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Background. Pharyngitis due to group A Streptococcus (GAS) is a common pediatric infection. Physicians might diagnose GAS 
pharyngitis more accurately when given biosurveillance information about GAS activity. The availability of geographic GAS testing 
data may be able to assist with real-time clinical decision-making for children with throat infections. 

Methods. GAS rapid antigen testing data were obtained from the records of 6086 children at Boston Children’s Hospital and 
8648 children at Duke University Medical Center. Records included children tested in outpatient, primary care settings. We con-
structed Bayesian generalized additive models, in which the outcome variable was the binary result of GAS testing, and predictor 
variables included smoothed functions of patient location data and both cyclic and longitudinal time data. 

Results. We observed a small degree of geographic heterogeneity, but no convincing clusters of high risk. The probability of a 
positive test declined during the summer months. 

Conclusions. Future work should include geographic data about school catchments to identify whether GAS transmission clus-
ters within schools.
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Group A  Streptococcus (GAS) causes ~600 million annual 
cases of pharyngitis worldwide [1]. Despite the availability of 
point-of-care diagnostic testing and clinical risk criteria [2, 3], 
GAS pharyngitis remains frequently overdiagnosed in both 
children and adults, leading to unnecessary antibiotic expo-
sure [3–5]. Providing physicians with accurate, up-to-date GAS 
biosurveillance may improve diagnostic accuracy [6]. GAS 
pharyngitis cases are spatially and temporally heterogeneous, 
sometimes occurring sporadically and sometimes in clusters 
or outbreaks [7–9]. Thus, effective surveillance methods are 
needed to identify spatial and temporal signals of increased 
GAS activity in order to inform clinical practice.

We used novel statistical models to identify the spatial and 
temporal dynamics of GAS diagnoses. We used GAS testing 
data from the electronic health records of Boston Children’s 
Hospital (Boston, MA, USA) and the Duke University Health 
System (Durham, NC, USA) with 7  years of pediatric GAS 
testing data. Our models incorporated individual patient vari-
ables and patient location data and evaluated geographic space, 

time as a longitudinal variable, and time as a cyclic variable to 
predict the probability that a GAS test will be positive.

METHODS

This study protocol was approved by the Institutional 
Review Boards of both Boston Children’s Hospital and 
the Duke University Health System with permission 
for data sharing. Informed consent was waived for this 
retrospective study.

Study Design

We performed a retrospective study using electronic data from 
2 health systems: Boston Children’s Hospital (Boston, MA, 
USA) and Duke University Hospital (Durham, NC, USA).

Study Population

We queried electronic medical records to identify all children 
who had had a rapid antigen test for GAS between January 1, 
2011, and December 31, 2017. The electronic medical records 
included children seen in primary care settings within each 
health system, as well as those seen at the hospital for emer-
gency or inpatient care. Tests were included for children who 
were 5 to 15 years old (inclusive) at the time of testing. As many 
children were tested more than once during the 7 years of study, 
we included at most 1 test per 6 months in order to minimize 
the chance of including multiple tests from the same clinical 
illness. We excluded children with a primary home address >12 
km from the respective hospital. We chose this distance to fit 
our spatial models to observations within 12 km but predict 
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them within 10 km, thus avoiding predictions to edge areas 
with sparse data (Figure 1).

Data Collection

We abstracted the results of rapid GAS antigen testing, which 
were dichotomized as positive or negative. Additionally, we col-
lected each subject’s age at the time of testing, gender, race, eth-
nicity, and residential longitude and latitude.

The individual categories of race and ethnicity differed be-
tween Boston and Durham. Thus, for simplicity, racial categories 
were consolidated to “black,” “white,” and “other or unavailable.” 
The latter category included several self-reported racial categories 
that were represented in small numbers, categories such as 
“other,” “multiracial,” and “2 or more races,” as well as individuals 
who declined to provide a race. Exploratory modeling did not 
show any statistical disadvantage to this consolidated categoriza-
tion. Reference values were set for categorical variables as follows: 
“female” for gender, “unavailable or other” for race, and “unavail-
able” for ethnicity. Age was centered on 0 by subtracting the mean 
and standardized by dividing by 2 standard deviations [10]. For 
temporal modeling, we determined the week of the year (from 1 
to 53) and the cumulative week (from 1 to 371) for the date on 
which a test was performed.

Statistical Analyses

Our primary model was a logistic generalized additive model 
(GAM). GAMs are regression models that use nonparametric 
functions to model nonlinear relationships between inde-
pendent variables and an outcome variable of interest [11]. 
We used the statistical programming language R (www.r-
project.org) and the brms and mgcv packages [11–13]. Mgcv 
is a comprehensive package for the specification of GAMs. 
Brms, through its dependency on mgcv, allows the construc-
tion of Bayesian GAMs that are then sent to the program Stan 
(www.mc-stan.org) for sampling of the posterior probability 
distribution.

The response variable in our models was the binary result of 
streptococcal testing (negative vs positive), and our fixed linear 
predictors were age, race, and ethnicity. We used three spline 
functions to incorporate space and time: (1) an isotropic 2-di-
mensional spline of longitude and latitude to model geographic 
heterogeneity; (2) a spline to model temporal variability over 
the length of our study period; and (3) a cyclic spline to model 
seasonal variability observed cyclically over the years of study. 
Approaches to modeling time, space, and seasonality using 
splines are supported in mgcv and brms [11–14]. We chose 
normally distributed priors with mean 0 and standard deviation 

Boston, MA Durham, NC

Figure 1. Study locations. These aerial images illustrate 10-km radius circles around Boston Children’s Hospital (Boston, MA, USA) and Duke University Hospital (Durham, 
NC, USA). Children whose testing data were used to populate our models had home addresses within a 12-km radius of their respective hospital. After fitting our models, we 
predicted the probability of group A Streptococcus pharyngitis in the 10-km radius circles illustrated here. Aerial imagery was provided by ESRI through its ArcGIS basemaps 
(ESRI, Redlands, CA, USA).
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1 for the odds ratio (OR) of fixed effects and for the log odds 
of the models’ intercepts. Default priors were accepted for 
smoothed terms, which were a minimally informative Student 
t distribution.

We then constructed grids onto which we could predict our 
models. The grids were composed of dense longitude–latitude 
coordinate pairs covering a 10-km radius circle around each 
hospital. Using loops, we predicted the probability of a positive 
GAS test for each of 371 consecutive weeks and for the week of 
the year. We used contours to circumscribe areas where there 
was a 90%, 95%, or 99% probability that the local odds differed 
from the average odds. Each prediction was saved as an image, 
after which the images were joined sequentially to create an an-
imation. Results are expressed in probability and in 95% uncer-
tainty intervals, which represent the values bounding the 95% 
uncertainty interval.

RESULTS

We fit our Boston model using data from 7169 GAS tests 
in 6086 children, of which 1567 (21.9%) were positive. Our 
Durham model included 13 129 tests in 8648 children, 2421 of 
which were positive (18.4%). The demographic characteristics 
of our subjects can be found in Table 1.

The impact of individual covariates in our models is pre-
sented in Figure  2. Neither race nor ethnicity was associated 
with the probability of a positive GAS test in either site. For 
both sites, younger age was the most important individual pre-
dictor of a positive test; an increase in age of 6 years was asso-
ciated with an OR of 0.49 in Durham (95% uncertainty interval 
[UI], 0.44–0.54) and 0.68 in Boston (95% UI, 0.60–0.77). The 
odds of a positive GAS test were higher for males in Durham 
(OR, 1.13; 95% UI, 1.03–1.23) and trended similarly in Boston 
(OR, 1.08; 95% UI, 0.96–1.21).

Our spatiotemporal models (Figure 3, Videos 1 and 2) dem-
onstrate a pronounced cyclical trend in the probability of a 

positive test. The probability drops markedly each year during 
the summer months in both Boston and Durham. By contrast, 
the probability varied far less significantly throughout the re-
mainder of the year. The overall longitudinal trend over the 
years of study was fairly constant in both sites, with probabil-
ities in the peak and nadir periods differing by only about 5%. 
In both sites, areas of higher probability appeared to migrate 
slowly across the study area over time. We did not, however, 
confidently resolve spatial clusters where the probability of a 
positive test clearly differed from the surroundings.

DISCUSSION

We have described the spatiotemporal dynamics of positive GAS 
tests over 7 study years using clinical data from 2 metropolitan 
areas. In both study sites, the probability of a positive GAS test 
migrated spatially over time. This spatial heterogeneity may re-
flect local outbreaks of GAS pharyngitis in the high-probability 
areas, whereas low-probability areas may represent outbreaks of 
viruses or other pathogens in which many children are tested for 
pharyngitis but GAS is found less commonly. Overall, however, 
the geographic heterogeneity of each study site was of low am-
plitude and uncertain significance. Generally there was a <10% 
difference in the probability of a positive GAS test between the 
local maxima and minima at any given time. We did not con-
vincingly resolve spatial clusters in either site where there was a 
persistently high probability of a positive test.

The dominant temporal trend we observed was the low prob-
ability of a positive test during summer months, which was 
observed annually throughout the study period. This phenom-
enon was of greater amplitude than any longitudinal trend or 
spatial pattern. The most likely explanation is that transmission 
of GAS occurs more widely during months when schools are in 
session. In addition to the above spatiotemporal observations, 
we also found that younger children had the highest probability 
of a positive test. These findings suggest that the most important 
epidemiologic signals of GAS activity will be found in elemen-
tary schools.

The temporal pattern we have identified would certainly have 
been demonstrable even without the inclusion of spatial data in 
our models. However, this would leave untested the question of 
whether a seasonal trend is global or local. By including geo-
graphic coordinates in our models, we have demonstrated that 
the seasonality of GAS is a global phenomenon and not (clearly) 
due to local recurrences. Furthermore, adding geographic space 
to our models can also be seen as a covariate adjustment like our 
other independent variables: The seasonal variability in GAS 
was prominent even after adjusting for geography.

There is relatively little published literature about the spatial 
epidemiology of GAS. In Kenya, the incidence of rheumatic 
heart disease, an important complication of GAS pharyngitis, 
was found to be spatially heterogeneous [15]. In recent years, 
China has experienced an increasing incidence of scarlet fever 

Table 1. Demographic Characteristics of the Study Population

 Boston Durham

Age, y 8.5 (6.5–11.4) 9.2 (7.0–12.1)

Gender   

Female 3745 (52.2) 6979 (53.2)

Male 3424 (47.8) 6150 (46.8)

Race   

Black 2220 (31.0) 5047 (38.4)

White 1035 (14.4) 5282 (40.2)

Other or unavailable 3914 (54.6) 2800 (21.3)

Ethnicity   

Hispanic 3781 (52.7) 1704 (13.0)

Non-Hispanic 3102 (43.2) 10 735 (81.8)

Unavailable 286 (4.0) 690 (5.3)

Age is presented as median with interquartile range. Gender, race, and ethnicity are pre-
sented as number and percentage.
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[16], a cutaneous manifestation of GAS pharyngitis. This has 
inspired an intriguing body of studies, which have identi-
fied spatial heterogeneity of scarlet fever in some sites, as well 
as statistical associations between scarlet fever and various 
meteorologic variables and pollutants. These studies have been 
conducted in several Chinese cities and provinces and have 
employed different modeling approaches, such as regression 
models (including GAMs) and discontinuous cluster statistics 
[17–22]. It is important to consider that both rheumatic fever 
and scarlet fever are a subset of total GAS cases and are asso-
ciated with particular M-protein types in the former case and 

toxin elaboration in the latter. It may be that any spatial or spa-
tiotemporal variability in scarlet fever or rheumatic fever is pri-
marily due to heterogeneity in the circulating GAS strains. If 
so, that may explain why our study, which looked globally at 
GAS testing, did not replicate the spatial heterogeneity reported 
elsewhere.

Our study is limited by a number of factors inherent to retro-
spective research, including inability to specify and standardize 
subject recruitment and data collection in advance. However, 
manual chart review for the >20 000 included cultures would 
not have been feasible. We did not collect the results of GAS 

Male

Boston

Durham

Non-Hispanic

Hispanic

Race (White)

Race (Black)

Age

0.6 0.8 1.0 1.2 1.4

0.4 0.6 0.8 1.0 1.2
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Race (White)
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Figure 2. Influence of covariates on group A Streptococcus (GAS) pharyngitis. This figure illustrates the odds ratio (OR) of a positive GAS test. For a given covariate, the 
x-axis value represents the OR of a positive GAS test when all other variables are held at their mean value. The circles, thick bars, and thin bars represent the mean, 50% 
highest posterior density, and 95% highest posterior density, respectively, for each covariate. If a covariate’s posterior distribution does not include 1, it can be assumed highly 
probable that it influences the OR of a positive GAS test. In both Boston and Durham, higher age was associated with a lower likelihood of a positive GAS test, as the pos-
terior distribution is well to the left of 1. In Durham, male gender was associated with higher odds of a positive GAS test, something also observed but with less confidence 
in Boston. Race and ethnicity were not associated with GAS test results.
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Figure 3. Videos 1 and 2: Spatiotemporal distribution of group A Streptococcus (GAS) testing data. We have selected 2 time points in Figure 3 to illustrate the probabilty 
of positive GAS tests in space at different time points. The supplementary videos show this evolution over our entire 371-week study period. The map figure encompasses 
a 10-km radius around Boston Children’s Hospital and Duke University Hospital, onto which we have predicted the probability of a positive test for each of our 371 weeks. 
Contours that briefly appear in the animations show regions where the local probability of a positive GAS test differs from the mean with 90% (dotted), 95% (dashed), and 
99% (solid) probability. Blue contours represent lower-than-average probability, and red represents higher than average. Below the map are 2 temporal smooths, showing 
the cyclic probability (top) and the longitudinal probability (bottom) of a positive GAS test. These animations show the spatial evolution of the odds of GAS pharyngitis, but 
no clear or sustained clusters of high or low probability. Although there is some temporal variability in both sites, the dominant finding is a decrease in probability during the 
summer months in both Boston and Durham.
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culture testing. Some children with a negative GAS rapid test 
may later grow GAS from throat culture. However, we wanted 
to examine the potential for rapid test results to inform real-
time clinical decision-making. In addition, not all clinical labs 
will perform culture for negative GAS results, which will be 
positive in a small minority of cases. With retrospective geospa-
tial analyses, we are forced to accept a certain amount of error 
and uncertainty in location data. For instance, the address lo-
cation we recorded represents each child’s most recent address, 
but may not be where the child lived at the time of their illness. 
Even when home address data are accurate, disease exposure 
may have happened elsewhere. We have to assume, albeit with 
caution, that areas of potential disease around most children’s 
addresses follow logic and probability; for instance, within a 
neighborhood with a sample of individual addresses, the proba-
bility of exposure is highest at shared school locations and other 
gathering places. Consequently, large data sets such as ours may 
illuminate real spatial trends. Most importantly, we did not have 
information for the school each child attended. In a further ex-
amination of our data, we will incorporate individual school 
catchment boundaries using a multilevel modeling approach to 
identify clustering of risk.

In summary, we have conducted a novel geostatistical anal-
ysis of GAS testing data. We constructed models that evaluated 
2-dimensional geographic space, time as both a longitudinal 
variable and a cyclic (ie, seasonal) variable, using smoothing 
splines and Bayesian inference. This modeling approach may be 
an efficient, robust approach to infectious disease surveillance 
using electronic health data. In our study, although we did not 
identify compelling spatial trends in GAS risk, we did identify 
temporal patterns that suggest clustering among young children 
during the school year. Further development of this research 
should take into account school enrollment and evaluate the in-
fluence of environmental exposures.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility of 
the authors, so questions or comments should be addressed to the corre-
sponding author.
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