Rex2, it leads to even greater membrane association (Cash et al.,
2016).

To investigate whether the P-Rex2 PH domain has structural dif-
ferences from that of P-Rex1 that may underlie some of the afore-
mentioned functional disparities between P-Rex1 and P-Rex2, we de-
termined the crystal structure of the P-Rex2 PH domain to 1.9 Å
resolution. This structure revealed the most prominent difference to be
in the conformation of the β5/β6 loop, a region proposed to be a reg-
ulatory protein-protein interaction site in P-Rex1 (Cash et al., 2016).
Biochemical and cell-based assays suggest that although the residues
involved in PIP3 binding are the same in P-Rex1 and P-Rex2, PIP3
binding may be relatively less important to P-Rex2 activation.

2. Material and methods

2.1. Cloning

Human P-Rex1 cDNA was a gift from Dr. James Garrison (University
of Virginia). Human P-Rex2 cDNA was purchased from Addgene
(plasmid #41555). DNA encoding the P-Rex1 PH domain (residues
245–408) or P-Rex2 PH domain (residues 219–377 for crystallography,
219–364 for assays) was cloned into a modified pMAL expression vector
(pMALc2H10T) (Kristelly et al., 2004). P-Rex2 (residues 1–1606) was
fused with EGFP in the pEGFP-C1 vector (Clontech Laboratories, Inc.).
Site directed mutations were created using QuikChange (Qiagen) and
confirmed by DNA sequencing.

2.2. Protein production and purification

Rosetta (DE3) pLysS E. coli cells (Novagen) were used to overexpress
P-Rex PH constructs as N-terminally 10xHis-tagged maltose binding

protein (MBP)-fusion proteins. Cells were grown in Terrific Broth plus
carbenicillin to an OD600 of 0.8, and then protein expression was in-
duced with 0.1mM isopropylthiogalactopyranoside at 20 °C for 18 h.
After harvesting, cells were lysed in a buffer containing 20mM HEPES
pH 8, 100mM NaCl, 2 mM dithiothreitol (DTT), and protease inhibitors
[0.1 mM ethylenediaminetetraacetic acid (EDTA), 0.001mM leupeptin,
1 mM lima bean trypsin inhibitor, and 0.1 mM phenylmethylsulfonyl
fluoride (PMSF)], and then recombinant protein was extracted using
histidine affinity (Ni-NTA) resin chromatography. Proteins were eluted
from the Ni-NTA resin in a buffer containing 20mM HEPES pH 8,
200mM NaCl, 2 mM DTT, and 250mM imidazole. MBP-PH proteins
were then simultaneously dialyzed into buffer containing 20mM
HEPES pH 8, 100mM NaCl, and 2mM DTT and treated with a 1:1M
ratio of TEV protease to remove the N-terminal MBP tag, which was
then removed by re-passage over Ni-NTA resin. Final purity was
achieved by processing the PH domains over an S75 size exclusion
column (GE Healthcare) in a buffer containing 20mM HEPES pH 8,
200mM NaCl, and 2mM DTT.

2.3. Crystallization, data collection, and structure determination

Initial P-Rex2 PH domain crystallization conditions were de-
termined using the Index HT screen (Hampton Research) in a sitting
drop format. Optimized crystals were produced by the hanging-drop
method from drops containing 0.5 μl protein plus 0.5 μl well solution
suspended over 1ml well solution at 20 °C. The P-Rex2 PH domain was
crystallized using 6.2 mg/ml PH domain and a well solution containing
100mM sodium acetate trihydrate pH 5 and 3M NaCl. Crystals were
transferred into a solution containing 10mM HEPES pH 8, 100mM
NaCl, and 1mM DTT plus well solution supplemented with 15% gly-
cerol and then frozen in liquid N2. Diffraction data were collected at
110 K on a CCD detector at beamline 21-ID-D at the Advanced Photon
Source. Data were integrated and scaled using HKL2000 (Otwinowski
and Minor, 1997), and initial phases were provided by molecular re-
placement using PHASER (Mccoy et al., 2007; Winn et al., 2011) with
the P-Rex1 PH (PDB: 5D27) as a search model. The atomic model was
built using manual building in Coot (Emsley et al., 2010) alternating
with maximum-likelihood refinement in Refmac5 (Murshudov et al.,
1997), and the structure was validated using MolProbity (Chen et al.,
2010). Data collection and refinement statistics are shown in Table 1.
Coordinates and the supporting experimental data have been deposited
in the Protein Data Bank with the accession number 6BNM. Structure
images were rendered using The PyMOL Molecular Graphics System,
Version 1.8.0.3 Schrödinger, LLC. SSM Superposition in Coot was used
to calculate root-mean-square-deviation values (Krissinel and Henrick,
2004).

2.4. Differential scanning fluorimetry (DSF)

Thermal denaturation assays were performed using a QuantStudio 7
Flex instrument (Applied Biosystems). Ins(1,3,4,5)P4 (D-myo-Inositol-
1,3,4,5-tetraphosphate) was purchased from Cayman Chemical.
Proteins were diluted to 0.1 mg/ml into a buffer containing 50mM
HEPES pH 8, 150mM NaCl, 2 mM DTT, and SYPRO orange (Thermo
Fisher Scientific) was used at a final concentration of 4× in a volume of
10 μl in a 384-well PCR plate (Applied Biosystems). Experiments were
performed three times in duplicate. Melting temperatures were de-
termined by monitoring the fluorescence change of SYPRO orange as it
binds to unfolded protein in the presence or absence of 1mM Ins
(1,3,4,5)P4. Melting curves were analyzed by fitting to a Boltzmann
model using Protein Thermal Shift Software v1.3 (Applied Biosystems).

2.5. Isothermal titration calorimetry (ITC)

ITC experiments were performed in a Nano-ITC Low volume ca-
lorimeter (TA Instruments). Five hundred microliters of P-Rex2 PH
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domain (70 μM) in a buffer of 20mM HEPES pH 8 plus 150mM NaCl
was added to the cell and 50 μl of Ins(1,3,4,5)P4 (300 μM) in the same
buffer was taken in the syringe. The experiments were performed at
25 °C with 2 μl Ins(1,3,4,5)P4 injected into the P-Rex2 PH domain every
300 s a total of 25 times with a stirring speed of 250 rpm. The KD and
ΔH of the reactions were calculated using the Launch NanoAnalyze
software (TA Instruments). Experiments were performed three times,
and the average is shown along with the standard deviation of the
mean.

2.6. Fluorescence polarization (FP)

FP experiments were performed three times in duplicate, with a
reaction volume of 25 μl per well in a 384-well, black, low-volume plate
with round-bottom wells. Proteins were diluted to 200 nM into a buffer
containing 50mM HEPES pH 8, 150mM NaCl, 2 mM DTT. Ins(1,3,4,5)
P4 was added in varying concentrations to build a dose response curve,
followed by 15 nM BODIPY TMR-PIP3 (#C-39M6, Echelon Biosciences).
This mixture was incubated for 45min at room temperature prior to
reading fluorescence polarization at 542/574 nm on a FlexStation 3
microplate reader (Molecular Devices). Data were analyzed using
nonlinear regression in GraphPad Prism 7 and fit using a competition
binding equation with one site homologous binding without con-
sideration of ligand depletion.

2.7. Cell culture and transfection

HEK293T cells were maintained in high glucose Dulbecco’s
Modified Eagle’s Medium supplemented with 10% fetal bovine serum

plus 100 U/ml penicillin and 100 μg/ml streptomycin and incubated at
37 °C in a humidified atmosphere with 6% CO2. Cells were transfected
with DNA using FuGENE 6 (Promega) in Opti-MEM according to the
manufacturer’s instructions.

2.8. Membrane localization assay

HEK293T cells were plated at 0.2× 106 cells/well in 12-well cell
culture plates. Each well was transfected with 1 μg EGFP-tagged P-Rex2
construct DNA. EGFP, which is cytosolic, and EGFP-LARG-2xPH, which
strongly localizes to the cell membrane (Aittaleb et al., 2009), served as
negative and positive controls, respectively. Cells were harvested ap-
proximately 24 h later by scraping into PBS, centrifuging at 3000×g,
and then resuspending the pellet in 100 μl lysis buffer (20mM HEPES
pH 8, 20% glycerol, 2 mM DTT, 0.1mM EDTA, 0.001mM leupeptin,
and 1mM lima bean trypsin inhibitor). Cells were lysed by carrying out
three cycles of flash freezing in liquid nitrogen, thawing on ice, and
vortexing. To begin to separate membrane-associated protein from cy-
tosolic, lysates were thawed and 30 μl lysis buffer added before treating
with 0.2 μl benzonase (Sigma E1014) for 10min at 20 °C. The lysates
were then pre-cleared by centrifugation at 400× g for 10min at 4 °C.
Supernatant was removed, reserving 10 μl of a total lysate sample, and
then ultracentrifuged 45min at 50,000 RPM to pellet the membrane
fraction. The resulting supernatant was removed and the pellet re-
suspended in 10 μl lysis buffer supplemented to 300mM NaCl. Total
lysate, supernatant, and membrane pellet samples (10 μl each) were
loaded into low-volume black 384-well plates and the fluorescence was
read (488/520 nm) in a FlexStation 3 microplate reader (Molecular
Devices). EGFP-tagged protein associated with either the membrane or
cytosolic fraction was represented as a percent of the total EGFP-tagged
protein in the total lysate sample.

2.9. Luciferase-reporter gene assay

pSRE.L firefly and pRL-thymidine kinase (pRL-TK) Renilla luci-
ferase-reporter gene constructs were described previously (Evelyn et al.,
2007). Briefly, luciferase activity from the SRE.L reporter gene corre-
sponds to serum response factor activation by RhoA, Rac, and Cdc42,
thus acting as a readout of activation of these GTPases. HEK293T cells
were seeded at 0.03× 106 cells/well in 96-well cell culture plates. Each
well was transfected with 25 ng pSRE.L and 20 ng pRL-TK along with
EGFP-tagged P-Rex2 construct or EGFP-LARG-2xPH DNA, and total
DNA was normalized using empty pRK5 vector. Plates were assayed
approximately 26 h after transfection using the Dual-Glo Luciferase
Assay System (Promega) according to manufacturer’s protocol and a
SpectraMax M5 plate reader (Molecular Devices). Samples were trans-
ferred from the cell culture plates to grey 96-well plates (PerkinElmer)
before readings. In these experiments, there was no significant activa-
tion of the pSRE.L reporter gene in the absence of transfected P-Rex2
DNA, indicating little to no endogenous P-Rex2.

2.10. In-gel imaging of EGFP-tagged P-Rex2 constructs

To assess expression levels of P-Rex2 constructs, in-gel imaging was
performed on EGFP-tagged constructs from the cells harvested in the
membrane localization experiments. Cells were lysed as indicated pre-
viously, and 12 μl of each total lysate sample was run on SDS-PAGE
(10% polyacrylamide, samples were not boiled). The gel was washed
with water three times for 5min each and imaged with a Typhoon™
9410 Variable Mode Imager (GE Healthcare) where fluorescence was
read at 488/526 nm and 100 μm resolution. Precision Plus Protein
Kaleidoscope Standard (BioRad #1610375) was used as a marker.

2.11. Statistical analysis

Data were analyzed using GraphPad Prism 7. Error bars indicate

Table 1
Crystallographic data collection and refinement.

Data Collection P-Rex2 PH

Wavelength (Å) 1.078
Resolution range (Å) 50–1.90

(1.93–1.90) a

Space group P3121
Cell dimensions
a, b, c (Å) 60.1, 60.1, 86.2
α, β, γ (°) 90, 90, 120
Total reflections 105,136
Unique reflections 14,598
Multiplicity 7.2 (4.5)
Completeness (%) 99.0 (96.8)
I/σI 28.4 (1.5)
Rmerge (%) 6.4 (71.3)
CC1/2 72.6

Refinement
Number of molecules per asymmetric unit
Protein 1
Ligand/ion 4 Cl−

Number of atoms
Protein 1135
Ligand/ion 4
Water 74
Rwork/Rfree (%) 19.3/23.2

(28.6/30.7)
Rmsd
Bond lengths (Å) 0.011
Bond angles (°) 1.45
Average B-factor (Å2)
Protein 36.1
Ligand/ion 34.6
Water 40.6
Ramachandran Analysisb

Favored (%) 97.7
Outliers (%) 0
PDB ID 6BNM

a Values in parentheses represent the highest-resolution shell.
b As defined in MolProbity.
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95% confidence intervals. Significance was examined using a student’s
t-test two-tailed P-value.

3. Results

3.1. Crystal structure of the P-Rex2 PH domain

To clarify the molecular basis of regulatory differences between P-
Rex1 and P-Rex2, we decided to focus on the PH domain, which is the
regulatory binding site for PIP3 (Cash et al., 2016). We first determined
the crystal structure of the P-Rex2 PH domain to 1.9 Å resolution
(Fig. 1B and Table 1). The core of the domain exhibits a canonical PH
domain fold composed of a 7-stranded β-sandwich structure that is
open on one side and capped on the other by a C-terminal α-helix. This
core is decorated by variable loops and a short N-terminal helix that
would be continuous with the C-terminal helix of the preceding DH
domain. The open side of the domain is the expected location of the
PIP3-binding site, as has been previously demonstrated in P-Rex1 (PDB:
5D3X and PDB: 5D3Y) (Cash et al., 2016). In the P-Rex2 PH domain
structure, the PIP3-binding site is occupied by a chloride ion (Sup.
Fig. 1B), which is coordinated, in part, by basic residues that line the
site. In the P-Rex1 PH domain structures, negatively charged molecules
from the crystallization solutions were commonly observed in the PIP3-
binding site, including citrate and sulfate (PDB: 5D3V and PDB: 5D3W,
respectively).

Despite 72% sequence identity between the PH domains of P-Rex1
and P-Rex2, there are prominent structural differences between them
(Fig. 1A and C). In P-Rex1, the middle section of the β3/β4 loop is
longer and more positively charged (Fig. 1A and B, orange) and has
been previously demonstrated to be a nonspecific membrane localiza-
tion element (Cash et al., 2016). This loop is disordered in all P-Rex1
and P-Rex 2 PH domain structures determined to date. The β1/β2 loop,
which contributes to the PIP3-binding site, has previously been ob-
served in P-Rex1 in a variety of conformations, undoubtedly influenced
by occupancy of the pocket (Fig. 1C). For example, the β1/β2 loop of a
P-Rex1 PH structure with the PIP3-binding site empty moves away from
the pocket (Fig. 1D, PDB: 5D27) (Cash et al., 2016). The conformation
of the P-Rex2 β1/β2 loop is most similar to that seen in the Ins(1,3,4,5)
P4-fully occupied P-Rex1 PH domain with an overall core root-mean-

square-deviation of 0.72 Å for the two structures of the domains
(compared to 5D3X chain A; Fig. 1D), and this conformation could be
influenced by either the bound chloride or the unique structure of the
β5/β6 loop (Fig. 1C and D). The P-Rex2 β5/β6 loop takes on a con-
figuration distinct from P-Rex1 and packs in close proximity to the β1/
β2 loop (Fig. 1D and E). There is a crystal contact formed at this site
(Sup. Fig. 1A, cyan), but the interactions are weak (Sup. Fig. 1B). About
half of these occur at the base of the β5/β6 loop, but this region is not
structurally divergent from P-Rex1, so these are unlikely to confer the
different conformation of the remainder of the P-Rex2 β5/β6 loop.
Three additional lattice contacts could form weak hydrogen bonds.
Interestingly, nitrogen NE2 of His322 (Tyr353 in P-Rex1) forms a hy-
drogen bond with the backbone carbonyl of Gly258, located in the β1/
β2 loop. It has been proposed that P-Rex1 Tyr353 and residues on the
β1 and β2 strands form a potential protein-protein interaction site that
may serve important regulatory purposes in P-Rex1 (Cash et al., 2016).
The structural divergence here may therefore underlie some of the
unique regulatory mechanisms of P-Rex2.

3.2. Characterization of Ins(1,3,4,5)P4 binding to P-Rex PH domain
variants

In order to directly compare binding of Ins(1,3,4,5)P4 to the P-Rex1
and P-Rex2 PH domains, we attempted to crystallize P-Rex2 PH·Ins
(1,3,4,5)P4. However, we were not able to determine crystallization
conditions for the P-Rex2 PH domain that would permit Ins(1,3,4,5)P4
binding. Instead, we examined the relative contributions of P-Rex2
K254, R263, and K337 to binding Ins(1,3,4,5)P4. These residues were
chosen based on the solved P-Rex1 PH·Ins(1,3,4,5)P4 structures and
sequence homology. We initially attempted to use a fluorescence po-
larization competition assay to analyze binding, however, PH domain
variants with mutations at these positions have too low affinity for
fluor-conjugated PIP3 to produce sufficient signal in our assay.
Therefore, we used differential scanning fluorimetry to measure the
effects of mutation of these residues on Ins(1,3,4,5)P4 binding. Melting
temperatures of the tested variants in the absence of ligand are not
significantly different from wild-type, confirming that these proteins
are properly folded (Sup. Fig. 2). Wild-type P-Rex2 PH domain shows a
robust increase in melting temperature of 11 °C upon binding to Ins

Fig. 2. Mutations in PIP3-binding residues similarly reduce IP4 binding to the PH domains of P-Rex2 and P-Rex1. (A) Alignment of the P-Rex2 PH domain (blue) with
the P-Rex1 PH domain bound to Ins(1,3,4,5)P4 (5D3X chain A, yellow) showing the side chains of basic residues that contribute to binding. (B) DSF performed with
wild-type P-Rex PH domains and variants. Changes in melting temperatures (ΔTm) in the presence of 1mM Ins(1,3,4,5)P4 were determined. Experiments were
performed three times in duplicate, and error bars represent 95% confidence intervals. P < 0.0001 for all constructs compared to wild-type. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

J.N. Cash et al. Journal of Structural Biology: X 1 (2019) 100001

5

http://firstglance.jmol.org/fg.htm?mol=5D3X
http://firstglance.jmol.org/fg.htm?mol=5D3Y
http://firstglance.jmol.org/fg.htm?mol=5D3V
http://firstglance.jmol.org/fg.htm?mol=5D3W
http://firstglance.jmol.org/fg.htm?mol=5D27


(1,3,4,5)P4, from 44.7 °C to 55.7 °C (Fig. 2). In contrast, mutation of any
one of the PIP3-binding residues drastically reduces the temperature
shift by Ins(1,3,4,5)P4. In fact, R263A shows destabilization in the
presence of 1mM Ins(1,3,4,5)P4, possibly due to an overall increase in
ionic strength in this condition. P-Rex1 variants display the same trends
in binding deficiency, supporting that the PH domains of P-Rex1 and P-
Rex2 bind PIP3 similarly.

3.3. Comparison of PIP3 affinity for P-Rex PH domains

Using isothermal titration calorimetry (ITC), we determined the KD

of Ins(1,3,4,5)P4 for P-Rex2 to be 240 ± 140 nM (Sup. Fig. 3), similar
to that measured for the PH domain of P-Rex1 (440 nM) (Cash et al.,
2016). We also developed a fluorescence polarization competition assay
using BODIPY TMR-PIP3 and Ins(1,3,4,5)P4 to compare affinities. The
advantages of this assay are that it provides similar information to ITC
but uses relatively little protein and can be done in a 384-well, high-
throughput format. Using purified, wild-type PH domains, the effective
KD of BODIPY TMR-PIP3 was determined to be 750 nM for P-Rex2 and
780 nM for P-Rex1, again indicating no significant difference in affinity
between them (Fig. 3).

3.4. Contribution of PIP3-binding residues to P-Rex2 membrane localization
and activity

It has been shown previously that PIP3 binding is dispensable for P-
Rex1 membrane localization in vitro but critical to its activity in cells
(Cash et al., 2016). To investigate if P-Rex2 is similarly regulated by
PIP3, we mutated residues in P-Rex2 important for PIP3 binding, based
on homology to P-Rex1, and tested the effects on full-length enzyme in
terms of its membrane localization and activity in cells. To do this, we
utilized an EGFP-tagged P-Rex2 construct transiently transfected into
HEK293T cells. To examine membrane localization of P-Rex2 variants,
the cytosolic and membrane fractions were separated by ultra-
centrifugation and the amount of P-Rex2 in each was quantified based
on fluorescence of the EGFP tag. To also monitor expression of the
entire construct and not just EGFP alone, samples were run on SDS-
PAGE and bands imaged at 488/526 nm, confirming expression of full-
length, tagged constructs (Sup. Fig. 4). Expression of these in total ly-
sate samples was also quantified (Sup. Fig. 5). P-Rex2 mutations in-
cluded K254A (P-Rex1 K280A), R263A (P-Rex1 R289A), K337A (P-
Rex1 K368A), and combinations thereof. Variants with mutations in the
binding pocket were not deficient in membrane localization, even when
all three critical PIP3-binding residues are altered (Fig. 4A). We next
examined activity of these variants in HEK293T cells using a luciferase-
gene reporter assay system that measures activation of GTPases such as

Rac, Cdc42, and RhoA. Mutation of any of the PIP3-binding residues
reduced P-Rex2 activity by 50% or greater, with R263A showing the
largest effect (Fig. 4B and Sup. Fig. 6). Interestingly, although the trends
in the effects of these mutations on activity are the same in P-Rex1 and
P-Rex2, the extent of the effects (as compared to wild-type) is around
two-fold less in P-Rex2 (Table 2). In fact, the triple point mutation in P-
Rex1 results in an inactive protein (Cash et al., 2016), whereas the
corresponding P-Rex2 variant still exhibits measurable activity. These
results suggest that PIP3 binding is less important to P-Rex2 activity in
cells relative to P-Rex1.

4. Discussion

Herein, we determined a high-resolution crystal structure of the P-
Rex2 PH domain and showed that its PIP3-binding residues are im-
portant for P-Rex2 activity but not membrane localization in the con-
text of the full-length protein in cells. Binding of PIP3-headgroup ana-
logs to the PH domain are very similar in terms of thermal stabilization
and affinity in P-Rex1 and P-Rex2. That said, PIP3 seems less important
for P-Rex2 activation in cells because eliminating binding of the lipid
had an attenuated effect on activation, as opposed to eliminating ac-
tivity in P-Rex1.

We observed structural differences in the P-Rex1 and P-Rex2 PH
domains that may underlie some of the differences in their regulation.
P-Rex2 lacks a stretch of positively charged residues found in the β3/β4
loop of P-Rex1 that serves as a non-specific membrane localization
element (Cash et al., 2016). This difference may lead to alternate modes
of membrane recruitment between these two proteins. These could be
through protein-protein or protein-lipid interactions mediated by the
PH domain or by other domains of P-Rex. For example, DEP and PDZ
domains are known to play roles in membrane association in other
proteins. In DVL and EPAC, the DEP domains contain stretches of basic
residues in β hairpins that are required for recruitment to the plasma
membrane (Axelrod et al., 1998; Consonni et al., 2012), and in PDZ-
RhoGEF, the PDZ domain is necessary and sufficient for its targeting to
the apical membrane of polarized intestinal epithelial cells (Consonni
et al., 2014). The difference in levels of P-Rex2 as compared to P-Rex1
at the cell membrane (Cash et al., 2016) is important when considering
P-Rex activation and regulation, as the co-activator Gβγ also is localized
there. Inherently higher levels of P-Rex2 at the cell membrane may be a
consequence of a stronger association with Gβγ or another membrane-
anchored molecule, leaving P-Rex2 comparatively less dependent on
PIP3 for activation.

We also observed structural differences in the β5/β6 loop of the P-
Rex2 PH domain. In P-Rex1, this loop has been proposed to be a pro-
tein-protein interaction site based on the fact that in most cases it forms

Fig. 3. PIP3 analog binds P-Rex2 and P-Rex1 PH domains with similar affinity. Fluorescence polarization competition binding experiments with P-Rex PH domains
and TMR-PIP3, titrating in Ins(1,3,4,5)P4. Experiments were performed three times in duplicate. Error bars represent 95% confidence intervals. Effective KD values
are shown along with their corresponding 95% confidence interval ranges.
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the same anti-parallel dimeric lattice contact regardless of spacegroup
or crystallization condition (Cash et al., 2016). Because this loop is
structurally different in P-Rex2 but also forms a crystal contact site
(Fig. 1 and Sup. Fig. 1), it remains a good candidate for protein-protein
interactions, albeit ones that may be specific to this isoform. Interest-
ingly, multiple mutations in the P-Rex2 PH domain, such as A315D,
located in the β5/β6 loop, have been associated with lung adeno-
carcinoma (Srijakotre et al., 2017; Suzuki et al., 2013), suggesting the
importance of this element in regulation, either auto-regulation or by
other molecules. Structural information derived from larger fragments
of P-Rex that contain the PH domain in the context of the other more C-
terminal P-Rex domains, and their complexes with regulatory mole-
cules, will thus be useful in furthering our understanding of the mole-
cular mechanisms of P-Rex regulation.
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