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Inflammation plays a key role in the pathogenesis of a number of psychiatric and
neurological disorders. Soluble epoxide hydrolases (sEH), enzymes present in all living
organisms, metabolize epoxy fatty acids (EpFAs) to corresponding 1,2-diols by the
addition of a molecule of water. Accumulating evidence suggests that sEH in the
metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation.
Preclinical studies demonstrated that protein expression of sEH in the prefrontal cortex,
striatum, and hippocampus from mice with depression-like phenotype was higher than
control mice. Furthermore, protein expression of sEH in the parietal cortex from patients
with major depressive disorder was higher than controls. Interestingly, Ephx2 knock-
out (KO) mice exhibit stress resilience after chronic social defeat stress. Furthermore,
the sEH inhibitors have antidepressant effects in animal models of depression. In
addition, pharmacological inhibition or gene KO of sEH protected against dopaminergic
neurotoxicity in the striatum after repeated administration of MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine) in an animal model of Parkinson’s disease (PD). Protein
expression of sEH in the striatum from MPTP-treated mice was higher than control
mice. A number of studies using postmortem brain samples showed that the deposition
of protein aggregates of α-synuclein, termed Lewy bodies, is evident in multiple brain
regions of patients from PD and dementia with Lewy bodies (DLB). Moreover, the
expression of the sEH protein in the striatum from patients with DLB was significantly
higher compared with controls. Interestingly, there was a positive correlation between
sEH expression and the ratio of phosphorylated α-synuclein to α-synuclein in the
striatum. In the review, the author discusses the role of sEH in the metabolism of PUFAs
in inflammation-related psychiatric and neurological disorders.

Keywords: α-synuclein, cytochrome P450, dementia of Lewy bodies, depression, epoxy fatty acids, inflammation,
Parkinson’s disease, stress resilience

INTRODUCTION

Polyunsaturated fatty acids (PUFAs) are generally considered to be necessary for maintaining
normal physiology (Jump, 2002; Bazinet and Layé, 2014; Layé et al., 2018). PUFAs are
known to regulate both the structure and the function of neurons, glial cells, and
endothelial cells in the brain (Bazinet and Layé, 2014; Layé et al., 2018). Importantly, PUFAs
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need to be provided by the diet since they cannot be produced
in mammals. There are two main families (ω-3 and ω-6) of
PUFAs. Linoleic acid, the predominant plant-derived dietary ω-
6 PUFA, is a precursor of arachidonic acid (ARA). α-linolenic
acid, the predominant plant-derived dietary ω-3 PUFA, is a
precursor of eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA).

Polyunsaturated fatty acids (PUFAs) are metabolized
into bioactive derivatives by the main enzymes such as
cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome
P450s (CYPs) (Imig and Hammock, 2009; Arnold et al.,
2010; Imig, 2012, 2018; Morisseau and Hammock, 2013;
Bazinet and Layé, 2014; Urquhart et al., 2015; Westphal et al.,
2015; Figure 1). The COX pathway leads to the formation
of prostaglandins, prostacyclines and thromboxanes, the
LOX pathway leads to leukotrienes, lipoxins, and hydroxyl-
eicosatetraenoic acids (HETEs). The CYP pathway leads
to 20-HETE by CYP hydroxylases, and epoxy fatty acids
(EpFAs) such as epoxy-eicosatrienoic acids (EETs) and
epoxydocosapentaenoic acids (EDPs) by CYP epoxygenases
(Figure 1).

In the review, the author would like to discuss the role
of soluble epoxide hydrolase (sEH) in the CYP-mediated
metabolism of PUFAs which might be involved in the
pathogenesis of psychiatric and neurological disorders.
Furthermore, we also refer to the clinical significance of
sEH inhibitors for these disorders.

FIGURE 1 | Overview of metabolism of polyunsaturated fatty acids (PUFAs).
PUFAs such as arachidonic acid (ARA), eicosapentaenoic acid (EPA), and
docosahexaenoic acid (DHA), are converted to prostaglandins, prostacyclins,
and thromboxanes by cyclooxygenase (COX). PUFAs are also converted to
leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs) by lipoxygenase
(LOX). Moreover, PUFAs are converted to hydroxyeicosatetraenoic acids
(HETEs), including 20-hydroxyeicosatetraenoic acid (20-HETE), and epoxy
fatty acids (EpFAs), including epoxyeicosatrienoic acids (EETs) and
epoxydocosapentaenoic acids (EDPs), by cytochrome P450 (CYP)
hydroxylases and CYP epoxygenases, respectively. EpFAs (e.g., EETs, EDPs)
are converted to their corresponding 1,2-diols (e.g., dihydroxyeicosatrienoic
acids (DHETs), dihydroxydocosapentaenoic acids [DiHDPAs]) by soluble
epoxide hydrolase (sEH). (modified from Morisseau and Hammock, 2013 and
Hashimoto, 2016).

SOLUBLE EPOXIDE HYDROLASE IN CYP
SYSTEM

The CYP system is a superfamily of enzymes, which are involved
in the metabolism of exogenous and endogenous compounds.
The CYP in the eicosanoid pathway was first described in
1980 and is comprised of two enzymatic pathways such as
hydroxylases and epoxygenases. The CYP isoforms metabolize a
number of ω-3 and ω-6 PUFAs, including ARA, EPA and DHA
into bioactive lipid mediators, termed eicosanoids (Imig and
Hammock, 2009; Imig, 2012, 2018; Morisseau and Hammock,
2013; Urquhart et al., 2015; Westphal et al., 2015; Jamieson et al.,
2017). The CYP system produces both the pro-inflammatory,
terminally hydroxylated metabolite 20-HETE and the anti-
inflammatory EpFAs, including EETs from ARA and EDPs from
DHA (Figure 1).

In contrast, EpFAs such as EETs, and EDPs are rapidly
metabolized by a number of pathways including the soluble
epoxide hydrolase (sEH) (Imig and Hammock, 2009; Morisseau
and Hammock, 2013). The sEH was first identified in the
cytosolic fraction of mouse liver through its activity on epoxide
containing substances such as juvenile hormone and lipid
epoxides (Hammock et al., 1976; Gill and Hammock, 1980; Ota
and Hammock, 1980). Human sEH is a 62 kDa enzyme composed
of two domains separately by a short proline-rich linker (Harris
and Hammock, 2013). The N-terminal domain has a phosphatase
activity that hydrolyzes lipid phosphates, while the C-terminal
domain has an epoxide hydrolase activity that converts epoxides
to their corresponding diols (Newman et al., 2003). The human
EPHX2 gene codes for the sEH protein is widely expressed in
a number of tissues, including the liver, lungs, kidney, heart,
brain, adrenals, spleen, intestines, urinary bladder, placenta, skin,
mammary gland, testis, leukocytes, vascular endothelium, and
smooth muscle. Interestingly, the sEH protein is most highly
expressed in the liver and kidney (Gill and Hammock, 1980;
Newman et al., 2005; Imig, 2012).

Accumulating evidence suggests that EETs, EDPs and some
other EpFAs have potent anti-inflammatory properties (Wagner
et al., 2014, 2017; López-Vicario et al., 2015) which are implicated
in the pathogenesis of a number of psychiatric and neurological
disorders (Denis et al., 2015; Hashimoto, 2015, 2016, 2018;
Gumusoglu and Stevens, 2018; Polokowski et al., 2018).

INFLAMMATION IN DEPRESSION AND
SEH

Depression, one of the most common disorders in the world,
is a major psychiatric disorder with a high rate of relapse. The
World Health Organization (WHO) estimates that more than
320 million individuals of all ages suffer from depression (World
Health Organization [WHO], 2017). Multiple lines of evidence
demonstrate inflammatory processes in the pathophysiology of
depression and in the antidepressant actions of the certain
compounds (Dantzer et al., 2008; Miller et al., 2009, 2017;
Raison et al., 2010; Hashimoto, 2015, 2016, 2018; Mechawar
and Savitz, 2016; Miller and Raison, 2016; Zhang et al.,
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2016a,b, 2017b,a). Meta-analysis showed higher levels of pro-
inflammatory cytokines in the blood of drug-free or medicated
depressed patients compared to healthy controls (Dowlati et al.,
2010; Young et al., 2014; Haapakoski et al., 2015; Eyre et al., 2016;
Köhler et al., 2018). Collectively, it is likely that inflammation
plays a key role in the pathophysiology of depression.

Several reports using meta-analysis demonstrated that ω-3
PUFAs could reduce depressive symptoms beyond placebo (Lin
et al., 2010, 2017; Sublette et al., 2011; Mello et al., 2014; Grosso
et al., 2016; Hallahan et al., 2016; Mocking et al., 2016; Sarris et al.,
2016; Bai et al., 2018; Hsu et al., 2018). Dietary intake of ω-3
PUFAs is known to be associated with lower risk of depression.
Importantly, EPA-rich ω-3 PUFAs could be recommended for
the treatment of depression (Sublette et al., 2011; Mocking et al.,
2016; Sarris et al., 2016). Importantly, brain EPA levels are 250-
300-fold lower than DHA compared to about 4- (plasma), 5-
(erythrocyte), 14- (liver), and 86-fold (heart) lower levels of EPA
versus DHA (Chen and Bazinet, 2015; Dyall, 2015).

Given the role of inflammation in depression, it is likely
that sEH might contribute to the pathophysiology of
depression. A single injection of lipopolysaccharide (LPS)
is known to produce depression-like phenotypes in rodents
after sickness behaviors (Dantzer et al., 2008; Zhang et al.,
2014, 2016a, 2017b; Ma et al., 2017; Yang et al., 2017). Ren
et al. (2016) reported that the sEH inhibitor TPPU [1-(1-
propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea]
(Figure 2) conferred prophylactic and antidepressant effects
in the LPS-induced inflammation model of depression while
the current antidepressants showed no therapeutic effects in
this model (Zhang et al., 2014). Chronic social defeat stress
(CSDS) model of depression is widely used as an animal model
of depression (Nestler and Hyman, 2010; Golden et al., 2011;
Yang et al., 2015, 2017, 2018). Pretreatment with TPPU before

social defeat stress showed resilience to CSDS. In addition,
TPPU showed rapid antidepressant effects in susceptible mice
after CSDS (Ren et al., 2016). Interestingly, the sEH KO mice
showed stress resilience to repeated social defeat stress. Increased
brain-derived neurotrophic factor (BDNF) and its receptor
TrkB signaling in the prefrontal cortex and hippocampus of
the KO mice might be responsible for stress resilience (Ren
et al., 2016). Furthermore, repeated treatment with TPPU for
7 days increased interaction time of socially defeated mice in
a CSDS model, and improvement by TPPU was blocked by
TrkB antagonist K252a (Wu et al., 2017), suggesting a role of
BDNF-TrkB signaling in TPPU’s beneficial effects. Interestingly,
higher protein levels of sEH were shown in the brain regions
of mice with a depression-like phenotype in the inflammation
and CSDS models, suggesting that increased levels of sEH may
play a role in depression-like phenotypes in rodents (Ren et al.,
2016). We found higher sEH protein levels in the parietal cortex
(Brodmann area 7) from patients with major depressive disorder,
pointing to a possible role for increased sEH levels in depression
(Ren et al., 2016). Taken together, this study highlights a key
function for sEH in the pathophysiology of depression, and for
its inhibitors as potential therapeutic or prophylactic drugs for
depression (Hashimoto, 2016; Ren et al., 2016; Swardfager et al.,
2018; Figure 3).

A study using euthymic patients with a history of major
depressive disorder with seasonal depression showed changes
in CYP- and sEH-derived eicosanoids in patients with winter
depression (Hennebelle et al., 2017). The ω-6 derived sEH
product 12,13-DiHOME [12,13-dihydroxy-9-octadecenoic acid]
increased in winter depression. Total 14,15-EpETE [14,15-
epoxy-5Z,8Z,11Z,17Z-eicosatetraenoic acid], a sEH substrate,
as well as sEH-derived free 14,15-DiHETrE [14,15-dihydroxy-
5Z,8Z,11Z- eicosatrienoic acid], decreased during winter

FIGURE 2 | Chemical structure of sEH inhibitors TPPU, AUDA, MMU, and honokiol.
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FIGURE 3 | Proposed mechanism of the role of sEH in depression. Inflammation or stress can increase the expression of sEH in the brain, resulting in enhanced
metabolism of anti-inflammatory PUFA epoxides (EpFAs). Subsequently, increased expression of sEH can decrease BDNF-TrkB signaling and synaptogenesis,
leading to depressive symptoms. The sEH inhibitors may have antidepressant actions in depressed patients. (modified from Hashimoto, 2016).

compared to summer-fall, while sEH-derived total 7,8-DiHDPE
[7,8-dihydroxy-4Z,10Z,13Z,16Z,19Z-docosapentaenoic acid],
total 19,20-DiHDPE [19,20-dihydroxy-4Z,7Z,10Z,13Z,16Z-
docosapentaenoic acid], and total 12,13-DiHOME
[12,13-dihydroxy-9Z-octadecenoic acid] were increased
during winter. These findings suggest that seasonal shifts in
ω-6 and ω-3 PUFAs metabolism mediated by sEH may underlie
inflammatory states in symptomatic depression with seasonal
pattern (Hennebelle et al., 2017). Given the crucial role of sEH
in the metabolism of ω-3 PUFAs, ω-3 PUFAs such as EPA in
combination with a sEH inhibitor would be a novel therapeutic
approach for depression (Figure 3).

EATING DISORDERS AND ADHD

Anorexia nervosa (AN) is a serious eating disorder characterized
by the persistent restriction of energy intake, intense fear of
gating weight, and distribution in self-perceived weight or
shape. The Epoxide Hydrolase 2 (EPHX2) gene was found
to harbor several common and rare risk variants for AN
(Scott-Van Zeeland et al., 2014). Subsequently, the patients with
AN show elevated plasma levels of ω-3 PUFAs (ARA, EPA,
DHA) compared to controls (Shih et al., 2016). Interestingly,
15,16-DiHODE [15,16-dihydroxy-9Z,12Z-octadecadienoic
acid]/15,16-EpODE [15,16-epoxy-9Z,12Z-octadecadienoic acid]
ratio derived from ARA and 19,20-DiHDPE [19,20-dihydroxy-
4Z,7Z,10Z,13Z,16Z- docosapentaenoic acid]/19,20-EpDPE
[19,20-epoxy-4Z,7Z,10Z,13Z,16Z-docosapentaenoic acid] ratio
derived from DHA in AN patients were higher than controls,
suggesting a higher in vivo sEH activity, concentration, or
efficiency in AN (Shih et al., 2016; Shih, 2017). These data suggest
the role of EPHX2-associated eicosanoid dysregulations in AN.

Collectively, sEH inhibitors might be potential therapeutic drugs
for AN (Shih et al., 2016; Shih, 2017).

Attention deficit hyperactivity disorder (ADHD) is one of
the most common psychiatric disorders affecting children.
Symptoms of ADHD include inattention, hyperactivity and
impulsivity. However, biological mechanisms underlying ADHD
remain unknown. A meta-analysis shows that children and youth
with ADHD have elevated ratios of both blood ω-6/ω-3 PUFAs
compared to controls (LaChance et al., 2016), suggesting an
elevated ω-6/ω-3, and more specifically ARA/EPA ratio may
represent the underlying disturbance in essential PUFAs levels
in patients with ADHD. A recent meta-analysis shows that
children and adolescents with ADHD have lower levels of DHA,
EPA, and total ω-3 PUFAs (Chang et al., 2018). Furthermore,
supplementation of ω-3 PUFAs, particularly with high doses of
EPA, was modestly effective in the treatment of ADHD (Bloch
and Qawasmi, 2011; Chang et al., 2018). Collectively, it is of
great interest to study whether blood levels of EpFAs and their
corresponding diols are altered in the patients with ADHD.
Furthermore, it is also interesting to investigate the role of sEH
in the pathogenesis of ADHD since there are no reports showing
the role of sEH in ADHD.

INFLAMMATION IN PARKINSON’S
DISEASE AND SEH

Parkinson’s disease (PD) is the second most common
neurodegenerative disease after Alzheimer’s disease. Although
the precise pathogenesis of PD is unknown, the pathological
hallmark of PD involves the progressive loss of dopaminergic
neurons in the substantia nigra (SN) (Kalia and Lang, 2015;
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Ascherio and Schwarzschild, 2016). In addition, the deposition
of aggregates of α-synuclein, termed Lewy bodies, is evident in
multiple brain regions of patients from PD and dementia with
Lewy bodies (DLB) (Spillantini et al., 1997). There are, to date, no
agents with a disease-modifying or neuroprotective indication
for PD has been approved (Dehay et al., 2015). Interestingly, it is
noteworthy that PD or DLB patients have depressive symptoms
(Cummings, 1992; Takahashi et al., 2009; Goodarzi et al., 2016;
Schapira et al., 2017), indicating that management of depression
in these patients is also important. Therefore, the development of
new drugs possessing disease-modifying and/or neuroprotective
properties is unmet medical need.

ω-3 PUFAs appear to be neuroprotective for several
neurological disorders. It is reported that dietary intake of PUFAs
is associated with lower risk of PD (Kamel et al., 2014; Seidl et al.,
2014). MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-
induced neurotoxicity in the striatum and SN has been widely

used as an animal model of PD (Sedelis et al., 2001; Jackson-
Lewis and Przedborski, 2007). A diet rich in EPA diminished
MPTP-induced hypokinesia in mice and ameliorated procedural
memory deficit (Luchtman et al., 2012). Recently, we reported
that MPTP-induced neurotoxicity [e.g., loss of dopamine
transporter (DAT), loss of tyrosine hydrolase (TH)-positive cells,
increased endoplasmic reticulum (ER) stress] in the striatum and
SN was attenuated after subsequent repeated oral administration
of TPPU (Ren et al., 2018). MPTP-induced loss of TH-
positive cells in the SN is also attenuated by pretreatment with
another sEH inhibitor, AUDA [12-(((tricyclo(3.3.1.13,7)dec-1-
ylamino)carbonyl)amino)-dodecanoic acid] (Figure 2), although
posttreatment with AUDA did not attenuate MPTP-induced
neurotoxicity (Qin et al., 2015). Furthermore, deletion of the
sEH gene protected against MPTP-induced neurotoxicity in the
mouse striatum (Huang et al., 2018; Ren et al., 2018), while
overexpression of sEH in the striatum significantly enhanced

FIGURE 4 | Possible mechanism of role of sEH in the MPTP-induced neurotoxicity. 8,9-EpETrE is prepared from ARA by CYP epoxygenases, and it is metabolized
by sEH into 8,9-DiHETrE. Repeated MPTP injections into mice caused increased sEH expression in the striatum, resulting the reduction of anti-inflammatory
8,9-EpETrE in the striatum. Finally, these events cause dopaminergic neurotoxicity in the striatum and SN. Pharmacological inhibition or knock-out of sEH could
protect against MPTP-induced neurotoxicity in the striatum and SN.

Frontiers in Pharmacology | www.frontiersin.org 5 January 2019 | Volume 10 | Article 36

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00036 January 29, 2019 Time: 19:58 # 6

Hashimoto Soluble Epoxide Hydrolase in CNS Disorders

MPTP-induced neurotoxicity (Ren et al., 2018). Moreover, the
expression of the sEH protein in the striatum from MPTP-treated
mice was significantly higher than control group. Interestingly,
there was a positive correlation between sEH expression and
phosphorylation of α-synuclein in the striatum, suggesting that
sEH may play a role in the phosphorylation of α-synuclein
in the mouse striatum (Ren et al., 2018). Oxylipin analysis
showed reduced levels of 8,9-epoxy-5Z,11Z,14Z-eicosatrienoic
acid (8,9-EpETrE) prepared from ARA in the striatum of MPTP-
treated mice, suggesting increased activity of sEH in this region
(Figure 4).

Deposition of α-synuclein has been shown in multiple
brain regions of PD and DLB patients (Spillantini et al.,
1997). Interestingly, the high levels of DHA in brain areas
containing α-synuclein in PD patients may support the possible
interaction between α-synuclein and DHA (Fecchio et al.,
2018). Protein levels of sEH in the striatum from DLB
patients were significantly higher than those of the controls,
whereas protein levels of DAT and TH in the striatum from
DLB patients were significantly lower than those of controls
(Ren et al., 2018). Furthermore, the ratio of phosphorylated
α-synuclein to α-synuclein in the striatum from DLB patients
was significantly higher than that of controls (Ren et al.,
2018). Interestingly, there was a positive correlation between
sEH levels and the ratio of phosphorylated α-synuclein to
α-synuclein in all subjects (Ren et al., 2018). Collectively,
it is likely that increased sEH and resulting increase in
phosphorylation of α-synuclein may play a role in the
pathogenesis of PD.

The PARK2 is one of the familial forms of PDs caused by
a mutation in the PARKIN gene (Imaizumi et al., 2012). In
addition, the expression of EPHX2 mRNA in human PARK2
iPSC-derived neurons was higher than that of healthy control
group. Treatment with TPPU protected against apoptosis in
human PARK2 iPSC-derived neurons (Ren et al., 2018). These
findings suggest that increased activity of sEH in the striatum
plays a key role in the pathogenesis of neurological disorders
such as PD and DLB although common polymorphisms within
EPHX2 do not appear to be important risk factors for PD
(Farin et al., 2001). Accumulation of aggregated α-synuclein
is the pathological hallmark of PD and DLB although its
precise role is not understood. Our data suggest a possible
interaction between phosphorylation of α-synuclein and sEH
expression in the striatum from DLB patients. Taken all together,
it is likely that sEH could represent a promising therapeutic
target for α-synuclein-related neurological disorders such as
PD and DLB (Borlongan, 2018; Ren et al., 2018; Figure 5).
In addition, there are also several approaches (e.g., a small-
interfering RNA, immunotherapies, enhancement of autophagy)
to reduce α-synuclein production (Stoker et al., 2018).

CONCLUSION REMARKS AND FUTURE
PERSPECTIVE

Many patients with depression become chronically ill, with
several relapses or later recurrences, following initial short-term
improvement or remission. Relapses occur at a rate of over 85

FIGURE 5 | Proposed mechanism of the role of sEH in the pathogenesis of PD and DLB. Inflammation and ER stress can increase the expression of sEH in the
striatum, resulting in enhanced metabolism of anti-inflammatory EpFAs, leading to increased phosphorylation of α-synuclein (Ren et al., 2018). The sEH inhibitors
may prevent the progression of aggregation of phosphorylated α-synuclein in the brain.
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percent within a decade of an index depressive episode (Forte
et al., 2015; Sim et al., 2015). Therefore, the prevention of relapse
and recurrence is important in the management of depression.
Taken together, it seems that sEH inhibitors could be prophylactic
drugs to prevent or minimize relapses triggered by inflammation
and/or stress in remitted patients with depression (Hashimoto,
2016; Ren et al., 2016). In addition, given the comorbidity
of depressive symptoms in PD or DLB patients (Cummings,
1992; Takahashi et al., 2009; Goodarzi et al., 2016; Schapira
et al., 2017), it is also likely that sEH inhibitors may serve as
prophylactic drugs to prevent the progression of PD or DLB in
patients.

Some natural compounds with sEH inhibitory action were
reported. MMU [1,3-bis (4-methoxybenzyl)urea](Figure 2),
the most abundant (45.3 µg/g dry root weight from the
plant Pentadiplandra brazzeana), showed an IC50 of 92 nM
via fluorescent assay and a Ki of 54 nM via radioactivity-
based assay on human sEH (Kitamura et al., 2015). MMU
is about 8-fold more potent than previously reported natural
product sEH inhibitor honokiol (Lee et al., 2014; Kitamura
et al., 2015; Figure 2). These findings may explain partly
the pharmacological mechanisms of the traditional medicinal
use of the root of P. brazzeana. Therefore, it is of interest
to study whether the use of the root of P. brazzeana has
beneficial effects in patients with psychiatric and neurological
disorders.

Another topic is the systemic anti-inflammatory effects of sEH
inhibition or genetic disruption (Liu et al., 2012; Shahabi et al.,
2014). Therefore, it is possible that systemic sEH inhibition may
play a role in the beneficial effects in CNS disorders through
systemic anti-inflammatory actions of sEH inhibition although

further study on the role of systemic anti-inflammation effects of
sEH inhibition is needed. It is also suggested that a paracrine role
of EET signaling is responsible for a lot of the beneficial effects
of EETs (Spector, 2009; Imig, 2016). Therefore, it is possible that
up-regulation of sEH, which results in decreased paracrine EET
signaling that exasperates the disease state although further study
on the role of paracrine role of EETs and sEH is needed.

In conclusion, considering the role of sEH in the metabolism
of EpFAs (e.g., EETs, EDPs), treatment of ω-3 PUFAs in
combination with a sEH inhibitor could represent a novel
therapeutic approach for psychiatric and neurological disorders.
This approach may well bridge the currently unmet medical
needs for these CNS disorders.
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