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Abstract

Alzheimer’s disease (AD) is a devastating illness affecting over 40 million people worldwide.

Intraneuronal rise of amyloid beta in its oligomeric forms (iAβOs), has been linked to the

pathogenesis of AD by disrupting cytosolic Ca2+ homeostasis. However, the specific mech-

anisms of action are still under debate and intense effort is ongoing to improve our under-

standing of the crucial steps involved in the mechanisms of AβOs toxicity. We report the

development of a mathematical model describing a proposed mechanism by which stimula-

tion of Phospholipase C (PLC) by iAβO, triggers production of IP3 with consequent abnormal

release of Ca2+ from the endoplasmic reticulum (ER) through activation of IP3 receptor

(IP3R) Ca2+ channels. After validating the model using experimental data, we quantify the

effects of intracellular rise in iAβOs on model solutions. Our model validates a dose-depen-

dent influence of iAβOs on IP3-mediated Ca2+ signaling. We investigate Ca2+ signaling pat-

terns for small and large iAβOs doses and study the role of various parameters on Ca2+

signals. Uncertainty quantification and partial rank correlation coefficients are used to better

understand how the model behaves under various parameter regimes. Our model predicts

that iAβO alter IP3R sensitivity to IP3 for large doses. Our analysis also shows that the

upstream production of IP3 can influence Aβ-driven solution patterns in a dose-dependent

manner. Model results illustrate and confirm the detrimental impact of iAβOs on IP3

signaling.

1 Introduction

Alzheimer’s disease (AD) is a devastating neurological illness affecting around 40 million peo-

ple worldwide. AD is the leading cause of dementia, and while the prevalence is estimated to

triple by 2050 [1], no cure currently exists. The progressive accumulation of intracellular Aβ in

its soluble oligomeric forms iAβOs has been indicated as the leading event in the pathogenesis
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of AD [2–4]. Aβ is a 36-43 amino-acid-long peptide cleaved from the amyloid precursor pro-

tein (APP) by β- and γ-secretase. In neurons, cleavage of APP takes place when γ-secretase

forms a complex with presenilin (PS) within the ER membrane, where production of Aβ42 is

more likely to occur [5]. Aβmonomers tend to aggregate into soluble oligomers, fibrils, and

plaques [6]. This aggregation occurs as the production of Aβ increases faster than can be

degraded naturally [7, 8].

Aβ accumulation has been shown to occur as a result of multiple factors including overpro-

duction of Aβ and aging-related changes in its clearance mechanisms; both by neuroglia and

the lymphatic system [9, 10]. Importantly, the accumulation of intracellular Aβ has been

shown to precede the appearance of extracellular amyloid plaques and intracellular neurofi-

brillar tangles associated with tau proteins, suggesting an early role of soluble Aβ during the

progression of AD [7, 11–13]. The ability of extracellular applied Aβ oligomers to induce cyto-

solic Ca2+ fluxes generated from both extracellular and intracellular sources has been shown

using cultured mammalian cells [14–16]. We have subsequently characterized these two mech-

anisms as occurring by: i) formation of plasma membrane Ca2+ permeable pores [17], and ii)

permeation of Aβ oligomers into the cytosol and inducing a PLC-dependent Ca2+ release from

the ER [18]. As a critical secondary messenger, Ca2+ mediates the signaling pathways that con-

trol several neuronal processes including neurotransmitter release, gene expression, metabo-

lism, plasticity, development, proliferation, and cell death [19, 20]. Furthermore, accumulation

of Aβ in neurons has been shown to disrupt intracellular Ca2+ homeostasis inducing mito-

chondrial stress [21, 22]. Because Aβ accumulation has been shown to alter intracellular Ca2+

levels, studying its impact on Ca2+ regulatory mechanisms is critical for better understanding

the pathogenesis of AD.

Intracellular Ca2+ regulation involves many distinct mechanisms working together. In the

presence of Aβ, these Ca2+ regulatory mechanisms begin to fail [22, 23]. For example, the

presence of Aβ has been shown to increase Ca2+ liberation from the ER through 1,4,5-Inositol-

triphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) [15, 24]. Aβ can also spontane-

ously form Ca2+-permeable pores in the plasma membrane [20, 25] creating uncontrolled

influx of Ca2+ through the membrane. These alterations can cause stress on the ER that can

further lead to dysregulation of Ca2+ in a feed-forward cyclical pattern [15, 22, 26, 27]. Such

breakdowns in regulation can create aberrant or sustained elevated Ca2+ signals that can lead

to cell death [14, 18].

As Aβ has been shown to affect numerous intracellular pathways, it is difficult, if not impos-

sible, for experimentalists to investigate independently and simultaneously each of these path-

ways in a complex neuronal environment. Mathematical and computational approaches can

offer a supplementary approach to studying the pathology of AD and the impact of Aβ on cel-

lular mechasims. Theoretical models that can consider the impact of Aβ on multiple pathways

simultaneously and independently can provide valuable information for designing future

experiments and possibly suggesting therapeutic targets. However, before such models can be

constructed, developing dedicated models to investigate each proposed pathway involved in

Aβ toxicity is crucial. To this point, our goal is to construct a data validated model that can

quantify how Aβ interacts with the IP3 signaling cascade and its consequential disruption of

intracellular Ca2+ homeostasis. Our single cell model provides important advantages toward

the development of a whole-cell model, specifically allowing the study of Aβ in a cause and

effect manner.

In our previous study, we have shown that intracellular injection of synthetic Aβ42 oligo-

mers (Aβ42Os) into Xenopus oocytes triggered a PLC-dependent activation of IP3Rs in the ER

membrane causing cytosolic Ca2+ rise [18]. However, experimental limitations make it diffi-

cult to precisely describe the molecular mechanisms involved. As such, we develop a
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mathematical model to identify and quantify the molecular mechanisms by which Aβ affects

IP3 production and subsequent Ca2+ release through IP3Rs. We first build a computational

model capable of tracking intracellular changes in Ca2+ concentration as a function of time.

We assume that intracellular Aβ42Os (iAβ42Os) have a direct impact on G protein activation

and PLC-mediated IP3 production. The experimental results in [18] provide data to calibrate

our mathematical model and to test our modeling assumptions. We show that increasing

iAβ42Os from small to large doses causes significant changes in the impact of Aβ on certain cel-

lular mechanisms. Our model analysis substantiates that iAβ42Os have a widespread effect on

IP3-mediated Ca2+ signaling.

Because experimental recordings of Ca2+ signals are typically expressed as a ratio of fluores-

cence relative to the resting fluorescence before stimulation (Δf/f0), we use the conversion

methodology outlined in Maravall et al. (2000) [28] to directly compare our simulation results

with experimental data. We further explore the implications of such conversion on model

solutions and provide a detailed analysis of the impact of various model parameters along with

predictions showing how the upstream mechanisms in IP3 production impacts Ca2+ signaling.

Because model kinetics and parameters are linked to certain biophysical mechanisms, we use

the model to study how changes in G protein and PLC activation rates impact Ca2+ signals.

We also explore how large doses of iAβ42Os alter the sensitivity of IP3Rs. Our results provide

insight into which cellular mechanisms could become potential therapeutic targets for treating

AD. Although Aβ can take many forms, in this work, we solely focus on iAβ42Os, positively

recognize by OC antibody and simply refer to them as Aβ for simplicity [6, 14].

2 Methods

2.1 The closed-cell model development

To investigate the impact of Aβ on Ca2+ regulation, we make use of the vast literature on cal-

cium dynamics including the Ca2+ signaling “toolkit” [29–32]. We use experimental condi-

tions and data from Xenopus oocytes to build a Ca2+ model using traditional methods of

tracking the flux in and out of the cytoplasm. Let c denote the concentration of free Ca2+ ions

in the cell cytoplasm, then the rate of change in intracellular Ca2+ can be modeled by

dc
dt
¼ JIN � JOUT;

where J denotes flux across internal and external membranes.

While various pumps and channels exist between the ER and cytosol in neuronal and glial

cells, intracellular Ca2+ signaling in Xenopus oocytes is mostly due to IP3Rs as oocytes are defi-

cient in RyRs. In an in vivo environment, both the Na+/Ca2+ exchanger and the plasma mem-

brane Ca2+ ATPase pumps affect Ca2+ removal from the cytosol while receptor-operated Ca2+

channels lead to Ca2+ entry into the cytosol from external sources. The experimental data on

which we build the model are performed by monitoring the temporal evolution of the fluores-

cence signal generated by the bounding of cytosolic Ca2+ to the Ca2+-dependent fluorescent

dye. As such, the data extracted from our experiments intrinsically take into account the

endogenous activity of the Na+/Ca2+ exchanger, the plasma membrane and SERCA Ca2+

ATPase pumps in the absence of specific blockers.

Based on these conditions, we write

dc
dt
¼ JIPR � JSERCA þ aðJIN � JPMÞ;

where JIPR, JSERCA, JIN, and JPM are the fluxes due to IP3Rs, SERCA pump, a plasma membrane
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channel (such as a Receptor Operated Channel), and Plasma Membrane pump, respectively.

The constant α is typically used to control the rate of transport of Ca2+ across the membrane

to that across the ER.

Let ce denote the concentration of ER calcium. With this, we assume a Ca2+ model of the

form

dc
dt
¼ JIPR � JSERCA þ aðJIN � JPMÞ; ð1Þ

dce
dt

¼ gðJSERCA � JIPRÞ; ð2Þ

where γ is the ratio of cytoplasmic volume to ER volume. Note that we do not explicitly con-

sider the effects of Ca2+ buffers. We assume that Ca2+ buffers are fast, immobile, and of low

affinity (see [30, 32, 33] for further details on buffering). As such, Ca2+ buffering is implicitly

included in the model by assuming that all fluxes are effective fluxes.

In our modeling analysis we assume that the contributions of JIN and JPM are small com-

pared to the contributions of the ER. As such, we set JIN − JPM� 0 and reduce the model to a

closed-cell model where Ca2+ transport only occurs between the ER and cytosol. Understand-

ing that stable Ca2+ oscillations in Xenopus oocytes occur in the absence of external Ca2+ sug-

gests that Ca2+ exchange with the extracellular environment plays a minor role in the

dynamics. However, this simplification does affect the biological implications and the model’s

ability to describe Ca2+ regulation in general, and specifically in glial cells and neurons. For

example, the direct exclusion of specific contributions from JIN and JPM may over-simplify

Ca2+ solutions as the cell moves away from steady-state conditions. Furthermore, as cells are

injected with Aβ, the contributions of the membrane transport mechanisms will certainly

affect cytosolic Ca2+ concentration even in the absence of extracellular Ca2+. Regardless, the

simplified deterministic model does allow us to illustrate important dynamical properties of

Ca2+ signaling patterns with minimal components.

Accordingly, our closed-cell model assumes that Ca2+ flux into the cytosol is only due to

the IP3R on the ER and flux out of the cytosol is due to an ATPase SERCA pump back into the

ER. This simplified system allows us to model Ca2+ flux as a mean-field approximation process

that considers an average over a large number of IP3Rs. While such a model can provide a

macroscopic perspective across the whole cell, it cannot capture the stochastic nature of indi-

vidual channel dynamics. However, such a model is appropriate for our goal of analyzing the

influence of Aβ on the IP3 signaling cascade.

The flux terms in Eqs (1) and (2) can be modeled using various formulations, such as a satu-

rating binding rate model for IP3R [34, 35] and Markov models [36–38]. For our purposes, we

assume that the flux from IP3Rs follows a formulation based on previous models found in [39–

41]. Thus, we write

JIPR ¼ ðkf Po þ JERÞðce � cÞ; ð3Þ

where kf controls the density of IP3Rs, JER is the leak from the ER into the cytoplasm, and Po is

the open probability of the IP3R. In Eq (3), the leak term is necessary to balance the ATPase

flux at steady state.

Recall that in our experiments, [18], individual cells were bathed in a Ca2+ free solution. As

such, we assume a closed-cell environment with Ca2+ fluxes occurring only between the
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cytosol and the ER and set

ct ¼ cþ
ce
g
; ð4Þ

where ct is the total number of moles in the cell divided by the cytoplasmic volume [32]. We

then replace the term (ce − c) in Eq (3) with (γ(ct − c) − c).
To model Po, we use the Li and Rinzel [42] simplification of the De Young and Keizer [39]

formulation for the open probability of the IP3R

Po ¼
pcð1 � yÞ

ðpþ K1Þðcþ K5Þ

� �3

; ð5Þ

where y is the proportion of inactivated IP3Rs and p is the concentration of IP3 present in the

cytosol. To model the SERCA pump, we use a Hill function of degree two. Replacing the fluxes

in Eqs (1) and (2), we have

dc
dt
¼ kf

pcð1 � yÞ
ðpþ K1Þðcþ K5Þ

� �3

þ JER

 !

ðgðct � cÞ � cÞ �
Vsc2

K2
s þ c2

; ð6Þ

dy
dt
¼

ðk� 4K1K2 þ k� 2pK4Þc
K4K2ðpþ K1Þ

� �

ð1 � yÞ �
k� 2pþ k� 4K3

pþ K3

� �

y; ð7Þ

where Ki, for i = 1, . . .5 and k−4 and k−2 are parameters associated with the transition rates

between various quasi-steady-states of the IP3R (see [32, 42], and [30] for details), and Vs and

Ks are the parameters associated with the SERCA pump.

The parameter values used for these equations are given in Table 1 and are similar to those

used by De Young and Keizer [39] with modifications to the cellular and SERCA parameters.

The choices for the the cellular and SERCA parameters were obtained by fitting the model to

various experimental data illustrated in [18]. For these parameters, the dynamics of Eqs (6)

and (7) are illustrated in Fig 1A where the steady-state values are shown as a function of p. As

p increases, the dynamics illustrate the classic Hopf bubble and transitions from stable steady-

states into periodic oscillations dynamics then back to stable steady-states through the Hopf

bifurcation points labeled HB1 and HB2. The top and bottom branches of the bubble give the

max and min values of the oscillations as a function of p. Shown in Fig 1B are the nullclines

corresponding to dc/dt = 0 (in red) and dy/dt = 0 (in green) along with the trace of the solution

when p = 0.325. The dashed lines correspond to the nullclines when p = 0 while the labeled

solid red and green curves are the nullclines when p = 0.325. The temporal Ca2+ solution

Table 1. Parameter values of the closed-cell Ca2+ base model. All IP3R parameters were adopted from De Young and

Keizer (1992) while the Cellular and SERCA parameters were altered to match experimental results.

Cellular Parameters IP3 Receptor Parameters

kf 2.7 s−1 K1 0.13 μM−1

JER 0.00085 s−1 K2 1.05 μM−1

γ 7 K3 0.943 μM−1

ct 2 μM K4 0.145 μM−1

K5 0.082 μM−1

SERCA Parameters k−2 0.21 s−1

Vs 1.5 μM s−1 k−4 0.029 s−1

Ks 0.15 μM

https://doi.org/10.1371/journal.pone.0246116.t001
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showing periodic oscillations when p = 0.325 is shown in Fig 1C. Also illustrated there is the

variable y in red.

In [18], changes in Ca2+ concentration occur as a consequence of the intracellular injection

of Aβ. As such, new IP3 is synthesized within the cell during the experimental procedure. To

account for the IP3 dynamics, we use the hybrid formulation of Politi et al. [43]. Let p denote

the concentration of IP3 present in the cytosol, then we write

tp
dp
dt
¼ �VPLC

c2

K2
PLC þ c2

� Z
c2

K2
ip3k
þ c2
þ ð1 � ZÞ

 !

p; ð8Þ

where �VPLC is the maximal rate of IP3 production and depends on agonist concentration, KPLC

characterizes the sensitivity of PLC to Ca2+, τp = 1/(k3k+ k5p) represents the characteristic time

of IP3 turnover where k3k is the maximum rate of 3-kinase and k5p is the dephosphorylation

rate, Kip3 k is the half-activation constant for 3-kinase, and η = k3k/(k3k+ k5p). Both Kip3 k and η
are used to tune the positive and negative feedback Ca2+ in the IP3 metabolism [30]. The term

�VPLC will depend on the amount of activated PLC available and we alter the model by writing

�VPLC ¼ VPLC � PLC; ð9Þ

where PLC is the fraction of activated PLC complexes, and VPLC is the IP3 maximal rate of pro-

duction, to account for time evolving active PLC.

To model PLC and G-protein activation, we use a kinematic model due to Bennett et al.

[44] and Lemon et al. (2003) [45]. We assume that PLC is the fraction of activated PLC com-

plexes that drive IP3 production and that G is the fraction of activated G-protein complexes

and write

dPLC
dt

¼ kaGðPLCtot � PLCÞ � kbPLC; ð10Þ

dG
dt

¼ kcðrþ dÞðGtot � GÞ � kdG; ð11Þ

where PLCtot and Gtot are the total amount of available PLC and G-proteins (assumed fixed), ρ
governs the production of active G-proteins, δ is used as a control for background activity, and

Fig 1. Dynamics and bifurcation structure for constant IP3. A shows the bifurcation structure for Eqs (6) and (7) for constant values of p. A classic

Hopf bubble emerges between two Hopf bifurcation points labeled HB1 and HB2. The black solid line corresponds to stable fixed points while the

dashed black curve are unstable fixed points. B shows the nullclines when p = 0 (dashed curves) and when p = 0.325 (solid curves). The nullclines

corresponding to dc/dt = 0 and dy/dt = 0 are given by the red and green curves, respectively. A trace of the solution when p = 0.325 is given by the blue

trajectory and is attracted to a period orbit (dark blue). The oscillating solution to the model when p = 0.325 is shown in C as a function of time with the

corresponding solution to the y equation is shown in red.

https://doi.org/10.1371/journal.pone.0246116.g001
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ka, kb, kc, and kd are rate constants. Notice that the kinetic formulations above are a simplifica-

tion of the model constructed by Mahama and Linderman, [46], where a more complex set of

equations that account for the hydrolysis of GTP to GDP. A summary of that model can be

found in [30].

2.2 The effects of Aβ
Although Aβ is clearly implicated in the disruption of intracellular Ca2+ homeostasis, its inter-

action with individual pumps, channels, and exchangers remains difficult to quantify. In our

previous experiments [18], we performed intracellular injections of Aβ oligomers at various

concentrations levels. We also show that the injection of Aβ causes rise of cytotoxic levels of

Ca2+ that carry on over time. This cytotoxicity may be due to stress caused by persistent Ca2+

release through IP3Rs. Of particular interest are the spatiotemporal patterns of fluorescence

Ca2+ signals evoked by Aβ at dose of 1 μg/ml. Recordings in different oocytes showed that Aβ
led to various Ca2+ signaling with ranging patterns from slowly increasing to steady oscilla-

tions (Fig 1C-1E in [18]). Furthermore, when concentration levels of 3 μg/ml, 10 μg/ml, and

30 μg/ml were utilized, the time courses of the fluorescence level of Ca2+ show that the ampli-

tude of the Ca2+ signals increases, and the latency to onset and peak response time decreases as

the amount of Aβ is increased [18]. In addition, the behavior of Ca2+ signals for the doses

above 1 μg/ml exhibited a prolonged time dependence with an increasing rapid decay as the

amount of Aβ is increased. To capture the disparate Ca2+ signals evoked by various doses of

Aβ, our model considers both “small” (1 μg/ml or less) and “large” (greater than 1 μg/ml)

doses of Aβ. We utilize these results to hypothesize how Aβ impacts various cellular mecha-

nisms in a dose-dependent manner, and how to incorporate Aβ into the model.

Illustrated in Fig 2 are two diagrams showing the model assumptions for the interaction of

Aβ on the IP3 signaling cascade along with the key model components for “small” and “large”

doses. The black arrows (solid and dashed) emanating from and going into Ca2+ illustrate the

flow of Ca2+ along with feedback mechanisms. The two red arrows emerging from Aβ in Fig

2A show the location of the impact of “small” doses of Aβ within the model structure. The blue

arrows emerging from Aβ in Fig 2B show the mechanisms impacted by “large” doses of Aβ.

The assumptions for how Aβ alters the mechanisms illustrated in Fig 2 are based on the

Fig 2. Model structure and components. Modeling assumptions for the location of impact of Aβ on the production of IP3 with key Ca2+ signaling

mechanisms included in the closed-cell model. The key model assumptions for how Aβ impacts the IP3 signaling cascade are illustrated as red arrows

for “small” doses in A. The impacted cellular mechanisms for “large” doses of Aβ are highlighted by the blue arrows in B.

https://doi.org/10.1371/journal.pone.0246116.g002
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model’s ability to reproduce dose-dependent experimental results and are discussed in greater

detail below.

Our closed-cell model must be able to reproduce slow monotonic increases in Ca2+ as a

result of the introduction of Aβ, as well as give rise to repetitive oscillations and baseline spikes

for doses of 1μg/ml. The model must also be able to reproduce and explain how Aβ leads to

increasing signaling peak and a decreasing latency to peak of the response for “large” doses

ranging from 3-30 μg/ml. To determine the precise mechanisms by which Aβ affects the cellu-

lar machineries that regulate cytosolic Ca2+, using several antagonists, we suggest that Aβ acts

upstream of IP3Rs and hypothesize that Aβ stimulates IP3 production by PLC in a G-protein-

dependent manner [17]. Our modeling assumptions for incorporating Aβ were developed

through a Monte Carlo Filtering process aimed to isolate the impact of Aβ within our model

structure. First, we assume that Aβ acts as an agonist for G-protein activation and write

r ¼ VR �
q

KR þ q
; ð12Þ

where VR is a scalar, KR is the Aβ concentration producing half activation. The term q repre-

sents the effects of a current injection at time t = t1 of Aβ at concentration a and has the form

q ¼ Hðt � t1Þ � a � e� rðt� t1ÞHðt� t1Þ; ð13Þ

where H is the Heaviside function and e−r(t−t1) represents the decay of Aβ over time. To match

the timeframe of the experimental injections, we set t1 = 2. In [18], Aβ responses were still evi-

dent after 10-15 minutes and as such, we assume a slow decay rate for Aβ and fix r = 0.001 in

the model. In this representation, we are assuming that Aβ is acting like a G-protein agonist in

a similar way as is expressed in [44].

Our second assumption is to alter the maximal rate of PLC mediated IP3 production to

depend on Aβ as follows

VPLC ¼ V0 þ VQ �
q2

K2
Q þ q2

; ð14Þ

where V0 accounts for PLC mediated IP3 production under normal conditions, VQ accounts

for influence of Aβ on PLC-mediated IP3 production, and KQ is the dissociation constant. The

exponent in VPLC corresponds to a Hill coefficient of 2. A key finding based on this model for-

mulation is that in order to match experimental results, PLC activation needed to be tied to Aβ
concentrations. This assumption was determined critical for altering the amplitude of Ca2+

signals in coordination with the time to peak in our filtering process. Various alternative struc-

tures for VPLC were explored numerically but those structures were deemed insufficient for

generating the experimental Ca2+ signaling patterns outlined in [18]. As such, we have

assumed that the maximal rate of PLC mediated IP3 production takes the form of Eq (14), but

more data is needed to determine whether this assumption actually captures how Aβ alters

PLC-mediated IP3 production.
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Altogether, our closed cell model consists of five differential equations with Aβ input driv-

ing the system. In summary,

dc
dt
¼ kf

pcð1 � yÞ
ðpþ K1Þðcþ K5Þ

� �3

þ JER

 !

ðgðct � cÞ � cÞ �
vpc2

k2
p þ c2

; ð15Þ

dy
dt
¼

ðk� 4K1K2 þ k� 2pK4Þc
K4K2ðpþ K1Þ

� �

ð1 � yÞ �
k� 2pþ k� 4K3

pþ K3

� �

y; ð16Þ

tp
dp
dt
¼ V0 þ VQ

q2

K2
Q þ q2

 !

PLC
c2

K2
PLC þ c2

� �

� Z
c2

K2
ip3k
þ c2
þ ð1 � ZÞ

 !

p; ð17Þ

dPLC
dt

¼ kaGðPLCtot � PLCÞ � kbPLC; ð18Þ

dG
dt

¼ kc VR
q

KR þ q
þ d

� �

ðGtot � GÞ � kdG; ð19Þ

where the term q given in Eq (13) simulates the intracellular injection at time t = t1 of Aβ at

concentration a. Base parameters for the IP3, PLC, and G-protein equations are given in

Table 2. The parameters are separated by the dose of Aβ used in the model. We characterize a

dose of 1 μg/ml and smaller as “small” and doses above 1 μg/ml “large”. We explain the distinc-

tion and need to separate the parameter space based on Aβ dosage below.

3 Model results

3.1 Closed-cell model for small doses

In this section we investigate model solutions in relation to the experimental results described

in [18] where a small amount of Aβ is used. A current injection of Aβ at dose of 1 μg/ml gives

rise to various spatio-temporal patterns in different cells ranging from a steady increase to

periodic solutions. Although we are considering 1 μg/ml a small dose, it was sufficient for

evoking local puffs and global responses. Our ODE model cannot capture the traveling waves

exhibited in the experiments, but we do show temporal Ca2+ oscillations that form the basis of

wave activity. When the model given by Eqs (15)–(19) is simulated using the parameter values

given in the Small Doses column of Table 2 with a = 1 μg/ml of Aβ, we are able to reproduce

many of the qualitative features illustrated in Fig 1 in [18]. For example, in some oocytes, a

dose of 1 μg/ml leads to a slow and steady increase in Ca2+ signals that persists. Other cells

exhibit amplitude increasing oscillations or steady spike-like responses. These types of

responses are captured by the model for baseline parameters with slight variation in the cellu-

lar parameters. Because Ca2+ recordings in Fig 1 in [18] come from different oocytes, we justify

slight alterations to cellular parameters as a way to account for variations between individual

cells. Note that IP3R parameters may also vary, but for now we simply focus on the SERCA

parameter Ks.

Illustrated in Fig 3 are various scaled model solutions along with a partial bifurcation dia-

gram highlighting the key behaviors of the model when Ks is altered. Model solutions illus-

trated in Fig 3 have been scaled according to the following

cs ¼
c � c0

KD
; ð20Þ
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where KD = 0.3 is a dissociation constant that depends on indicator properties, and c0 is the

resting Ca2+ concentration. In addition, to set the initial condition c0 (and those of the other

variables) we first calculate the steady-state value for the parameter set when a = 0. As such,

initial conditions for each of the solutions shown in Fig 3 are slightly different as altering Ks

also changes the Ca2+ homeostasis level in the model but typically range between (0.01, 0.15).

Fig 3A–3C show responses similar to those in Fig 1 of [18]. More specifically, Fig 3A shows

a solution where Ca2+ increases to a new steady-state when Ks = 0.15. Fig 3B illustrates a solu-

tion that has increasing amplitude oscillations when Ks = 0.12 while Fig 3C shows repetitive

oscillations when Ks = 0.118. In both Fig 3B and 3C, model Ca2+ signals occur between 2-5

minutes, matching the experimental timescale for these types of responses. The responses in

Table 2. Parameter values of the closed-cell Ca2+ model.

Model Parameters Description Small Doses (a � 1) Large Doses (a> 1) Notes and Modeling Reference

Cellular

kf Maximal rate of Ca2+ release 2.7 s−1 3.5 s−1 Fit to experiment, [30, 32, 39]

JER ER Ca2+ leak 0.00085 s−1 0.0009 s−1 Fit to experiment, [30, 32, 39]

γ Ratio of cytoplasmic to ER volume 7 8.5 Fit to experiment, [30, 32, 39]

ct Total moles divided by cytoplasmic volume 2 μM 2 μM [30, 32, 39]

SERCA

Vs Maximal SERCA pump rate 1.5 μM s−1 1.7 μM s−1 Fit to experiment, [30, 32, 39]

Ks Half-activation SERCA constant 0.15 μM 0.14 μM Fit to experiment, [30, 32, 39]

IP3 Receptor

K1 IP3 receptor rate constant 0.13 μM−1 0.21 μM−1 [30, 32, 39]

K2 IP3 receptor rate constant 1.05 μM−1 0.021 μM−1 [30, 32, 39]

K3 IP3 receptor rate constant 0.943 μM−1 0.943 μM−1 [30, 32, 39]

K4 IP3 receptor rate constant 0.145 μM−1 0.25 μM−1 [30, 32, 39]

K5 IP3 receptor rate constant 0.082 μM−1 0.01 μM−1 [30, 32, 39]

k−2 IP3 receptor rate constant 0.21 s−1 0.012 s−1 [30, 32, 39]

k−4 IP3 receptor rate constant 0.029 s−1 0.00006 s−1 [30, 32, 39]

IP3 Model

V0 Intrinsic PLC-mediated IP3 production 0.15 μM 0.19 μM Fit to experiment

VQ Control parameter for influence of Aβ on IP3 7.82 μM 380 μM Fit to experiment

KQ PLC dissociation constant 0.0086 μg/ml 0.0086 μg/ml Fit to experiment

Kip3 k Half-activation for 3-kinase 0.6 μM 1.6 μM Fit to experiment, [43]

KPLC PLC sensitivity to Ca2+ 0.01 μM 0.016 μM Fit to experiment, [43]

k3k IP3 phosphorylation rate 1.5 s−1 0.7 s−1 Fit to experiment, [43]

k5p IP3 dephosphorylation rate 0.01 s−1 0.005 s−1 Fit to experiment, [43]

PLC

ka PLC-protein activation rate 0.35 s−1 0.75 s−1 Fit to experiment

kb PLC-protein deactivation rate 2.2 s−1 2 s−1 Fit to experiment

PLCtot Scaled total number of PLC 1 1 Fit to experiment

G-Protein

kc G-protein activation rate 0.33 s−1 0.047 s−1 Fit to experiment, [44–46]

kd G-protein deactivation rate 2.17 s−1 4.7 s−1 Fit to experiment, [44–46]

δ G-protein intrinsic activity 0.01 0.012 Fit to experiment, [44, 45]

VR Maximal G-protein activation 7.4 10 Fit to experiment, [44, 45]

KR Aβ concentration producing half-activation 4467 μg/mL 2000 μg/mL Fit to experiment, [44, 45]

Gtot Scaled total number of G-protein 1 1 Fit to experiment, [44, 45]

https://doi.org/10.1371/journal.pone.0246116.t002
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Fig 3D–3E show spike-like Ca2+ pattern that have a smaller frequency when Ks = 0.11 and a

decreasing amplitude oscillatory solution when Ks = 0.125, respectively. A partial bifurcation

diagram with Ks as the bifurcation parameter is provided in Fig 3F. As the parameter Ks

decreases from Ks = 0.15, a transition from stable fixed points into periodic orbits occurs

through a Hopf bifurcation point around HB3� 0.1242. As Ks continues to decrease, solutions

will exhibit sustained oscillations with increased amplitude and a decrease in frequency. The

dynamics of model solutions are much more intricate than the partial bifurcation diagram in

Fig 3F suggests, especially around Ks = 0.09 where multiple limit points and Hopf bifurcations

exist. However, our goal is not to fully examine the model dynamics but to merely show that

by altering a single model parameter, we can generate solutions that are similar to experimen-

tal recordings. A complete description of the dynamics in this region is beyond the scope of

investigation and is not included in our analysis.

Ks is the dissociation constant for the SERCA pump and is the Ca2+ concentration occupy-

ing half of the binding sites of the pump. A smaller Ks value corresponds to needing less Ca2+

to attain 50% of the maximal response for the pump. Whether changes in Ks are due to Aβ or

simply through chance variation in cells remains debatable. Here, we argue that it is alterations

in cellular structures modeled through differences in parameters that is causing the changes in

Ca2+ signals and not because of Aβ’s direct impact on the SERCA pump. However, more

Fig 3. Model solutions mimic experimental Ca2+ patterns for doses of a = 1 μg/ml of Aβ. The dependence of model solutions for a dose of 1 μg/ml of

Aβ on the cellular parameter Ks is investigated. A shows an increasing Ca2+ signal that settles to an increased steady-state when Ks = 0.15. B shows that

oscillations in Ca2+ can exhibit increasing amplitudes such as those found in Fig 1D in [18]. C and D show that as the value of Ks decreases, the

oscillatory patterns of the model reproduce the spike-like Ca2+ signals observed in Fig 1E in [18]. E illustrates an oscillatory solution with an increased

steady-state Ca2+ homeostasis level when Ks is just above the Hopf point. Both D and E show the traces for cs, y, and p in blue, red, and black,

respectively. F shows a simplification of the scaled bifurcation diagram with the bifurcation parameter Ks. Notice that as Ks decreases from the base

value of 0.15, a transition from stable steady-states into periodic oscillations occurs through a Hopf bifurcation around HB3�0.1242. The dynamics

around Ks = 0.09 include multiple Hopf bifurcations and has more complex structure than what is presented here.

https://doi.org/10.1371/journal.pone.0246116.g003
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analysis is needed to fully understand how different doses of Aβmay influence the generation

of various Ca2+ signals.

When looking at the model, the subsystem given by Eqs (18) and (19) is driving IP3 through

the inclusion of the PLC term in Eq (17). As such, we can investigate the subsystem given by

Eqs (15)–(17) by treating PLC as a parameter and fixing a = 1. Illustrated in Fig 4A are the gen-

eral dynamics of Ca2+ using PLC as a bifurcation parameter for the subsystem given in Eqs

(15)–(17). Notice that the dynamics of Ca2+ will transition from stable steady-states (solid

black curve), at the Hopf bifurcation point HB4�0.0043 (labeled in blue), into periodic solu-

tions until transitioning back to stable steady-states at Hopf bifurcation point HB5�0.0078

(labeled in red). The green Hopf bubble captures the maximum and minimum values of the

Ca2+ oscillations. Fig 4B shows the subsystem solution when PLC = 0.005 for the base parame-

ters given in Table 2 for small doses. Intracellular Ca2+ signal, the proportion of inactivated

IP3Rs, and the concentration of IP3 are given by the blue, red, and black traces, respectively.

Since both PLC and a drive the responses of Eqs (15)–(17), a two parameter bifurcation dia-

gram where the location of the Hopf points have been tracked as a function of PLC and a is

given in Fig 4C. Notice that as the dose of Aβ gets closer to zero, the location of the Hopf bub-

ble shifts to the right. This implies that in order to observe oscillatory behavior when a is close

to zero, the amount of active PLC needs to be greater.

Fig 4. Dynamics of Ca2+ using PLC as a parameter for doses of a� 1 μg/ml of Aβ. Model dynamics for the subsystem Eqs (15)–(17) in terms of PLC
and Ks. The bifurcation diagram when Ks = 0.15 with the subsystem parameters given in Table 2, is shown in A. The figure shows a typical Hopf bubble

between two Hopf bifurcation values labeled HB4 and HB5 as PLC is varied. The subsystem solution when PLC = 0.005 is presented in B, where c, y,

and p are shown in the blue, red, and black traces, respectively. C shows the two parameter bifurcation diagram when both PLC and a are varied. Note

that only the small doses of a are considered and the region of oscillations shifts to the right as a decreases and PLC increases. D shows the subsystem

bifurcation diagram when Ks = 0.011 including two Hopf bifurcation values labeled HB6 and HB7. E shows the subsystem solution when PLC = 0.01

where c, y, and p are shown in the blue, red, and black traces, respectively. F shows the two parameter diagram tracking the location of the Hopf

bifurcation points when PLC and Ks are treated as parameters. The parameter space is separated into regions where periodic orbits exist and don’t. The

red cross and triangle correspond to the location of the parameter values used to generate the solutions in B and E, respectively.

https://doi.org/10.1371/journal.pone.0246116.g004
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In Fig 3, we showed that the model solutions will behave differently as the cellular parame-

ter Ks is varied. Here, we also look at the impact of varying Ks on the solutions of the subsystem

Eqs (15)–(17). Illustrated in Fig 4D is the bifurcation diagram when Ks = 0.11. In this case, the

bifurcation diagram shows an increased region of oscillations accompanied with increased

amplitudes for most of the values of PLC in the range of the plot. Depending on the value of

PLC, the oscillations will take more of a spiking form than sinusoidal oscillations, which is

important as the signals observed experimentally correspond to spike-like signals of local puffs

and global Ca2+ spikes. The red dashed curves in this figure correspond to unstable oscilla-

tions. The two Hopf bifurcations are given by HB6� 0.0002 and HB7� 0.02115. Fig 4E shows

the subsystem solution when PLC = 0.01 and Ks = 0.11. To better understand the impact of

changes in both PLC and Ks on the dynamics of the subsystem Eqs (15)–(17), a two parameter

bifurcation diagram is given in Fig 4F. In this figure, the parameter space is separated into a

region where periodic orbits exist and a region where the model has no periodic orbits. The

blue curve in this figure tracks the location of the Hopf points generated by the subsystem. For

values of Ks between approximately 0.1127 and 0.1511 the bifurcation diagram will have a

Hopf-like bubble between two Hopf bifurcations (as those illustrated in Fig 4A and 4D).

Although the complexities of these bifurcation diagrams varies, the two parameter bifurcation

diagram helps us understand the oscillatory nature of solutions when variations in PLC and Ks

occur. The red cross and triangle shown in Fig 4F correspond to the location of the parameter

values for the diagrams generated in Fig 4A and 4B, and Fig 4C and 4D, respectively.

To further investigate the behavior of the small doses parameters, we decouple the PLC and

G subsystem given by Eqs (18) and (19) and look at the time evolution of the fraction of active

PLC and G. As a is varied for small doses, both PLC and G quickly (on the order of seconds)

settle to their new steady-states values. Illustrated in Fig 5A and 5B are the temporal solutions

of the subsystem (18) and (19) for a = 0.1 (black), a = 0.5 (magenta), and a = 1 (blue), respec-

tively. Fig 5C shows the phase space solutions for a = 0.1 (black), a = 0.5 (magenta), and a = 1

(blue). The dashed lines in this figure correspond to the nullclines for Eq (18) (red) and Eq

(19) (respective color). The new a-dependent steady-state values occur at the intersection of

the respective dashed lines for each a value. All three solutions shown in Fig 5C start at the

a = 0 equilibrium value of (PLC0, G0)� (2.415 × 10−4, 1.518 × 10−3). When comparing the

analysis shown in Fig 4, the values of PLC produced through the subsystem given by Eqs (18)

and (19) will generate oscillatory responses when Ks is decreased from Ks = 0.15. Although

additional analysis can be done for various parameters in the model, we now turn our atten-

tion to how altering the dose of Aβ impacts the model solutions.

Fig 5. Steady-state values for PLC and G for doses of a� 1 μg/ml of Aβ. The steady-state fraction of activated PLC and G-proteins settles to a new

value when a = 0.1 (black), a = 0.5 (magenta), and a = 1 (blue) in A and B, respectively. Model solutions for the various small doses a-values are shown

on the phase plane for PLC and G in C. The dashed lines correspond to the PLC nullcline (red) and the G nullclines (black, magenta, and blue).

https://doi.org/10.1371/journal.pone.0246116.g005
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3.2 Dose response relationship between amplitude and latency

Dose-response experiments in Xenopus oocytes demonstrate two major effects on Ca2+ fluxes

following increasing doses of Aβ: the amplitude of the Ca2+ signals increases with the amount

of Aβ and the latency of the maximum peak time decreases as the amount of dose increases.

We can test model against the experimental data starting with the small dose parameters to

determine how the amplitude and latency of solutions vary as the doses of Aβ are increased.

Illustrated in Fig 6A are scaled model solutions for Aβ doses of a = 1 μg/ml (black), a = 3 μg/

ml (blue), a = 10 μg/ml (red), and a = 30 μg/ml (green) using the small doses parameters in

Table 2. Notice that as a increases, the model captures both the amplitude increases and the

decrease in latency to peak but is insufficient for reproducing the observed Ca2+ signals for

large doses. Using the small dose parameters to study to explore model solutions and investi-

gate the long term behavior of the model is helpful even though our analysis suggests needing

two different dose-dependent parameter sets in order to match key experimental observations.

In the short term (on the order of minutes), solutions of the model with the small dose

parameters tend to an apparent new homeostasis level. However, since the amount of Aβ
introduced in the model through Eq (13) will eventually decay towards zero, the solution will

tend back to the original steady-state value. This can be seen in Fig 6B where the model solu-

tions are shown on a timescale of hours with r = 0.001 (the initial peak of solutions have been

removed to better illustrate the long-term behavior). Whether Aβ decays naturally or persists

in cells may depend on many factors. The Calcium hypothesis for AD suggests that the amyloi-

dogenic pathway remodels the neuronal Ca2+ signaling pathway responsible for cognition [13,

47, 48]. As such, a slow accumulation of Aβmay increase the cytosolic Ca2+ level of cells lead-

ing to toxic stress and in turn can feed back into the hydrolysis of the amyloid precursor pro-

tein in a vicious cycle. In an in vivo environment, Aβmay slowly transition from small to large

concentrations over timescales of months to years. Although any long-term analysis is beyond

the current model, this model shows that if Aβ persists in the model (i.e., when r = 0), solutions

would tend to new higher dose-dependent steady-state values as indicated by the dashed lines

in Fig 6B. As expected, increasing r in the model will cause the solutions to decrease back to

the original steady-state more rapidly.

To understand the impact of variations in the parameters on the amplitude and latency of

solutions, Fig 6C shows the location of the solution peak as the parameters kf, JER, and γ are

Fig 6. Amplitude and latency of model solutions vary with doses of Aβ. For the small doses parameters, A shows the model captures the increase in

Ca2+ signal amplitude as well as the decrease in time to peak onset. B shows the long term impact of Aβ for doses of Aβ corresponding to a = 1, a = 3,

a = 10, and a = 30 in black, blue, red, and green, respectively. The dashed lines in B correspond to the steady-state values in the event where the amount

of Aβ does not decay and is fixed. C shows the location of 100 stochastically chosen cells under the given a-value. Each color-coded circle corresponds

to the location of the solution peak and time of peak when cellular parameters are varied uniformly with 10% variation for the particular a value. The

dashed black curve corresponds to the location of the amplitude peak for the small doses parameters for a ranging between (0.1, 40).

https://doi.org/10.1371/journal.pone.0246116.g006
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uniformly varied 10% from base values for 100 trials. The dashed black curve in this figure cor-

responds to the amplitude and latency for the base small doses parameters in Table 2 for Aβ
doses between a = 0.1 and a = 40. Notice that the amplitude is more variable than the latency

for the dose of a = 30 while the opposite occurs for smaller values of a. Fig 6C is intended to

illustrate that the model can capture some of the effects of “large” doses of Aβ as observed in

Fig 1G of [18] while using the small doses parameters given in Table 2.

Interestingly, although the model given by Eqs (15)–(19) with the small doses parameters

can capture many of the qualitative behaviors observed experimentally, it lacks some impor-

tant features when large doses of Aβ are introduced. For example, the recorded average fluo-

rescence response for doses of 3, 10, and 30 μg/ml, have a much longer time dependence and

display an increasingly rapid decay (see Fig 1G of [18]). These Ca2+ signals differ from

responses evoked by a dose of 1 μg/ml (such as those illustrated in Fig 3). The model solutions

shown in Fig 6A do not capture these behaviors and as such cannot fully represent the impact

of Aβ on cellular mechanisms (at least for large doses). Although we do not fully understand

how large doses of Aβ affects the Ca2+ signaling cascade, our goal is to use the model to better

understand how Aβmay be impacting individual cellular mechanisms through appropriate

parameter selection. To do this, we alter model parameters to match the experimental data in

Fig 1G of [18] and then use those results to describe the possible role that large doses of Aβ
plays in Ca2+ signaling. In essence, in order to reproduce the observe experimental data when

various doses of Aβ are used, we distinguish model behavior through the selection of small-

and large-doses parameter sets.

4 Large doses parameter fitting

The model developed in the previous section tracks Ca2+ concentration as a function of time.

The experimental data in [18] tracks changes in Ca2+ as a ratio of changes in fluorescence

intensity with baseline fluorescence levels. This is often written as δf = (f−f0)/f0 = Δf/f0 with f0
representing the fluorescence intensity at resting Ca2+ concentration. To better understand the

impact of Aβ on Ca2+ dynamics through modeling, we first rescale fluorescence measurements

to Ca2+ concentrations. According to Maravall et al. [28], changes in Ca2+ concentration are

associated with changes in fluorescence through the equation

cs ¼ fmð1 � 1=Rf Þ
df

ðdfmax � df Þdfmax
; ð21Þ

where fmax is the intensity of the dye at maximum Ca2+ concentration, Rf = fmax/fmin is the indi-

cator’s dynamic range with fmin being the intensity at minimum Ca2+ concentration, δfmax is

the saturation of the Ca2+ indicator, and fm = fmax/f0. We use Eq (21) to rescale the experimen-

tal fluorescence data found in Fig 1G of [18]. Further details regarding the rescaling procedure

are provided in the Appendix.

With the rescaling procedure described in the Appendix, we now have a way to convert the

experimental fluorescence data in [18] to Ca2+ concentrations and link model solutions with

experimental data. We first fix the scaling parameters KD = 0.3, Rf = 100, fm = 40 and then

determine the value of the model parameters that will evoke the appropriate Ca2+ signals. The

parameters used for the large doses of Aβ are given in Table 2 under the Large Doses column

and were determined by fitting solutions to the converted experimental data for each level of

Aβ. Starting with the small doses value, each parameter was stochastically chosen from an indi-

vidual parameter distribution and a least-squares fitting procedure was used to identify a

model parameter set corresponding to an approximate minimum of our objective function.

We used a random sampling procedure to draw a parameter set qs from an admissible
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parameter space Q 2 Rp (where p is the number of model parameters). The distribution of

each parameter was chosen to match those of previous studies whenever possible. We then

minimized the objective function

Err ¼
Xn

i¼1

½sedðiÞ � icsði; qsÞ�
2
; ð22Þ

where sed(i) is the scaled experimental data value at i, and ics(i, q) is the corresponding (inter-

polated) scaled Ca2+ solution at i.
Our minimization technique uses a random sampling procedure with a random walk pro-

cess when local minima are found. That is, we randomly select parameter values and compute

Err. If Err is less than some threshold, we then perform a random walk around the parameter

values that generated the local minimum error Err to locate a local minimizer. While minimiz-

ing the objective function for a large number of parameter selections provides potentially good

estimates for model parameters, we did not analyze the parameter space with the intention of

finding a global minimum. Regardless, the minimization technique does provide a way to

establish parameter values that otherwise would be difficult to estimate.

To further understand the impact of parameters on model solutions, we also implemented

an additional minimization technique where we took individual parameter subsets from

Table 2, varied those, then compared the results with the experimental data. For example,

starting with the small doses parameters, we only varied the PLC parameters to determine

whether changes in those parameters could capture the large doses experimental results, and

so on. This process was conducted for many parameter subset combinations starting with the

small doses parameter set. Illustrated in Fig 7 are two “best fit” scaled model solutions cs
(smooth curve) shown on top of the scaled experimental data (dashed curve) for each of the

three Aβ concentrations. Fig 7A shows a best fit solution when Cellular, SERCA, and the IP3R

parameters are keep fixed. Observe that the “best” fit parameters are not those listed in Table 2

for either the small or large doses since we are varying some parameters and keeping others

fixed. Note that the best fit solutions illustrated here are not much different from the solutions

shown in Fig 6A. This suggests that alterations in some of the Cellular, SERCA, and IP3R

parameters appear to be necessary to capture the observed behavior for large doses of Aβ. Sim-

ilarly, Fig 7B shows a best fit solution when all but the IP3R parameters are varied. This simula-

tion is included to clearly illustrate the need for altering all model parameters, particularly the

Fig 7. Variation in all parameter subsets required to reproduce the impact of Aβ for large doses. A shows a “best”

fit solution when the Cellular, SERCA, and the IP3 Receptor parameters are kept fixed. Notice that altering the

remaining parameters (IP3 Model, PLC, and G-Protein) cannot capture the observed Ca2+ signal. B shows a “best” fit

solution when only the IP3R parameters are kept fixed. Notice that without altering the IP3R parameters, model

solution peaks and decay also do not reproduce the observed experimental behaviors for large doses of Aβ.

https://doi.org/10.1371/journal.pone.0246116.g007
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IP3R parameters. The results of these simulations demonstrate that Aβ has a pervasive effect

on the entire cell structure in large doses since matching the experimental data did require var-

iation in every set of cellular mechanisms included in the model.

Illustrated in Fig 8 are model solutions when a = 3, a = 10, and a = 30 using the large doses

parameters given in Table 2. We also included the solution for a = 1 to illustrate how this large

doses model behaves for the dose of 1 μg/ml for comparison. Fig 8A shows the scaled model

solution (smooth curve) on top of the scaled experimental data (dashed curve) for each of the

three Aβ concentrations. Fig 8D shows the unscaled Ca2+ concentration c illustrating that the

scaling procedure does not effect the model’s ability to capture the general behavior of the

Ca2+ signals observed experimentally. Solutions for p are plotted in Fig 8B and 8E using two

different timescales. Again, in our model Aβ decays exponentially and over the course of a cou-

ple of hours, the model solutions settle back to their original steady-states. Fig 8C and 8F show

the evolution of y using two different timescales. These two figures show that the proportion of

IP3Rs that are inactivated by Ca2+ remains fairly high over the course of hours acting to sup-

press Ca2+ spikes over time.

All model parameters used in the simulations illustrated in Fig 8 are given in Table 2 under

the Large Doses column. Notice that the differences in each solution (as given by the different

colors) of Fig 8A is only driven by changes in the value of a. In all simulations, initial condi-

tions were found using the steady-state values when a = 0. Noteworthy, our large doses model

is efficiently capable of capturing the increase in amplitude of the Ca2+ concentration signal

and the decrease in latency to peak onset as well as increasingly rapid decay as the Aβ

Fig 8. Model matches experimental data for large doses of Aβ. Model solutions for the “large” dose parameter set are illustrated in this figure. A

shows model simulation (smooth curve) when a = 3 (blue), a = 10 (red), and a = 30 (green) overlaid on top of the rescaled experimental data (dashed

curve) of [18]. Note that model solutions for the “large” dose parameters when a = 1 (black) is also shown here. B and C show the time evolution of

model IP3 and PLC, respectively. D shows the unscaled Ca2+ concentration given by the model variable c for the three levels of Aβ and for a = 1 (black).

E and F show the time evolution of p and y on the order of hours, respectively. Due to the Aβ decay incorporated in the model, all model solutions will

eventually go back to the steady-state values.

https://doi.org/10.1371/journal.pone.0246116.g008
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concentration a is increased, agreeing well with high suitability the experimental data for large

doses of Aβ. Furthermore, the model with this parameter set is able to capture the slowly

increasing Ca2+ response seen in some oocytes with a dose of 1 μg/ml (such as responses simi-

lar to those shown in Fig 3A), but it cannot reproduce the various oscillatory and spiking

behavior through small variations in parameters (such as those shown in Fig 3B–3E). The

model with the small doses parameters cannot capture the increasingly rapid decay based on

Aβ nor the extended time dependence, underscoring the need for two different parameter sets.

The difference in parameter values between the two sets suggests that Aβ has a pervasive

impact that permeates throughout a cell over time and gives credence that Aβmay indeed be

affecting multiple cellular mechanisms simultaneously.

4.1 Uncertainty quantification and partial rank coefficient correlation for

large doses

As with any experimental procedure, uncertainty in measurement naturally arises within the

environment. These variations mean that finding exact values for model parameters is unreal-

istic. Performing uncertainty quantification allows us to determine how changes in parameter

inputs affect model solutions. For example, in [18] Ca2+ responses are categorized by the

change in fluorescent signaling and results are given as an average of 4-5 cells. Responses from

individual cells can also change from cell to cell and as such, there could be natural variations

in output.

To account for these uncertainty principles we vary the large doses parameters stochasti-

cally within 5% and 10% of baseline using a uniform distribution and generate n = 100, 000

solutions to the model. This type of simulation allows us to better understand the robustness

of the model and provides some way to assess the influence of parameter selection on model

results (see [49] for details on method). With the collection of n sample solution paths, we then

compute the mean and standard deviation at each time t. Fig 9 shows the mean (solid curves)

bounded within one standard deviation (dashed curves) for simulations around the concentra-

tion values Aβ = 3, 10, and 30, respectively. Again, we also include the result for Aβ = 1 for

comparison and as a lower bound for the large doses range. The results illustrated in Fig 9

show that the model solutions are stable under parameter variation and continue to capture

both the changes in amplitude and the peak time. Even if the large doses parameter set given

Fig 9. Model solutions under variation of parameters. The mean and corresponding standard deviations when the

model is simulated for n = 100, 000 stochastically chosen parameter sets. The solid curves corresponds to the mean

response and the dashed curves are the standard deviation above and below the mean. A and B illustrate the uncertainty

in solutions when parameters are selected from a set with 5% and 10% deviation from the large doses base values given in

Table 2, respectively.

https://doi.org/10.1371/journal.pone.0246116.g009
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in Table 2 is not optimal in minimizing our objective function, it does provide a reasonable set

even under small perturbations. As such, our simulations convey evidence that the modeling

assumptions may help capture how Aβ influences the cellular mechanisms involved in PLC-

mediated IP3 production.

To better understand how each parameter impacts model solutions, we use sensitivity anal-

ysis based on partial rank correlation coefficients (PRCC). This allows us to determine the sta-

tistical relationship between model parameters and the resulting Ca2+ dynamics [50]. To do

this, we characterize the resulting Ca2+ dynamics with two quantities: the peak Ca2+ concentra-

tion achieved during the simulation and the time at which this peak occurs. The PRCC mea-

sures the strength of the linear relationship between each model parameter and the model

outcome after correcting for the linear effects of all other model parameters. The resulting

PRCC scores take values between −1 and 1 with a negative value indicating that the model out-

come decreases as the parameter increases and a positive value indicating that the model out-

come increases as the parameter increases. The strength of the relationship between the model

parameter and model output is indicated by the magnitude of the score.

The results of the PRCC are given in Tables 3 and 4. Table 3 shows the correlation to peak

Ca2+ concentration while Table 4 shows the correlation of the time of peak. The tables list the

Table 3. Partial rank correlation coefficient sensitivity analysis between model parameters (n = 100, 000) and the

maximum Ca2+ concentrations for each of the three levels of Aβ. Results are with 10% variation in parameters val-

ues. � indicates the correlation coefficient is not significant at the p = 0.05 level.

Correlation to peak of signal

Aβ = 3 Aβ = 10 Aβ = 30

kd -0.810 -0.796 -0.786

kb -0.809 -0.796 -0.786

K1 -0.804 -0.793 -0.785

k−2 -0.767 -0.779 -0.772

KR -0.647 -0.754 -0.781

Vs -0.631 -0.690 -0.738

JER -0.307 -0.259 -0.214

K5 -0.326 -0.206 -0.084

V0 -0.070 -0.076 -0.082

KPLC -0.162 -0.021 0.053

k5p -0.135 -0.021 0.042

K3 -0.027 -0.017 -0.010

KQ 0.002
�

0.002
�

0.001
�

k−4 0.068 0.075 0.081

K4 0.161 0.173 0.180

kip3 0.121 0.162 0.238

δ 0.461 0.155 0.002
�

Ks 0.712 0.514 -0.147

γ 0.636 0.693 0.735

VR 0.647 0.756 0.785

kf 0.751 0.773 0.788

k3k 0.795 0.774 0.751

K2 0.772 0.782 0.773

ka 0.810 0.797 0.788

kc 0.811 0.797 0.787

VQ 0.824 0.814 0.806

https://doi.org/10.1371/journal.pone.0246116.t003
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correlation coefficients for each parameter when a = 3, 10, and 30. The ranking of the parame-

ters was done by taking the average of the PRCC for the three doses of Aβ. As such, the param-

eters that most decrease the peak amplitude of Ca2+ solutions are the parameters kd, kb, and K1

while the parameters that most increase the amplitude are VQ, kc and ka, as a is increased. Sim-

ilarly, the parameters that most decrease the time of peak of Ca2+ solutions are the parameters

VQ, ka, and kc while the parameters that most increase the time peak are K1, kd and kb.
Although these parameters exhibit the strongest effect, we note that most other parameters

exhibit a smaller but significant effect. Our intention is not to give a complete analysis for each

model parameter, however we do analyze some interesting behaviors pertaining to specific

parameters below.

When looking at the PRCC analysis, it appears that the PLC and G-protein rate constants

ka, kb, kc, and kd all have a large impact on the solution patterns in terms of solution peak and

time to peak. Recall that, ka and kc are the activation rates for PLC and G-proteins, respectively.

As the activation rates increase, this will lead to an increase in IP3 production and you will see

the peak of the Ca2+ signal occur sooner. On the other hand, kb and kd correspond to the inac-

tivation of PLC and G-proteins, respectively. A higher inactivation rate for both PLC and G-

proteins will decrease IP3 production and thus lower the peak amplitude of Ca2+ responses.

Table 4. Partial rank correlation coefficient sensitivity analysis between model parameters (n = 100, 000) and the

time to peak when maximum Ca2+ concentration was reached for each of the three levels of large doses of Aβ con-

centration.
�

indicates the correlation coefficient is not significant at the p = 0.05 level.

Correlation to peak of signal

Aβ = 3 Aβ = 10 Aβ = 30

VQ -0.832 -0.834 -0.838

ka -0.827 -0.829 -0.831

kc -0.827 -0.829 -0.831

k3k -0.826 -0.828 -0.831

VR -0.664 -0.782 -0.820

Ks -0.835 -0.773 -0.653

γ -0.653 -0.647 -0.669

kf -0.448 -0.482 -0.538

JER -0.331 -0.278 -0.242

δ -0.494 -0.212 -0.056

k−2 -0.248 -0.229 -0.151

K4 -0.077 -0.082 -0.093

k−4 -0.028 -0.032 -0.039

K3 -0.012 -0.007 -0.003
�

KQ 0.000
�

0.000
�

-0.000
�

k5p 0.048 -0.004 -0.034

kip3k 0.012 0.017 0.032

V0 0.030 0.032 0.037

K5 0.259 0.207 0.169

K2 0.261 0.238 0.156

Vs 0.646 0.634 0.630

KPLC 0.727 0.662 0.607

KR 0.662 0.779 0.815

kb 0.826 0.825 0.819

kd 0.826 0.826 0.825

K1 0.829 0.830 0.831

https://doi.org/10.1371/journal.pone.0246116.t004
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From a biological perspective this makes sense, once PLC is activated, the production of IP3

occurs through hydrolysis of phosphatidylinositol-4,5-biphosphate (PIP2). Thus, as the

amount of active PLC increases, we should see an increase in the amplitude peak and a

decrease in the time to peak in Ca2+ responses. Conversely, as the amount of active PLC

decreases, we should see a decrease in the amplitude peak but an increase in the time to peak

in Ca2+ responses as fewer IP3 are available for binding to the IP3R. Even though these results

align with what one might suspect occurs from a biological perspective, these behaviors are

directly linked to how the model was constructed. Specifically, recall that the subsystem given

by Eqs (15)–(17) is solely driven by PLC and Aβ. Changes in PLC will play a major role in the

amount of IP3 available for IP3R binding. Further analysis on the impact of these parameters is

provided below.

As noted above, the parameter K1 also plays a major role in solution patterns. As adapted

from the De Young and Keizer (1992) model, this parameter corresponds to the effective bind-

ing rate of IP3 to one of the IP3R model subunits when no inactivating Ca2+ is present. As

such, this parameter helps drive the IP3R dynamics. In the model, an increase in K1 has an

inactivating effect on the IP3R since either the unbinding rate of IP3 to receptor binding site is

increased or the binding rate is decreased. In either case, this would decrease the opportunity

for the receptor to remain in an active and open state. The PRCC analysis highlights that K1 is

critical for understanding the Ca2+ patterns of the model. Because of the influence of this

parameter on model solutions, this suggests that the IP3R dynamics does contribute to the

observed Ca2+ patterns. We analyze the model below to further expand on the influence of K1

on model solutions. As the model suggests that changes in K1 may be dependent on Aβ levels,

further investigations on the connection between the IP3R and Aβmay be necessary.

The PRCC also highlights additional interesting information regarding the influence of spe-

cific parameters on model solutions. Interestingly, the dependence of solution amplitude peak

with respect to the parameter Ks appears to be tied with the size of a. More specifically, the

PRCC for Ks when a = 3, 10, and 30 are 0.712, 0.514, and −0.147, respectively. This implies

that as a increases, altering Ks has a different effect on model amplitude. Namely, the ampli-

tude increases for a = 3 and a = 10, but decreases when a = 30. Notice that similar results occur

for the parameters KPLC and k5p but in the opposite direction. The dependence of solution

time to peak with respect to the parameter δ also appears to be linked to the value of a. In this

case, the PRCC for δ when a = 3, 10, and 30 are −0.494, −0.212, and −0.056, respectively.

Although the sign of the PRCC is negative in each case, the disparity of the correlation coeffi-

cient may indicate that Aβ is affecting the intrinsic background production of active G-pro-

teins differently as the doses vary. The dependence of a on these parameters suggests that Aβ is

impacting the mechanisms differently as the amount of Aβ is altered. Further exploration of

these parameters may tease out additional information about the influence of Aβ on cellular

mechanisms but is beyond the scope of this study.

4.2 Impact of Aβ on IP3R for large doses

The impact of Aβ on the IP3 signaling cascade appears to be concentration dependent. Not

surprising, the PRCC analysis suggests that the rates ka, kb, kc, and kd play a significant role on

the amplitude of responses and the peak time. These parameters directly influence the amount

of PLC that feeds into the subsystem given by Eqs (15)–(17) and small variations in these

parameters will greatly affect the solutions of the model. Instead of looking specifically at these

parameters, we can alternatively investigate the impact of changes in VQ. Recall that VQ con-

trols the influence of Aβ on PLC-mediated IP3 production. As such, it is no surprise that VQ

also plays a significant role in the solution patterns.

PLOS ONE Dose-dependent impact of amyloid beta on calcium regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0246116 January 28, 2021 21 / 31

https://doi.org/10.1371/journal.pone.0246116


Fig 10 shows the impact of altering VQ on model solutions for a = 3, 10, and 30, in A, B, and

C, respectively. As the parameter VQ increases from the small doses value of VQ = 7.82 to the

large doses value of VQ = 380 we see that the model solutions shift up and to the left. This is

highlighted by the curved arrow in each figure. The large doses value of VQ = 380 has been sin-

gled out using the solid black trace while 9 other solutions (with various VQ values) are shown

as dashed colored traces. The solution for the values VQ = 30, 380, and 480 have been

highlighted in each figure for reference. The results of Fig 10 also confirm the PRCC analysis

that VQ is positively correlated with the peak amplitude and negatively correlated with the

peak time onset. Clearly, altering VQ impacts both the solution amplitude and the time to

peak.

Although the PRCC identifies the parameter K1 for example, as playing a significant role on

model solution’s amplitude and time to peak, the PRCC analysis cannot capture how varia-

tions in a single parameter will affect model solutions in general. For example, it is not evident

in the PRCC analysis that the parameter k−4 plays a significant role on solutions and is a critical

parameter when considering the large doses Ca2+ signaling patterns observed experimentally.

Varying k−4 has a direct impact on the Ca2+ signal tail and partly controls the decay of the sig-

nals, but does not alter the amplitude or time to peak significantly. Both K1 and k−4 are param-

eters that help control the dynamics of IP3Rs.

Shown in Fig 11 are two diagrams that illustrate the impact of Aβ on the IP3R itself through

the parameters K1 and k−4 when a = 10 (a similar effect occurs for a = 3 and a = 30). Fig 11A

shows the representation of the effects of varying K1 model solutions. Starting with the large

doses parameters, we simulate the model by altering K1 from the base small doses value of K1 =

0.13 (bold black trace) and increasing the parameter to the large doses value K1 = 0.13 (smooth

red trace). As is suggested by the PRCC analysis, we see that K1 is negatively associated with

the peak amplitude and positively correlated with respect to the time to peak. The impact of

changes to the parameter k−4 is shown in Fig 11B. Similar to Fig 11A, starting with the small

doses parameter value k−4 = 0.029 (bold black trace) and decreasing the parameter to the large

doses value k−4 = 0.00006 (red trace) shows that k−4 plays a critical role in controlling the

decay of Ca2+ signals. Interestingly, the PRCC does not capture this effect as it was only con-

ducted to track the impact on the amplitude peak and latency of solutions. Altering the other

IP3R parameters will have various effects on solutions similar to the impact of varying K1.

Changes to IP3R parameters seem necessary in order to capture the increasingly rapid decay

and suggests that Aβ for large doses may act to desensitize the IP3R.

Fig 10. PRCC prediction on solution amplitude and time to peak for model parameter VQ. The impact of VQ is shown as a series of curves for a = 3,

a = 10, and a = 30 in A, B, and C, respectively. In each diagram, the curved black arrow tracks the shift in the peak of solutions as VQ takes on various

values ranging from VQ = 30 to VQ = 480. The black trace in each diagram represents the baseline VQ value for the large doses parameter set.

https://doi.org/10.1371/journal.pone.0246116.g010
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Whether Aβ directly interferes with IP3Rs remains debatable but our model suggests that

Aβ does indeed alter the receptor dynamics for large doses. There may be some intrinsic

threshold on Aβ concentration within the cellular environment for which the sensitivity of

IP3Rs is affected by Aβ. Of particular interest is the role of the IP3R parameters in capturing

the observed rapid decay of Ca2+ signal for large Aβ doses.

4.3 Limitations of the model

As with any mathematical model, many limitations exist with the approach presented here.

Because of our interest in dissecting the effects of Aβ on the IP3 signaling cascade, the model

development and construction utilized a number of simplifying assumptions. While many of

these assumptions are traditional, the simplistic nature of the model cannot fully represent the

biological environment in a holistic way. None-the-less, our approach has sought to balance

the complex biophysical mechanisms involved in Ca2+ signaling with that of a mathematical

structure that can be useful in identifying key factors involved in generating certain solution

patterns. Unfortunately, a lack of data has made it difficult to determine the precise conditions

and the validity of many of the modeling assumptions. For example, we acknowledge that the

steady-state assumptions and the particular mechanisms for how Aβmay be interfering in the

Ca2+ signaling process need to be explored further. Although these assumptions contributed to

model solutions whose behavior and dynamics match experimental results, more data is

needed to fully justify these assumptions. Additionally, the inclusion of other Ca2+ regulatory

mechanisms will be necessary to describe whole-cell calcium dynamics in a biologically robust

way.

Our model construction assumes that iAβ42Os (1) act as an agonist for G-protein activation,

and (2) affect the maximal rate of PLC mediated IP3 production. The second assumption was

developed based on the results of a series of Monte Carlo numerical simulations that consid-

ered a wide-array of possible sites for including the impact of iAβ42Os on cellular mechanisms.

These simulations were conducted using a large number of initial parameter sets and a variety

of functional representations (such as Hill functions of various degrees). Although we were

able to match some of the observed experimental results for large doses without including the

assumption given in Eq (14), we could not reproduce the three Ca2+ signals (a = 3, 10, and 30)

with the same parameter set simultaneously. Furthermore, any parameter set that closely

Fig 11. Impact of large doses of Aβ on IP3R dynamics. The impact of the IP3R model parameters K1 and k−4 are shown

in A and B, respectively. The traces shown use the large doses parameters except for the values highlighted in each

diagram. The top bold black traces correspond to the model solution when the parameter value for the small doses is

used. The red traces are the model solutions for the parameter values of the large doses. The black traces between the bold

and red correspond to intermediate parameter values as given in each diagram.

https://doi.org/10.1371/journal.pone.0246116.g011
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matched the changes in amplitude and time to peak for small doses of a could not reproduce

any spiking behavior observed through cellular and SERCA parameter variations unless VQ 6¼

0. That led us to incorporate the Aβ-dependent term for the maximal rate of PLC mediated IP3

production given in Eq (14). Due to the complex dependence on model parameters, it may be

that this model assumption does not accurately capture how Aβ interferes with the IP3 produc-

tion pathway. However, it proved valuable in reproducing observed data for both the small

and large doses and provides a possible avenue for further investigations.

As with any model involving numerous parameters, solutions will vary based on the param-

eter set utilized. In this work, we first rescaled the experimental data, then fitted our model

using a best fit parameter estimation procedure. When alternative scaling parameters are used,

the model parameters will necessarily change. However, our results show that the model cap-

tures the changes in the amplitude and peak time of the signals in a robust and predictable way

for both small and large doses of iAβ42Os. The PRCC analysis also provides a structured way

for understanding how each individual parameter impacts model solutions. Further analysis of

our PRCC results could bring to light additional parameter and Aβ-related dependencies. For

example, the PRCC values for some parameters are highly dependent on Aβ concentration.

Such parameters may also play an important role in determining the possible kinetic interac-

tion of Aβ within the IP3 production cascade.

5 Discussion

Ca2+ is one of the most versatile and universal signals in the human body playing a pivotal role

in controlling numerous aspects in the physiology and biochemistry of neurons [51]. Accord-

ingly, intracellular Ca2+ dysregulation has been implicated in a wide variety of immunological

disorders and neurodegenerative diseases including Alzheimer’s, Parkinson’s, and Hunting-

ton’s disease. In neurons, as in many other cell types, IP3-mediated elementary Ca2+ signals,

also referred to as puffs, are the building blocks of cellular Ca2+ signaling, and arise through

the concerted opening of clustered IP3Rs coordinated via a Ca2+-induced Ca2+-release mecha-

nism [52]. Although the cytosolic Ca2+ dependency of IP3Rs has been well characterized, little

is known as to how changes in basal cytosolic [Ca2+] would alter the dynamics of IP3-evoked

Ca2+ signals in disease cells, such as neuronal cells of Alzheimer’s and Parkinson’s disease

brains. In AD, iAβOs are now believed to play a major role in the early phase of the disease as

their intracellular rise correlates well with the symptoms of AD [3, 53]. More generally, AβOs

have been found to be predictive of cognitive status at death among patients with AD [54].

Various mechanisms have been proposed to correlate the progressive intracellular Ca2+ eleva-

tion with the concomitant increase of iAβOs observed in neurons during the progression of

the AD [25]. Among them, the detrimental activity of iAβOs on the normal functioning of the

IP3-signaling pathway has been indicated as a potential mechanism responsible for alteration

of the Ca2+ homeostasis in AD neurons.

We and others have suggested that a G-protein mediated activation of PLC by iAβ42Os is

responsible for the overproduction of IP3 and consequent rise of cytosolic Ca2+ observed in

cells exposed to iAβ42Os [14, 18]. Moreover, others have suggested that Aβmay cause cytosolic

Ca2+ rise by a mixed mechanisms of PLC-dependent and independent manner [15, 16, 55].

The effect of iAβ42Os on intracellular Ca2+ fluxes have previously been investigated by devel-

oping a computational model to study important intracellular Ca2+ pathways in normal and in

iAβ42Os affected conditions [27]. However, no upstream IP3 production processes were incor-

porated in the model. Here, we have illustrated a possible mechanistic way for how iAβ42Os

triggers IP3 overproduction with consequent rise in cytosolic Ca2+ by including some mecha-

nisms of upstream IP3 production in the model. Specifically, we pinpoint two main possible
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sites of action for iAβ42Os to interact in the cascade of events resulting from stimulation of G-

protein in the plasma membrane to the release of Ca2+ from the ER.

In our previous study [18], we argued that it was unlikely that iAβ42Os act on IP3Rs in the

generation of Aβ-induced Ca2+ signaling events. The results of the model are consistent with

this for the small doses parameters. However, the model also suggests that iAβOs may in-fact

be directly affecting the IP3Rs when large doses are introduced. The analysis illustrated in Fig

11 helps us understand what happens to Ca2+ signaling in the presence of iAβ42Os as changes

to IP3Rs occur. The persistent increase of iAβ42Os may alter the sensitivity of IP3Rs to Ca2+

over time. For large doses of iAβ42Os, IP3Rs may become more sensitive to low- or sub-thresh-

old IP3 levels and in turn trigger local and global Ca2+ signaling events. The fact that the

parameter k−4 appears to play a major role in the decay of observed Ca2+ signals singles out the

potential that iAβ42Os do act on the IP3R itself, at least for large doses. Our model suggests the

need for further investigation on the relationship between iAβ42Os and the sensitivity of IP3Rs

to IP3 levels.

Our approach provides a precise way to incorporate the effects of iAβ42Os on IP3 signaling

mechanisms that does not necessarily depend on the choice of the IP3R model. When a satu-

rating binding rate model for the IP3R model is used (as that used in [33] instead of the Li-Rin-

zel formulation), such a model can also capture the changes in amplitude and peak times for

large doses using the same upstream modeling assumptions as outlined above (unpublished

results J. Latulippe). This provides further justification that the modeling kinetics of the possi-

ble interactions of iAβ42Os with G proteins and PLC may be sufficiently captured by the

model. Additionally, Toglia et al. [27] have also suggested a relationship between IP3 concen-

tration and iAβ42Os. However, their investigation assume that IP3 concentration levels are

impacted by iAβ42Os but use a data fitting procedure to do this rather than attributing those

changes to upstream mechanisms. As such, we believe that the model presented here is the

first to quantify possible mechanisms for how iAβ42Os affects the upstream mechanisms in the

IP3 signaling cascade.

Although our model considers the impact of iAβ42Os specifically on the IP3 signaling cas-

cade in oocytes, our results could be useful in more complex models of various cells. Existing

astrocyte models (such as [34, 56–58]) that incorporate Ca2+ dynamics could be altered to

include the effects of Aβ on IP3 signaling components described in this study. This would pro-

vide a way to test model assumptions and determine whether solution patterns are consistent

in different model environments. Furthermore, the current model could be expanded to

include additional pumps and channels known to play a role in various cell types. Incorporat-

ing data driven models within the Ca2+ modeling toolbox may prove to be an efficient way to

develop whole cell models that can be used to study how Aβ alters various signaling pathways.

For example, the ability to express exogenous proteins, including NMDA Receptors, provides

a powerful tool as a possible next step in developing increasingly elaborate mathematical mod-

els capable of more closely mimicking neuronal behavior.

Because of the complex cross-talk nature of Ca2+ signaling, our model also provides a way

to control for and test various therapeutic strategies in a modeling environment. For example,

to mimic the intrinsically slow accumulation of Aβ seen in the pathology of AD, Aβ can be

introduced very slowly into the model and solutions simulated accordingly. We can then

introduce artificial agonists or antagonists that affect G-protein activation and PLC function

to see how they affect Ca2+ signals over various timescales. Using the model to better under-

stand what happens to Ca2+ regulation in these simulations can directly influence and suggest

how one could control Ca2+ signaling in the presence of Aβ, and more generally, various AD

environments.
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The results of this study suggest the need for two different dose-dependent models to incor-

porate changes in cellular Ca2+ signaling in the presence of increasing concentrations of

iAβ42Os. In in vivo environments, it may be the case that in the early phase of AD, slowly accu-

mulating levels of iAβOs remain relatively small. Under such conditions, the small doses

model may be better suited than the large doses model. Regardless, our model development

and analysis suggests that increasing the amount of iAβ42Os present in the cell can have a per-

vasive impact on numerous cellular mechanisms.

Building computational models can help provide a better understanding for the complex

cross-talk between various signaling mechanisms within neurons, something difficult to estab-

lish with current experimental capabilities. Through further analysis and development,

researchers can use the model to formulate novel experimental procedures and eventually sug-

gest new therapies for treating AD.

Appendix

According to Maravall et al. (2000) [28], changes in Ca2+ concentration are associated with

changes in fluorescence through the equation

c � c0

KD
¼ fmð1 � 1=Rf Þ

df
ðdfmax � df Þdfmax

; ð23Þ

where KD is a dissociation constant, fmax is the intensity of the dye at maximum Ca2+ concen-

tration, Rf = fmax/fmin is the indicator’s dynamic range with fmin being the intensity at minimum

Ca2+ concentration, δfmax is the saturation of the Ca2+ indicator, fm = fmax/f0, and c0 is the rest-

ing Ca2+ concentration. The values of KD and Rf are associated with attributes of the indicator

in a particular cellular environment [28] and as such are independent of cellular properties.

Wavelength ratio measurements do not generally depend on dye concentration, optical path

length, excitation intensity, or detector efficiency [28]. However, the value of KD and the

dynamic range of Rf may vary batch to batch and should be estimated using a similar protocol

and cellular cytoplasmic domain [28, 59].

In Eq (23), δfmax is the key parameter needed for establishing the conversion from fluores-

cence to Ca2+ concentrations. When we fix the initial Ca2+ concentration, c0, we can estimate

δfmax using

dfmax ¼
ð1 � 1=Rf Þ

1=Rf þ c0=KD
; ð24Þ

as long as true saturation is attained [28] and KD and Rf are known. In practice, δfmax can be

used to estimate the unknown resting Ca2+ concentration by inverting the relationship in Eq

(24).

With Eqs 23 and 24 in hand, converting fluorescence data to Ca2+ concentrations only

requires obtaining values for fm, Rf, and δfmax during experimental procedure. However, these

values are often not reported in favor of the traditional δf fluorescence measurements and

extracting them from reported changes in fluorescence ratio, or establishing their values a pos-
teriori, can be challenging. As such, in order to complete a conversion for data given in terms

of δf we approximate a number of parameters. Since both KD and Rf depend on indicator prop-

erties, they can be approximated for a variety of indicators. Based on the experiment in [18],

we assume values of KD� 0.2−0.5 μM and that Rf has a dynamic range Rf� 85−100 and

note that uncertainties in Rf have minimal affect on Eq (24). We illustrate this in Fig 12 where

δfmax is plotted as a function of KD and Rf when c0 = 0.01 μM and c0 = 0.05 μM in A and B,

respectively.
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As can be seen from Fig 12, Rf has little effect on the value of δfmax. This is consistent with

the idea that for indicators with a large dynamic range, the exact value of Rf is insignificant

[28]. For indicators such as Fluo 4, KD is often assumed to be between 0.25 and 0.5 μM but

some studies suggest that KD may have much greater range [60, 61].

Without loss of generality, here we consider a basal Ca2+ concentration of c0 = 0.05 μM and

set KD = 0.3 μM and Rf = 100. Because we have no previous knowledge for the value of fm, we

consider a range fm� 1−100 where the exact value depends on the ratio of the maximal inten-

sity and the resting intensity. Using these values, we plot the corresponding Ca2+ concentra-

tions from the fluorescence data in [18] for various estimates of fm. Fig 13A–13C show the

time traces of the converted fluorescence data for the impact of a 10 nl injection of Aβ at con-

centrations of a = 3 μg/ml, a = 10 μg/ml, and a = 30 μg/ml, respectively. In Fig 13A–13C each

dashed plot corresponds to a different value of fm ranging from fm = 1 to fm = 100 (black) with

n = 11 (fm = 1, 10, 20, . . ., 100). The maximum value is also highlighted for each conversion

plot (circle) and provides the peak time for the three Aβ levels.

To study the impact of the conversion to Ca2+ concentrations, Fig 14A–14C shows the cor-

responding maximum value of the concentration as a function of fm and the range of δfmax
between 6 and 20. These three dimensional plots allow us to better understand the impact of

the conversion parameters on the maximum values of the fluorescence data in [18]. Again,

because we do not have estimates for fm or c0, a true conversion from fluorescence to

Fig 12. Uncertainty in estimation of Rf have minimal effect on data rescaling. Effects of KD and Rf on δfmax under initial Ca2+

concentration c0 = 0.01 in A and c0 = 0.05 in B. Notice that Rf has minimal effect on δfmax while KD alters the value of δfmax.

https://doi.org/10.1371/journal.pone.0246116.g012

Fig 13. Impact of fm on rescaling of Ca2+ data. Changes in scaled experimental data when fm ranges from 1 to 100. In all figures, Rf = 100, KD = 0.3,

and c0 = 0.05. Figs A, B, and, C correspond to the scaled data for a = 3, a = 10, and a = 30, respectively. The maximum value of each scaled experimental

data set is shown by the open circle. The bold color curve corresponds to fm = 40, the value used throughout the simulations.

https://doi.org/10.1371/journal.pone.0246116.g013
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concentration is elusive. However, in all the profiles illustrated, each conversion does capture

the changes in amplitude and latency to peak time observed experimentally as levels of Aβ are

increased.
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