
RESEARCH ARTICLE Open Access

An algorithm for automated closure during
assembly
Sergey Koren*, Jason R Miller, Brian P Walenz, Granger Sutton

Abstract

Background: Finishing is the process of improving the quality and utility of draft genome sequences generated by
shotgun sequencing and computational assembly. Finishing can involve targeted sequencing. Finishing reads may
be incorporated by manual or automated means. One automated method uses targeted addition by local
re-assembly of gap regions. An obvious alternative uses de novo assembly of all the reads.

Results: A procedure called the bounding read algorithm was developed for assembly of shotgun reads plus
finishing reads and their constraints, targeting repeat regions. The algorithm was implemented within the Celera
Assembler software and its pyrosequencing-specific variant, CABOG. The implementation was tested on Sanger and
pyrosequencing data from six genomes. The bounding read assemblies were compared to assemblies from two
other methods on the same data. The algorithm generates improved assemblies of repeat regions, closing and
tiling some gaps while degrading none.

Conclusions: The algorithm is useful for small-genome automated finishing projects. Our implementation is
available as open-source from http://wgs-assembler.sourceforge.net under the GNU Public License.

Background
The shotgun method generates reads randomly in high
volumes by Sanger and next-generation sequencing plat-
forms. Whole-genome shotgun assembly (WGA) is the
process of constructing a draft assembly of a genome
from whole-genome shotgun reads (WGS). WGA soft-
ware constructs a read layout by inference from shared
sequence between reads and constraints between pairs
of reads from the same DNA fragment (paired-ends).
The randomness of WGS can be exploited in software
by adopting uniformity of read coverage as an objective
function to be maximized by the assembly. For instance,
the Celera Assembler software [1] invokes the A-stat
coverage statistic to assign lower confidence to higher-
coverage mini-assemblies. The Velvet software [2]
invokes low-coverage to trim branches of its de Bruijn
graph.
Finishing is the process of improving the quality and

utility of a draft genome sequence. Finishing aims to fill
gaps between contigs, enlarge contigs, or provide deeper
coverage for the contigs in the draft. Some finishing is

accomplished without sequencing by manually editing
an automatically generated draft. Most finishing requires
additional sequence referred to as finishing reads.
Finishing reads derive from PCR, primer walking, trans-
poson bombing, shotgun of individual clones and other
techniques. See [3] for a review.
Intuitively, a PCR experiment provides evidence that

reads generated from within the PCR product should be
assembled between instances of the primer sequences.
The set of finishing reads derived from an individual
amplicon, or clone, have a co-location requirement.
End-reads from amplicons or clones provide the bound-
aries between which the finishing reads should assemble.
Manual inspection and placement of finishing reads is

expensive [4], even when assisted by software. The
widely-used Consed package [5] provides assembly edit-
ing functionality through a graphical user interface.
Dupfinisher [6] automates several finishing procedures,
including homology-based search to identify repeats in
the draft assembly. As an example, Consed and Dupfin-
isher were invoked during the finishing stage of the Ped-
obacter heparinus genome project [7]. After 44K WGS
reads had been assembled with phrap http://www.phrap.
org, Dupfinisher corrected mis-assemblies. Then, with

* Correspondence: skoren@jcvi.org
The J. Craig Venter Institute, 9712 Medical Center Drive, Rockville MD 20850,
USA

Koren et al. BMC Bioinformatics 2010, 11:457
http://www.biomedcentral.com/1471-2105/11/457

© 2010 Koren et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://wgs-assembler.sourceforge.net
http://www.phrap.org
http://www.phrap.org
mailto:skoren@jcvi.org
http://creativecommons.org/licenses/by/2.0

1897 finishing reads, Consed and manual editing were
used to close gaps and improve quality. Both of these
methods are a posteriori, running after an assembly has
been generated. They require users to specify a gap for
each finishing read. In contrast, we introduce an algo-
rithm for placing finishing reads within the context of a
WGA.
Our method generates a de novo assembly in one pro-

cess that integrates the WGS and finishing reads. We
only require the identifiers for the end-reads from the
amplicons or clones, potentially improving usability. The
algorithm uses the sets of finishing reads and placement
bounds for each set to incorporate finishing reads dur-
ing the assembly process. Our algorithm targets repeti-
tive genomic regions, seeking to close and thicken
repeat-induced gaps, as well as to locate repeat copies
missed in the initial assembly.
The algorithm was challenged to assemble five prokar-

yotes and one eukaryotic genome from WGS and finish-
ing reads. The results were compared to assemblies of
all the reads input as WGS reads. The results were also
compared to an alternate assembly pipeline.

Results
Algorithm
Input
The input has three components: WGS reads, finishing
reads, and bounding constraints. The reads may include
paired-end reads, such that any given read pair consists
of two WGS reads or two finishing reads. The bounding
constraint is usually a paired end thought to span the
target of the finishing reactions, based on a WGS
assembly. Alternately, it could be any two reads whose
sequence encompasses the PCR primers that generated
the template for the finishing reads, or the PCR primers
themselves. Formally, given the set of bounded finishing
reads F, and WGS reads W, the finishing reads and
bounding constraints must satisfy the following condi-
tions:

• For each finishing read, f Î F, there exists at most
one pair of reads, fa Î W and fb Î W s.t. fa ≠ fb, f ≠
fa, and f ≠ fb (referred to as the bounding constraint
for f)
• For each bounding constraint, (fa, fb), there exists a
non-empty set of finishing reads, (,) { }f f f fa b n= 1
• For any two bounding constraints, (fa, fb) and
(ga, gb), the intersection () (,) {},f f g ga b a b∩ =

Assemble the reads
The algorithm uses the hierarchy of overlaps, unitigs,
contigs, and scaffolds as used by Celera Assembler [1].
The WGS and finishing reads are processed to detect
pair-wise overlaps. Reads and overlaps are compressed
into unitigs, also called chunks [8]. The unitigs are

low-risk assemblies consistent with nearly all of the
detectable pair-wise read overlaps. Unitigs that are
deemed repetitive, V, are not trusted. All the others, U,
are trusted. The trusted unitigs are assembled into con-
tigs and scaffolds using detected pair-wise overlaps and
paired-end constraints. Untrusted unitigs are incorpo-
rated last. The contigs represent contiguous assembly.
The scaffolds consist of contigs separated by gaps whose
length is estimated from paired-end constraints.
Fill the gaps
The algorithm applies aggressive techniques to fill gaps
in scaffolds.
It starts by assigning left over unitigs (including indivi-

dual reads) to specific gaps. It generates a list G of gaps
in scaffolds, a list U of unique trusted unitigs not placed
in scaffolds, and a list V of all untrusted repeat unitigs.
For each unitig u Î {U ⋃ V}, and a gap g Î G, define a
placement score Place(u, g) = P + B where P = (number
of WGS reads in u whose paired-end constraint would
be satisfied by placement in gap g) and B = (number of
finishing reads in u whose bounding constraint would
be satisfied by placement in gap g). A paired-end con-
straint is satisfied when one read is within u while the
second is not and the placement of unitig u in gap g
matches the expected orientation and distance of the
paired-end library. A bounding constraint is satisfied
when the bounding reads (fa, fb) are both placed in a
scaffold and span only gap g. For each unitig u Î U,
assign it one gap that maximizes Place(u, g) > 0, if one
exists. For each unitig u Î V, assign it all gaps for
which Place(u, g) >Q for some threshold Q.
Once the unitigs are placed within gaps, we apply a

miniature assembly process. Estimate each gap’s length
from spanning paired-end constraints. For each gap,
construct a graph whose nodes are unitigs assigned to
the gap. Add a node for both of the contigs that bound
the gap. Add an edge for every unitig pair, or unitig/
contig pair, that shares paired-ends or has a detectable
sequence overlap. Search for any path through the
graph that satisfies the size estimate and visits each
node at most once. If such a path is found, the gap is
filled with unitigs from the path. If no path spans the
gap, the algorithm will settle for less: adding a unitig to
each contig end so as to reduce the size of the remain-
ing gap. This gap-filling step runs twice: first with unas-
sembled unitigs from U, then with all unassembled
unitigs from U and V.
For all unitigs in scaffolds, a multiple sequence align-

ment of reads is determined. Repeat unitigs, V, can have
zero, one, or many placements in the assembly, but
their reads can have at most one placement (Figure 1a).
For each unitig u Î V with at least one placement in a
scaffold, every read r Î u is assigned a specific location,
if possible. Read r is placed only if there is unambiguous

Koren et al. BMC Bioinformatics 2010, 11:457
http://www.biomedcentral.com/1471-2105/11/457

Page 2 of 7

support from the placement of u, and the mate of r, if
any, or the bounding constraint of r, if any.

Implementation
In order to exploit the maturity of WGS assembly soft-
ware, we implemented the algorithm inside an existing
package, Celera Assembler. Originally designed for San-
ger data [1], the software now incorporates alternate
modules into a pipeline called CABOG [9] specifically
for data from the 454 Life Sciences http://www.454.com
next-generation sequencing platform.
The bounding read behaviour is offered as a run-time

option in Celera Assembler. When turned on, it exe-
cutes as part of the scaffold module, specifically during
the gap filling stage called “rocks and stones” [1]. To
search the set of unitigs that could fill a gap, Celera
Assembler uses a breadth first search algorithm. As
always, Celera Assembler calculates the scaffold consen-
sus sequence given the hierarchical layout of contigs,
unitigs, and reads.
Where the new code needs to partition the unitigs

into U and V, it re-uses Celera Assembler’s partition,
which is based on empirical observation of the distribu-
tion of unitig coverage levels and calculation of the
A-stat log-odds ratio [1].
The implementation allows that some constraints are

inherently unsatisfiable. Constraints where the bounds
span multiple gaps or are not part of the assembly are
considered unsatisfiable and the current implementation
does not use them. The threshold Q, used to place uni-
tigs from V in scaffold gaps, is calculated automatically
at run time for each unitig. The threshold defaults to
the number of unsatisfiable constraints. Intuitively, this

value of Q requires more evidence for a unitig place-
ment than against.

Evaluation
Data sets
Six genomes were selected for testing (Additional file 1:
Table S1). The genomes include five bacteria and one
protozoan. All six WGS data sets include Sanger
sequence. Three are predominantly pyrosequencing
data. All six finishing read sets include Sanger reads
from selected WGS clones.
Test of the algorithm
Contiguity statistics, such as N50 are course-grained and
mask the improvements that a small numbers of finish-
ing reads can provide. Therefore, we introduce a con-
cept of candidate regions and we measure how many
candidates are improved. The candidates are genome
repeats for which we have finishing reads and bounding
constraints. Potential improvements consisted of closing
a gap (Figure 1b), adding read coverage across a repeat,
and fixing the consensus sequence (Figure 1a). The can-
didates are exclusive of non-repeat regions (Figure 1c)
for which the control algorithm is sufficient. Improve-
ment was measured by comparing the bounded read
assemblies against control assemblies. The controls used
the same software and reads without the bounding
constraints.
Comparison to alternate assemblers
Dupfinisher is a pipeline for assembly, repeat identifica-
tion, finishing read generation, and re-assembly. It is
integrated with phrap, BLAST, Consed, and Autofinish
[10]. It was not feasible or meaningful to snap Dupfin-
isher into our assembly pipeline or to snap our

Figure 1 Use of finishing reads. Two algorithms for assembling shotgun reads and finishing reads. The control treats both read types equally.
The bounded algorithm attempts to assemble finishing reads consistently with their bounding constraints. For each algorithm, the figure shows
its construction of a scaffold from contigs (rectangles) with 2X in shotgun reads (black lines). Each finishing read (colored line) has a
corresponding pair of PCR primer sites (arrows of same color). External to the scaffold is a unitig (grey area) deemed repetitive due to high
coverage. (a) A mate pair constraint (curve) localizes one read and the unitig to this gap. Nevertheless, the control algorithm cannot tile this gap
with reads. The bounded algorithm localizes two finishing reads by their primer sites. The bounded algorithm does tile the gap with reads,
enabling a more accurate consensus sequence. (b) The control cannot localize the unitig or any reads to this gap. It does not close the gap. The
bounded algorithm localizes the unitig by finishing reads and their primer sites. It tiles the gap with finishing reads from the unitig. (c) Both
algorithms assemble finishing reads from a gap that is not a genomic repeat. In our data sets, most finishing reads fit gaps of this type.

Koren et al. BMC Bioinformatics 2010, 11:457
http://www.biomedcentral.com/1471-2105/11/457

Page 3 of 7

http://www.454.com

assembler into its pipeline. Also, it was not possible to
compare published experiments. Papers that describe
Dupfinisher report combined gains of the software plus
manual editing (e.g. [7]) or present results on projects
[6] for which we could not obtain finishing reads.
The Newbler de novo assembly software http://

www.454.com is designed specifically for pyrosequencing
reads alone or in combination with Sanger data. It also
supports incremental assembly, whereby additional
reads are added to a previous assembly result. The
incremental assembly feature can be used to add finish-
ing reads to assemblies of WGS reads. Newbler was
tested on three genomes for which we had pyrosequen-
cing reads.

Results
The bounded algorithm closes 52 candidate regions,
previously having either no sequence or no read cover-
age. The control, by definition, closes 0 and the alter-
nate pipeline closes 4. This large gain can be attributed
to incorporating more finishing reads. The algorithm
incorporates 75.10% of finishing reads. That is ≈54%
more than control and ≈42% more than the alternate.
The assemblies show a gain of 0.09 ± 0.09% in percent
of the genome with >1X read coverage versus control.
Full details of the per-genome assembly improvements
are in Table 1. The bounded algorithm also fixes 63
consensus bases while introducing only 3 incorrect calls
in comparison to the control versus reference. Details
are available in Table 2.
In three of the six genomes, the algorithm places addi-

tional copies of repeat unitigs, filling in missing consen-
sus sequence. As a consequence, ten contigs are
merged. Due to the coarseness of the contig metrics, the
bounded assemblies show improvement (fewer contigs
and higher N50) in one genome but no change on the

rest. In two genomes, the merging involved one contig
greater than 2Kbp and one smaller than 2Kbp and is
therefore not reflected in Table 3.
The assemblies of E. coli O157:H7 were examined and

compared to the available reference. The bounded
assembly was confirmed, having eight alignments of 99%
identity over 99% length of the assembly covering 99%
of the reference. By the same measure, the control
assembly had nine alignments. Inspection revealed two
high-coverage unitigs each placed six times in the con-
trol and seven times in the bounded. Together, the two
unitigs make up a seventh repeat instance that was
missing from the control. The repeat, which we charac-
terized by NCBI BLAST [11] as an rRNA operon, is
known to occur seven times in the wild-type genome

Table 1 Results using the bounded read placement algorithm

Placed finishing reads Gaps closed

Species Candidate gaps # Bounds # Finishing reads Control Bounded Alternate Control Bounded Alternate

E. coli O157:H7 14 (1) 56 128 26 92 N/A 0 11 N/A

S. enterica 2 (0) 18 33 14 23 N/A 0 1 N/A

B. mallei 9 (0) 23 40 4 27 N/A 0 4 N/A

I. multifiliis 11 (2) 14 21 3 21 17 0 6 4

E. coli K12 49 (2) 23 60 12 49 11 0 29 0

C. amycolatum 4 (0) 3 3 0 2 0 0 1 0

Total 89 (5) 137 285 59 214 28 0 52 4

Comparison of three algorithms. Control uses finishing reads like WGS reads. Bounded uses finishing reads with placement constraints. Alternate uses finishing
reads in a second round of assembly without constraints. Candidate gaps include both regions in the control assembly between finishing constraints with zero
coverage and a consensus sequence derived from a repeat unitig or no consensus sequence in the control assembly. The parentheses indicate the number of
gaps with no consensus sequence in the control assembly. The gap and spanning constraint are not necessarily 1-to-1. Bounds: The total number of bounding
constraints that span the repeat gap or were not satisfied in both control and bounded assemblies. Finishing reads: The total number of finishing reads
generated for the bounds in the table. Placed finishing reads: The total number of finishing reads placed in the assembly by each of the assembly algorithms.
Gaps closed: The number of gaps closed by filling in missing consensus sequence or by tiling repeat instances with reads. By definition, the control assembly
always closes 0 gaps. The bounded assembly joins were verified by alignment to finished reference, where available.

Table 2 Consensus quality of the bounded read
placement algorithm

Species # consensus
differences

True
positives

False
positives

E. coli O157:
H7

14 14 0

S. enterica 5 5 0

B. mallei 47 44 3

I. multifiliis N/A N/A N/A

E. coli K12 N/A N/A N/A

C.
amycolatum

N/A N/A N/A

Total 66 63 3

Performance of the same three algorithms described in Table 1. Number of
consensus differences: The total number of bases in consensus that are
different between the bounded and control assemblies versus reference. True
positive: Number of consensus base changes that are supported by the
reference. False positive: The number of consensus base changes that differ
from the reference. The finishing reads used for E. coli K12 did not come from
the same strain as the reference. We cannot validate whether a consensus
discrepancy between an assembly and the reference is due to assembly error
or to strain-level differences. Consensus quality could not be measured on the
two genomes that lack a reference.

Koren et al. BMC Bioinformatics 2010, 11:457
http://www.biomedcentral.com/1471-2105/11/457

Page 4 of 7

http://www.454.com
http://www.454.com

[12]. Other joins in the bounded assembly were also
verified by comparison to the reference, indicating no
mis-assembly (Additional file 1)
The bounding read algorithm placed a majority of the

finishing reads available for each genome. On no gen-
ome did the algorithm close all the gaps or tile all the
candidate regions. The algorithm closed 52 out of
89 possible candidates, this may be due to limitations of
the finishing read set rather than the algorithm as no
assembly was able to close all candidates. In summary,
the bounding read algorithm consistently augmented
repeat resolution and gap closure by finishing read
placement and improved the consensus.

Discussion
We implemented our algorithm within the Celera
Assembler software for whole-genome shotgun (WGS)
assembly. The implementation placed more finishing
reads than two alternate methods: de novo assembly of
WGS reads and finishing reads together (our control),
or by adding finishing reads to the initial assembly (with
Newbler). This result was not surprising since only our
algorithm exploited the finishing read placement con-
straint data associated with finishing reads.
All of our test data sets included some Sanger WGS

reads. Future genome projects are unlikely to present
Sanger WGS data due to the lower cost of high-
throughput, next-generation sequencing (NGS). Such
projects will require clone-free finishing reads generated
from genomic template. In this case, each amplicon’s
end reads can serve as bounds for the other reads
derived from that amplicon. Thus, our approach should
apply to 100% NGS WGS data sets.
We have presented a novel algorithm for automated

re-assembly to exploit finishing reads and placement
constraints. Our implementation out-performed two
other automated approaches on real data. An alternate
approach to finishing, relying on NGS data to correct
assembly errors, shows average gains of 0.16 ± 0.15%
apart from a single outlier with 6.73% gain [4]. By com-
parison, our algorithm achieves a gain of 0.09 ± 0.09%

through the careful use of existing finishing data, with-
out relying on any additional sequencing. Both methods
are valuable to correctly assemble the final pieces of a
genome and demonstrate the difficulty involved.

Conclusions
The finishing process has rate-limiting manual compo-
nents. Here we demonstrate automation of one finishing
component, the careful placement of finishing reads
whose position is known relative to other reads. We
described the Bounding read algorithm that could be
incorporated in a 4-part finishing pipeline: WGS reads
are assembled with an assembler; the assembly is
scanned for low-quality regions and gaps; finishing reads
are generated to target each region; the WGS and fin-
ishing reads are re-assembled with the bounding read
assembly algorithm.
Earlier approaches to automated finishing use a poster-

iori methods that add finishing reads to assembled contigs.
Dupfinisher was the first. Newbler’s iterative assembly
method demonstrates another. Our approach incorporates
finishing reads a priori in a de novo assembly with the
WGS reads. The finishing reads are exploited throughout
the assembly construction, possibly generating a different
result than the WGS-only assembly. Additionally, our
algorithm can identify new instances of recognized repeats
and tile reads across them. The algorithm outperformed
two alternate methods, filling more gaps, placing more
reads, and improving consensus. Our algorithm is a valu-
able tool to assist the automation and improvement of
genome finishing projects.

Methods
Reads
The bacterium Escherichia coli O157:H7 str. EC4115
was sequenced with Sanger chemistry and is deposited
at the NCBI Trace Archive. The reference [GenBank:
CP001163], [GenBank: CP001165], [GenBank:
CP001164] consists of two circular plasmids and a cir-
cular genome of 94,644, 37,452, and 5,572,075 bases
respectively.

Table 3 Results using contig metrics for bounding read placement algorithm

Contig count Contig N50 Contig bases

Species Control Bounded Alternate Control Bounded Alternate Control Bounded Alternate

E. coli O157:H7 6 5 NA 2,315,032 4,484,293 NA 5,656,811 5,661,119 NA

S. enterica 6 6 NA 3,620,140 3,620,144 NA 4,813,438 4,813,442 NA

B. mallei 19 19 NA 424,003 424,003 NA 5,835,215 5,834,616 NA

I. multifiliis 4,273 4,273 5,765 12,070 12,070 11,444 37,616,884 37,616,884 47,976,992

E. coli K12 313 314 387 27,255 27,255 16,838 4,679,711 4,679,711 4,441,778

C. amycolatum 26 26 38 307,040 307,040 152,524 2,525,388 2,525,392 2,507,351

Performance of the same three algorithms described in Table 1. Contig count: number of contigs whose consensus is at least 2Kbp. Contig bases: sum of
consensus lengths for contigs at least 2Kbp long.

Koren et al. BMC Bioinformatics 2010, 11:457
http://www.biomedcentral.com/1471-2105/11/457

Page 5 of 7

The bacterium Escherichia coli K12 substr. MG1655
was sequenced using 454. The WGS data is available
through the Short Read Archive [SRA:SRA001028]. The
reference [GenBank: NC_000913] consists of one circu-
lar genome of 4,639,675 bases.
The bacterium Salmonella enterica subsp. enterica

serovar Schwarzengrund str. CVM19633 was sequenced
with Sanger chemistry and is deposited at the NCBI
Trace Archive. The reference [GenBank: CP001125],
[GenBank: CP001126], and [GenBank: CP001127] con-
sists of two circular plasmids and a circular genome of
110,227, 4,585, and 4,709,075 bases respectively.
The bacterium Burkholderia mallei NCTC 10247 was

sequenced using Sanger chemistry and deposited at the
NCBI Trace Archive. The finishing reads are also avail-
able from the NCBI Trace Archive. The reference [Gen-
Bank: CP000548], and [GenBank: CP000547] consists of
two circular chromosomes of 3,495,687 and 2,352,693
bases respectively.
The bacterium Corynebacterium amycolatum SK46

HMP033 was sequenced using 454 and Sanger. The
WGS data is available through the NCBI Trace Archive
and the Short Read Archive [SRA:SRR005142].
The ciliate protozoan Ichthyophthirius multifiliis G5

was sequenced using 454 and Sanger. [The data is
scheduled to be deposited in the SRA and the NCBI
Trace Archive and is available by contacting the
authors] The 454 reads were generated by the GS FLX
Titanium pyrosequencing platform. They were pro-
cessed with Celera Assembler to remove duplicates,
detect linker, and split paired ends.
For comparison with Dupfinisher, NCBI trace archive

was unsuccessfully searched for reads with trace_type_-
code other than “WGS” belonging to Methanospirillum
hungatei JF-1, Rhodoferax ferriducens DSM 15236, or
Shewanella baltica OS155.

Finishing reads
The finishing reads were obtained from JCVI databases.
For finishing reads generated from a clone, the clone-
end reads were provided to Celera Assembler as bound-
ing reads. Not all finishing reads had bounding reads.

Software
Celera Assembler software was run using run-time para-
meters recommended for each sequencing technology.
The Sanger-only assemblies used the unitigger module
while the assemblies with 454 data used the BOG mod-
ule from CABOG. The I. multifiliis assembly used a
10% error rate instead of defaults. The specific version
is marked with CVS tag WGS_CLOSURE-6_00-
BRANCH and will be packaged starting with the 6.1
release. Newbler version 2.3 was used with default

run-time parameters as the Alternate pipeline. Dupfin-
isher was kindly provided by its authors.

Analysis
Continuity statistics were gathered from each assembly
using analysis of the FASTA output files. The gap statis-
tics were gathered from each assembly using scripts for
analyzing assembly output. The MUMmer package [13]
was used to compare assemblies to the references by
running nucmer –maxmatch.
To identify candidate gaps to evaluate the control

assembly we focus on gaps caused by genomic repeats,
both with and without consensus sequence in the con-
trol. First, we identify regions of the control assemblies
that had zero coverage in reads, a consensus sequence
due to placement of a (repeat) unitig, and coverage in
the unitig at least twice that of the overall scaffold aver-
age (Figure 1a). Separately, we listed gaps that have no
consensus sequence in the control assembly (Figure 1b).
The assemblies were aligned by using nucmer –max-
match and show-tiling was used to look for split contigs
in either assembly. We also looked for any gaps that
have no consensus sequence in the bounded assembly
but do in the control. There were none in our datasets.
The show-snps program from the MUMmer package

was used to identify SNPs between the reference and
both control and bounded assemblies. The matches
were first filtered by running delta-filter -1 and the
results used as input for show-snps (with no para-
meters). Regions where the control assembly had gaps
(Ns) in the sequence were not included in SNP counts.
The total number of SNPs in the bounded assembly but
not the control assembly and vice-versa were tabulated.

Additional material

Additional file 1: Supplementary Materials. Supplementary Materials
including comparisons to reference and detailed read composition for
each data set.

Acknowledgements
We thank Jessica Hostetler, Diana Radune, and Daniel Brami for technical
assistance, Laura Sheahan, Jamison McCorrison, Indresh Singh, and Suman
Pakala for advice on the manuscript, an anonymous reviewer who
suggested some of the experiments, and Robert Coyne, Karen Nelson, and
the Human Microbiome Project for use their data. This work was funded by
the National Institutes of Health through the NIGMS (2R01GM077117-04A1),
the NIAID GSC (HHSN27200900007C), and the NIH Roadmap Human
Microbiome Project (award U54 AI-084844-01 from NIAID).

Authors’ contributions
SK designed the algorithm, implemented the software, ran the tests, and
wrote the manuscript. JRM assisted with test design and manuscript revision.
BPW participated in the software development. GS proposed the project
and reviewed its progress. All authors read and approved the final
manuscript.

Koren et al. BMC Bioinformatics 2010, 11:457
http://www.biomedcentral.com/1471-2105/11/457

Page 6 of 7

http://www.biomedcentral.com/content/supplementary/1471-2105-11-457-S1.DOC

Received: 18 March 2010 Accepted: 10 September 2010
Published: 10 September 2010

References
1. Myers E, Sutton G, Delcher A, Dew I, Fasulo D, Flanigan M, Kravitz S,

Mobarry C, Reinert K, Remington K: A whole-genome assembly of
Drosophila. Science 2000, 287(5461):2196.

2. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res 2008, 18(5):821-829.

3. Frangeul L, Nelson KE, Buchrieser C, Danchin A, Glaser P, Kunst F: Cloning
and assembly strategies in microbial genome projects. Microbiology 1999,
145(Pt 10):2625-2634.

4. Otto TD, Sanders M, Berriman M, Newbold C: Iterative Correction of
Reference Nucleotides(iCORN) using second generation sequencing
technology. Bioinformatics 2010, 26(14):1704.

5. Gordon D, Abajian C, Green P: Consed: a graphical tool for sequence
finishing. Genome Res 1998, 8(3):195-202.

6. Han C, Chain P: Finishing Repetitive Regions Automatically with
Dupfinisher. Proceedings of 2006 International Conference on Bioinformatics
& Computational Biology: 2006; Las Vegas, Nevada, USA CSREA Press 2006.

7. Han C, Spring S, Lapidus A, Rio TGD, Tice H, Copeland A, Cheng J-F,
Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N,
Mavrommatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M,
Hauser L, Chang Y-J, Jeffries CD, Saunders E, Chertkov O, Brettin T, Göker M,
Rohde M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC,
Klenk H-P, Detter JC: Complete genome sequence of Pedobacter
heparinus type strain (HIM 762-3T). Standards in Genomic Sciences 2009,
1(1):54.

8. Myers EW: Toward simplifying and accurately formulating fragment
assembly. J Comput Biol 1995, 2(2):275-290.

9. Miller J, Delcher A, Koren S, Venter E, Walenz B, Brownley A, Johnson J, Li K,
Mobarry C, Sutton G: Aggressive assembly of pyrosequencing reads with
mates. Bioinformatics 2008, 24(24):2818.

10. Gordon D, Desmarais C, Green P: Automated finishing with autofinish.
Cold Spring Harbor Laboratory Press 2001, 11:614-625.

11. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment
search tool. J mol Biol 1990, 215(3):403-410.

12. Condon C, Philips J, Fu Z, Squires C, Squires C: Comparison of the
expression of the seven ribosomal RNA operons in Escherichia coli.
Embo Journal 1992, 11(11):4175-4185.

13. Kurtz S, Phillippy A, Delcher A, Smoot M, Shumway M, Antonescu C,
Salzberg S: Versatile and open software for comparing large genomes.
Genome biology 2004, 5(2):R12.

doi:10.1186/1471-2105-11-457
Cite this article as: Koren et al.: An algorithm for automated closure
during assembly. BMC Bioinformatics 2010 11:457.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Koren et al. BMC Bioinformatics 2010, 11:457
http://www.biomedcentral.com/1471-2105/11/457

Page 7 of 7

http://www.ncbi.nlm.nih.gov/pubmed/10731133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10731133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10537184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10537184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20562415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20562415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20562415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9521923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9521923?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7497129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7497129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18952627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18952627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11282977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1396599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1396599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14759262?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Algorithm
	Input
	Assemble the reads
	Fill the gaps

	Implementation
	Evaluation
	Data sets
	Test of the algorithm
	Comparison to alternate assemblers

	Results
	Discussion
	Conclusions
	Methods
	Reads
	Finishing reads
	Software
	Analysis

	Acknowledgements
	Authors' contributions
	References

