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Complementary mechanisms for 
neurotoxin resistance in a copepod
Vittoria Roncalli   , Petra H. Lenz, Matthew C. Cieslak & Daniel K. Hartline

Toxin resistance is a recurring evolutionary response by predators feeding on toxic prey. These 
adaptations impact physiological interaction and community ecology. Mechanisms for resistance vary 
depending on the predator and the nature of the toxin. Potent neurotoxins like tetrodotoxin (TTX) 
and saxitoxin (STX) that are highly toxic to humans and other vertebrates, target conserved voltage-
gated sodium channels (NaV) of nerve and muscle, causing paralysis. The copepod Calanus finmarchicus 
consumes the STX-producing dinoflagellate, Alexandrium fundyense with no effect on survival. Using 
transcriptomic approaches to search for the mechanism that confers resistance in C. finmarchicus, 
we identified splice variants of NaVs that were predicted to be toxin resistant. These were co-
expressed with putatively non-resistant form in all developmental stages. However its expression was 
unresponsive to toxin challenge nor was there any up-regulation of genes involved in multi-xenobiotic 
resistance (MXR) or detoxification (phases I or II). Instead, adults consistently regulated genes encoding 
digestive enzymes, possibly to complement channel resistance by limiting toxin assimilation via the 
digestive process. The nauplii, which were more susceptible to STX, did not regulate these enzymes. 
This study demonstrates how deep-sequencing technology can elucidate multiple mechanisms of toxin 
resistance concurrently, revealing the linkages between molecular/cellular adaptations and the ecology 
of an organism.

Production or accumulation of toxins is a common anti-predator measure among plants and animals. In the evo-
lutionary “arms race” between predator and prey, toxic prey is often countered by the evolution of mechanisms 
that confer toxin resistance to the predator. These mechanisms include mutations in the physiological target 
that render the toxin less effective1, modification of the expression of the target gene/pathway to compensate for 
its blockage2, down-regulation of the target in combination with up-regulation of an alternative toxin-resistant 
pathway/protein3, up-regulation of genes that prevent toxin uptake2,4 (e.g. multi-xenobiotic resistance) and 
up-regulation of biotransformation pathways4–6 (e.g. detoxification, phases I and II). The guanidinium alkaloids 
tetrodotoxin (TTX) and saxitoxin (STX) are potent anti-predator neurotoxins characterized as “keystone mol-
ecules” owing to their presence in prey organisms impacting a broad spectrum of predators and ecosystems, 
including humans, other vertebrates, and many invertebrates7. Cases of TTX and STX-resistant organisms have 
been found, among garter snakes (Thamnophis spp.)8, shellfish (Mya arenaria, Saxidomus giganteus)9, puffer fish 
(Tetraodon nigroviridis)10 and copepods (Calanus finmarchicus, Acartia hudsonica)11,12. STX and TTX act by bind-
ing to voltage-gated sodium channels, blocking sodium-dependent action potentials of nerve and (in vertebrates) 
muscle cells, therefore leading to paralysis and death in non-resistant organisms13. A prominent mechanism that 
confers resistance is the presence of mutations in the channel protein that decrease toxin binding1,10,14–17.

In marine ecosystems, the primary source of STX is from harmful algal blooms, also known as “red tides”, 
caused by a variety of toxin-producing dinoflagellates in the genus Alexandrium18. Red tides, which are respon-
sible for outbreaks of paralytic shellfish poisoning, occur worldwide and have major ecological and economic 
impact in coastal regions along both Atlantic and Pacific coasts of North America as far north as the Arctic Ocean 
(Chukchi Sea)18,19. Annual outbreaks of Paralytic Shellfish Poisoning (PSP) in the Gulf of Maine, are caused by 
blooms of Alexandrium fundyense, which is accumulated in clams and other shellfish18. In addition, other plank-
tonic herbivores feed on the dinoflagellate with no ill effect on their survival20 suggesting that they might have 
evolved mechanisms that confer STX resistance. While physiological studies on non-model species can be diffi-
cult, transcriptomic approaches hold promise for the assessment of multiple mechanisms by combining an anal-
ysis of protein sequences for the presence of mutations with physiological responses at the gene-expression level.
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Among the plankton, a major consumer of the dinoflagellate is the filter-feeding copepod Calanus finmarchi-
cus, which is one of the more abundant calanoid copepods in the North Atlantic, extending from the mid-Atlantic 
Shelf off the US east coast to the Barents Sea north of Norway. C. finmarchicus serves as major food source for 
many invertebrates and vertebrates, including whales21–23. In studies aimed at identifying the effects of STX inges-
tion on these organisms, Roncalli and colleagues fed adult females on two doses of toxic Alexandrium fundyense 
for seven days to assess mortality, egg production, egg viability and transcriptomic response24–26. Ingestion of 
the toxic dinoflagellate did not increase mortality in adult C. finmarchicus, but had negative effects on reproduc-
tion and physiology. Differential gene expression indicated that the copepod responded to the toxic diet with 
an initial cellular stress response, followed by a metabolic response, indicating that the A. fundyense diet was a 
less-efficient energy source for the copepod24–27. However, the basis of STX-resistance in the copepod remained 
unclear: there was no evidence for the up-regulation of transcripts encoding for the voltage-gated sodium chan-
nel, nor was there any evidence for the up-regulation of detoxification pathways, even though these transcripts 
were well-represented in the reference transcriptome25–27. Only 25 genes were consistently regulated at both A. 
fundyense doses and time points, and the majority of these (24) were involved in digestion.

To elucidate the source of STX-resistance of C. finmarchicus, we used our previously generated transcrip-
tome28 to retrieve sodium channel sequences and search for mutations potentially affecting STX binding. The 
first transcriptome was generated from individuals from a Gulf of Maine population (GOM), while the sec-
ond source consisted of individuals from the Norwegian Sea (NOR). In addition, we extended the search for 
resistance-related changes in gene expression to naupliar stages. While the effect of ingestion of A. fundyense on 
adult C. finmarchicus was the focus of the previous study24–26, little is known about how the dinoflagellate affects 
the early developmental stages, which are likely to be more sensitive than older stages, as is the case with M. are-
naria29. Nauplii grow rapidly through recurring molt-cycles. To test their sensitivity, we fed C. finmarchicus late 
nauplii on a diet of A. fundyense for two days, measured their survival, assessed their behavior and quantified 
relative gene expression. The resulting sensitivity profile was then compared with that reported for adult females 
to search for mechanisms of resistance25,27.

Results
Identification of possible STX-resistant NaV channels in C. finmarchicus.  We first examined the 
possibility that C. finmarchicus has, within its genetic makeup, voltage-gated sodium channels (NaV) that are 
resistant to STX. The NaV family of eukaryotic proteins contains a pore-forming molecule around 2,000 amino 
acids long, comprising four highly-conserved homologous domains (DI - DIV), each with six trans-membrane 
alpha-helical segments (S1–S6). In each domain, ten amino acids in the linker between segments S5 and S6 form 
a “P-loop,” which lines the outer vestibule of the pore30 as diagrammed in Fig. 1A. The basis for STX/TTX suscep-
tibility, as well as for sodium-ion selectivity, resides in two rings of four amino acids each, an inner ring and an 
outer ring. The P-loops of each of the four domains contributes one residue to each ring. The two rings surround 
the pore so that a toxin molecule binding to them physically blocks passage of sodium ions through the pore14.

Four voltage-gated sodium channel genes have been predicted previously for C. finmarchicus from in silico 
searches of the Gulf of Maine (GOM) transcriptome28, an unusual number for an invertebrate, which usually have 
two, designated NaV1 and NaV231. Three of the copepod channels are full-length members of the NaV1 family, and 
one is an NaV2 channel, which is not considered to be a target for blockage by these toxins30 (see Supplementary 
material, Table S1 for accession numbers). The amino-acid sequences for the various NaV1 P-loops found in the 
GOM transcriptome are shown in Fig. 1B. Shading indicates the residues implicated in STX binding for the inner 
(i) and outer (o) rings, based on extensive studies on other organisms15,32–34. In addition to the P-loops from 
the three putative identified channel genes (which include two splice variants for the P-loop of Domain III of 
the NaV1.1 gene), six additional isolated P-loops were found in short sequences not assembled into full-length 
proteins, but matching other NaV sequences closely enough to be considered valid NaV P-loops (“Miscellaneous 
Cf ” in Fig. 1B). We also queried the published transcriptome from a Norwegian (NOR) population35 and found 
many of the same P-loop sequences as in the GOM transcriptome (see Supplementary material, Table S1 for 
corresponding accession numbers). In all, 15 distinct P-loop sequences were identified. Most showed only minor 
differences among the C. finmarchicus NaV1s and compared with insect and mammalian P-loops. However, in 
two of the sequences, significant differences were found in the outer ring of DIII at one of the toxin-binding sites. 
In the NaV1.1 family of transcripts, one of two presumed splice variants, designated NaV1.1-8a isoform has a 
positively-charged lysine (K1545) at this site instead of the negatively-charged aspartic acid (D1543) found in the 
corresponding position of every other C. finmarchicus full-length isoform, including the 8b presumed splice vari-
ant form of NaV1.1. The alignment of the two NaV1.1 isoforms showing the altered residue is presented in Fig. 1C. 
The exchange of a negative for a positive charge in this position should have a significant effect on the electrostatic 
forces affecting STX binding. This assumption was confirmed directly in rat NaV1.2 by Terlau et al.36, who showed 
that the same substitution in the homologous residue, D1426K, substantially reduces toxin binding. One other 
copepod P-loop has a modified residue in this position, a neutral alanine (A) instead of aspartic acid (D), on a 
short sequence fragment (Fig. 1B). In addition, this fragment possesses a threonine in an adjacent position that 
has been identified by Du et al.37 as conveying TTX-resistance in a broad range of taxa. Thus there is evidence for 
two isoforms in the C. finmarchicus transcriptome that are predicted to be guanidinium-toxin resistant.

Expression of mutant and non-mutant NaV1.1 in C. finmarchicus.  Having identified a splice variant 
in the NaV1.1 gene that is predicted, to have reduced STX affinity, targeted mapping was used to examine the 
relative expression of the two variants, 8a and 8b using publicly available data (NCBI Bioprojects: PRJNA236528 
[GOM]: PRJNA231164 [NOR]). In the Gulf of Maine, where C. finmarchicus regularly co-occurs with A. fun-
dyense, both mutant (8a) and non-mutant (8b) isoforms were expressed in all developmental stages with rela-
tive expression of the mutant isoform ranging between 44% and 61% (Fig. 2A), and the proportion of the two 
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Figure 1.  Voltage-gated sodium channel (NaV1). (A) Diagram of the channel protein showing the 4 conserved 
domains (Domains I–IV) with 6 trans-membrane segments each, designated S1–S6, and connected through 
“linker” sequences. The reentrant “P-loop,” including a selectivity filter residue (red circle) and toxin binding 
sites (orange and blue circles) enters and exits the confines of the membrane between S5 and S6 of each domain. 
(B) Domain III variants of Calfi-NaV1.1.Diagram of Domain III and alignment of the 8a and 8b variant regions 
(highlighting) of Calfi-NaV1.1, including the P-loops (labeled) flanked by shared common sequence regions of 
nucleotide segments 7 and 9 (see28 for sequence details). Top row shows the amino acid single-letter code for 
NaV1.1-8b as a reference; Letter codes on the 8a line indicate deviations from the 8b pattern (identical residues 
indicated by dashes). (C) STX Binding sites. Sequence alignments for the P-loops of Calanus finmarchicus, an 
insect and a mammal. Only residues deviating from corresponding ones in Calanus NaV1.1b (top row) are shown. 
NaV1.1a is a splice variant of NaV1.1b having a different DIII P-loop sequence. Shading = sites predicted to affect 
STX binding. Column labels: DI-IV conserved repeat domains; i = inner ring (sodium selectivity filter); o = outer 
ring; Blue box: toxin binding site with a positive residue (K) replacing a negative one (D); Grey box: a neutral 
amino acid in the same location. For reference purposes, the inner-ring residues within the NaV1.1-8b sequence 
are: D376, E1013, K1539, A1832. Accession numbers in Supplementary material, table S1; Calanus NaV1.1a, 
Calanus NaV1.1b, Calanus NaV1.2, Calanus NaV1.3. Other Accession numbers: Drosophila melanogaster 
sp|P35500; Rattus norvegicus sp|P04775; Other Calanus - Domain I: GAXK01036301; Domain II: GAXK01012592; 
Domain III: GAXK01114023; GAXK01009404 and GAXK01063206; Domain IV: GAXK01022998.
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isoforms was similar across all stages even though overall expression was not (Fig. 2A). A similar result was 
obtained for C. finmarchicus samples from Norway (Bioproject: PRJNA231164), which originated from both 
field-collected late copepodites (CV) where A. fundyense blooms are rare and from individuals from a long-term 
continuous culture35. The proportion of the mutant isoform (8a) ranged between 43% and 45% for the cultured 
CVs and between 49% and 53% for field-collected individuals (Fig. 2B).

Expression of NaV isoforms in C. finmarchicus feeding on A. fundyense.  Relative expression 
of the NaV1.1-8a and 8b isoforms was investigated in C. finmarchicus fed on either a control diet or a diet of 
STX-producing A. fundyense using data from the current study and publicly available data (NCBI Bioproject: 
PRJNA312028 [GOM]). In the previous study, adult females were fed on either a control or two different A. fun-
dyense diets (LD: 25% by volume, HD: 100% by volume) for 2 and 5 days25. Mapping of reads to either segment 
was modest ( < 10 mapped reads) and similar in all treatments. No significant differences were observed in overall 
expression of the NaV1.1 gene (or for that matter, NaV1.2 or NaV1.3) or in the proportion of the two isoforms 
(GLM test; 2 days: control vs. LD; control vs. HD; 5 days: control vs. LD; control vs. HD; all statistical compari-
sons: p ≥ 0.90). A similar result was obtained using the targeted mapping of reads to segments 8a and 8b for late 
nauplii feeding on A. fundyense for 2 days (current study). Although relative expression was more than two-fold 
higher in nauplii than in the adult females, there was no significant difference in expression between treatments 
(GLM test; control vs. HD: p = 0.9987). Thus, both isoforms are constitutively expressed, and STX exposure did 
not affect the relative expression of the NaV1.1 variants in either adult females or in nauplii. A similar result was 
found for the expression of the second fragment predicted to be TTX-resistant, with the neutral alanine and 

Figure 2.  Expression of mutant and non-mutant NaV 1.1 in C. finmarchicus. (A) Relative expression of 
segment 8a (black bars) and 8b (grey bars) shown as number of counts per million reads (RPKM) across six 
developmental stage (embryo, early nauplius, late nauplius, early copepodite, late copepodite, adult female)28. 
(B) Relative expression of segment 8a (black bars) and 8b (grey bars) shown as number of counts per million 
reads (RPKM) in late copepodite (CV) from culture (early and late) and field (early and late)34. Error bars shown 
for the data are standard deviations of four biological replicates. Expression (x-axis) is on a Log10 scale.
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adjacent threonine in the outer ring. This, too, did not differ among treatments for adult females or for nauplii. 
Thus we could detect no transcriptional responsiveness of the voltage-gated sodium channel genes to the toxic 
alga in either adults or nauplii.

Effect of A. fundyense on late nauplii.  Feeding, survival and behavior.  Evidence for adverse effects of 
the STX treatments was examined by checking nauplii under a dissecting microscope after 24 and 48-hours for 
survival, gut fullness and swimming behavior. The guts of the nauplii were colored and filled, indicating that they 
ingested both the control and experimental algae (Rhodomonas sp. and A. fundyense respectively). Survival at 
48 hours was high with 100% and 95% in the control and experimental treatments (3 replicates per treatment), 
respectively. However, locomotory activity of nauplii feeding on A. fundyense was negatively affected. Control 
nauplii were actively swimming and producing escape swims, while the nauplii feeding on A. fundyense became 
inactive within 24 hours, lying on the bottom of the container. Movement of their appendages was limited and the 
nauplii failed to escape from gentle suction. This difference in behavior persisted for the remainder of the exper-
iment (Supplementary material, Table S2).

Global gene expression.  The transcriptional response observed in nauplii fed on the A. fundyense diet involved 
the differential expression of 814 genes (DEGs), which represented 3% of transcripts expressed at ≥ 1 count per 
million (cpm). Two thirds (76%) of the DEGs were up-regulated in the experimental nauplii and the remain-
der down-regulated (Supplementary material, Figure S1, Table S5). Differential gene expression for the majority 
(90–94%) of up- and down-regulated DEGs was equal to or less than 4-fold (Supplementary material, Figure S1, 
Table S5).

The naupliar response to A. fundyense included DEGs from many conserved eukaryotic processes such as 
cellular metabolic processes, response to stimulus, and growth, (Supplementary material, Figure S2) which 
included up-regulation for genes involved in signal transduction, protein turnover (transcription), immune 
system and growth (Fig. 3B). Regulation of these processes is typical for the “cellular stress response” (CSR)38, 
which was confirmed by enrichment analysis of gene ontology (GO) terms: cellular amino acid metabolic process 
(down-regulated), transport and localization (up-regulated) were all identified as enriched biological processes 
(Supplementary material, Table S4). Also consistent with the CSR is the up-regulation of genes involved in the 
degradation of lipids and carbohydrates, and the down-regulation of genes involved in biosynthesis (Fig. 3B).

Enrichment analysis identified the GO term “developmental process” as significantly enriched among the 
up-regulated transcripts. Regulated genes in this category included several cuticle and endocuticle proteins (flex-
ible, a, 6, 7, 19 classes, number of DEGs = 23), cytoskeletal elements (tubulins, dynein, gelsolin precursor, micro-
tubule associated proteins, number of DEGs = 9) and members of the vitellogenin family (number of DEGs = 10). 
In addition, several myosins (heavy chain I, II, p and heavy non-muscle), tropomyosins (number of DEGs = 6) 
and contactins (number of DEGs = 2) were up-regulated. These proteins are not only involved in growth but also 
in muscle function.

Global gene expression analysis confirmed that none of the NaV transcripts in the reference transcriptome (43 
transcripts) were differentially expressed. Furthermore, neither multi-xenobiotic resistance (MXR), nor detox-
ification was identified as enriched processes among the DEGs. The C. finmarchicus reference transcriptome 
included ca. 50 genes involved in the MXR response and ca. 200 genes involved in either phase I or phase II 
detoxification27,28,39. Searching for these genes among the DEGs in nauplii showed that only 2% of genes involved 
in these two defense mechanisms (MXR and detoxification, phases I and II) were regulated in response to the 
dinoflagellate. These DEGs were members of the cytochromes P450 family (phase I detoxification) and all were 
down-regulated.

Comparison between transcriptomic responses: adult females vs. nauplii.  The naupliar response 
to A. fundyense was compared with the response measured in adult females with the same experimental design 
and similar algal toxicity (mean 0.02 STX equivalent cell−1 d−1 ± 0.02 [SD]). Survival of nauplii (95%) and adult 
females (100%) was high and similar. While the number of DEGs was high in both nauplii (814 DEGs) and 
females (1388 DEGs), significantly fewer genes were differentially expressed in the nauplii (X2 test = 66.02; 
p < 0.000001; Supplementary material, Table S5) and the number of shared DEGs was small (Fig. 3A).

Both nauplii and adult females responded with a cellular stress response suggesting that the diet is an environ-
mental stressor (Fig. 3B). Up-regulation was observed for genes included in the GO terms “cellular metabolism” 
(carbohydrate) and “response to stress” (protein turnover, signal transduction, cell cycle checkpoint, immune 
system) for both nauplii and adult females (Fig. 3B). Seventy % of the 96 DEGs shared between the two stages 
(Fig. 3A) were involved in “response to stress”; however, even within the CSR, nauplii and adult females regulated 
different genes (Fig. 3B). For example, within the biological process “protein turnover” members of various classes 
of serine proteases (3, 6, 9, 14, easter and strubble; Supplementary material, Table S6) were among the DEGs. Only 
class 3 was differentially expressed in both; class 9 was specific to the nauplii and the other classes were specific to 
adult females (Supplementary material, Table S6). Even within class 3, a single member was shared between the 
stages, while seven additional genes were differentially regulated in the adult females. Expression levels could not 
explain this difference, since relative expression of serine proteases was similar in the two stages (Supplementary 
material, Table S6).

The biological process “developmental process” was significantly enriched in nauplii, but not in adult females. 
The few DEGs involved in growth/reproduction (cuticle and endocuticle proteins [7], vitellogenins [3], gelsolin 
precursor [1]) that were differentially expressed in females were all down-regulated after two days on the A. fun-
dyense diet. In contrast, development and growth transcripts were mostly up-regulated in the nauplii in response 
to the experimental diet. Relative expression of development and growth genes, including those in the myosin 
family was higher in the nauplii (RPKM = 1 to 100) than in the females (RPKM = 1 to 60), and some (10%) were 
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silent in the adult females (RPKM = 0). The remaining 67 naupliar DEGs, were expressed at high enough levels in 
the females and were included in the statistical analysis ( > 1 cpm).

A signature response in the adult females was the regulation of transcripts involved in digestion, and this 
response was absent in the nauplii. In the adult females, 25 transcripts were differentially expressed under all 
experimental conditions (LD, HD, 2 days and 5 days)25,27. 24 of these DEGs were all associated with digestion and 
included endoglucanases (7), trypsins (6), glycosil hydrolases (8), lipase (1), phosphogluconolactonase (1) and 
β-carotene-9-oxygenase (1)25,27. These DEGs were up-regulated with the exception of two trypsins that were con-
sistently down-regulated in the females, and the magnitude of the response ranged between 2.5 and 4.3-fold (HD, 
2 days). These digestive enzymes were expressed in nauplii at levels between 1 and 71 RPKM, which was similar 
to the range observed in adult females (RPKM = 1 to 84). In the nauplii modest expression differences (1.6-fold) 
were observed in six other digestive enzymes (two endoglucanases, two chitinases, one glycosil hydrolase and a 
carboxyl peptidase).

Figure 3.  Comparison of C. finmarchicus transcriptomic responses between late nauplii and adult females 
feeding on A. fundyense for 2 days. (A) Venn diagram of DEGs (up- and down-regulated) in late nauplii and 
adult females. (B) Heat map of annotated DEGs in late nauplii (1st column) and adult females (2nd column). 
Genes were clustered using heatmap.2 function (R software) as indicated by the dendrogram on the left side of 
the figure. Individual biological processes involved in the response are noted on the right side of the figure with 
the corresponding GO terms in brackets (see Supplemental material, Figure S2). Specific classes of genes are 
listed (italic) for some of these biological processes as discussed in the text. Relative expression rate (absolute fold 
change) is calculated for nauplii and adult females feeding on the toxic diet compared with nauplii adult females 
feeding on the control diet Rhodomonas sp. Data for adult females are publicly available through DryAd2.
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Discussion
The results suggest that C. finmarchicus STX-resistance is conferred through two complementary mechanisms: 1) 
an intrinsic STX resistance in certain NaV1 variants, co-expressed with non-resistant isoforms but unchanged in 
expression with A. fundyense exposure; and 2) a physiological response that involves the digestive system. While 
both mechanisms are present in the adult females, the nauplii depend primarily on the first to confer resistance to 
A. fundyense. Nauplii show high survival, but the striking difference in swimming behavior compared with adult 
females suggests greater susceptibility to STX in the early developmental stages.

Mechanism 1: Saxitoxin block of voltage-gated sodium channels.  STX binding to NaVs.  Within 
the NaV1 P-loops of C. finmarchicus, we found isoforms with mutations in two of the nine sites shown in other 
systems to affect guanidinium ion binding (Fig. 1). One site, D1543 in Calfi NaV1.1-8b, corresponds to the res-
idue D1426 in Domain III of the rat brain NaV1.2 channel (Fig. 1C), which when mutated from aspartate to 
lysine (D1426K), reduces STX binding by over 30-fold36, a substitution that is the same as in NaV1.1 8a. Another 
Domain III P-loop sequence shown in Fig. 1 (from a partial protein only) had a neutral alanine in this position 
instead of an aspartate. While Terlau et al.40 did not test this particular substitution, they did find that substitution 
of either of two other electrically neutral residues (D1426N and D1426Q) produced a smaller reduction in toxin 
binding, as might be expected from the lesser charge change. This same sequence also possesses a threonine in 
an adjacent locus (T1425), where Du et al.37, observed a pattern of TTX resistance in taxa, ranging from jelly-
fish to leeches, having this substitution. They followed this up with a study of site-directed mutagenesis on the 
TTX-resistant mite, Varroa destructor. Replacing the threonine with either of two amino acids usually found at 
that site in non-resistant taxa, as well as C finmarchicus (equivalent to T1425I and T1425M), produced a 10-fold 
greater susceptibility to TTX. The copepod channel with threonine in that locus would thus be expected to show 
toxin resistance as well.

If indeed Calfi-NaV1.1-8a is more STX-resistant than 8b, one might expect that it would be up-regulated in 
animals on the toxic alga diet. Furthermore, consistent with evidence of higher impairment of nerve and motor 
function in nauplii, it might be less differentially expressed in those stages, which showed a greater impairment 
of behavioral responses than did the females. Instead, it appeared that both isoforms were expressed in approx-
imately equal proportions (±50%) in all developmental stages, in individuals from two geographically distant 
populations (Gulf of Maine and Norway), and in individuals feeding on the toxic dinoflagellate. It might be 
speculated that with half of the sodium channels protected from the toxin, the loss of function in the remaining 
channels may not be lethal: there is typically a substantial safety factor for impulse transmission in most nerve. 
However, if the resistant channel were the only isoform available to the copepod, there could be other negative 
consequences, as has been found in locomotor deficits in toxin-resistant snakes8.

Evolution of tolerance to channel-blockers.  Genetic modifications become established in a population through 
natural selection, as has been demonstrated by pesticide-resistance in insects, including that to NaV blockers41. 
Phenotypic variation in the sodium channel is correlated with differences in environmental conditions with 
toxin-resistant mutants being limited to populations that encounter TTX or STX in their habitat8. Garter snakes 
(Thamnophis sirtalis) that co-occur with toxic phenotypes of their salamander prey (Taricha granulosa) have 
evolved novel TTX-resistant NaV mutations independently in several populations16,34,42. The toxin-resistance of 
the snake co-varies with toxin levels in the local prey population8. In two resistant snake populations, the aspar-
tic acid (D) of the Domain III (outer ring) is replaced by a glutamic acid (E), but direct evidence that this is the 
source of TTX-resistance has not been confirmed34. For the soft-shell clam, M. arenaria, the mutation that confers 
STX resistance is found in individuals from the Bay of Fundy, known for its harmful algal blooms15. Glutamic 
acid has been replaced by an aspartic acid in the outer ring of the Domain II P-loop (equivalent to E945D in 
rat NaV1.2). In both of these two cases, in contrast to C. finmarchicus, there is no charge change at the altered 
locus. The Domain III mutation in the copepod has not been described occurring naturally in other organisms. 
However, it is consistent with the convergent evolution of mutations in widely dispersed TTX-resistant snake 
species and populations with mutations in relatively few of the known possible (TTX/STX)-resistant sites. This 
has led Feldman and coauthors to suggest that the costs of alternative sites for toxin-resistant mutations may be 
too high, thus, keeping them from occurring in natural populations34.

Mechanism 2: physiological regulation.  Two other toxin-tolerance mechanisms involve physiological 
regulation by either rendering toxins inactive or limiting their assimilation6,43,44.

No evidence of activation of two common defense mechanisms: Multi-xenobiotic resistance and detoxification path-
ways.  Up-regulation of enzymes involved in the detoxification pathways (phase I and II) have been reported in 
the bivalves Mytilus edulis and Crassostrea gigas and Atlantic salmon (Salmo salar) in response to STX-producing 
Alexandrium spp.45–47, while STX removal via excretion in Mytilus galloprovincialis48 is likely to be mediated 
by the multi-xenobiotic system2,48. In contrast, the response of C. finmarchicus to A. fundyense did not include 
either one of two common defense mechanisms: up-regulation of the MXR system or detoxification pathways. 
While the absence of a detoxification response (phases I and II) has been previously reported in adult females25,26, 
here it is confirmed in late nauplii. Furthermore, there is no evidence for the up-regulation of the first line of 
defense (MXR) in either females or nauplii, suggesting that STX-tolerance in C. finmarchicus occurs via a differ-
ent mechanism.

Role of digestion in detoxification.  After ingestion of A. fundyense, toxic cells accumulate in the copepod diges-
tive system, where they are broken down prior to absorption. Thus, an alternative mechanism for detoxifica-
tion would be to limit absorption of the toxin. This mechanism has been suggested as a defense against a toxic 
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Alexandrium spp. in the copepod, Acartia clausi, and against toxic cyanobacteria in the cladoceran Daphnia 
pulex49,50, albeit based on limited evidence. Other physiological studies on C. finmarchicus indicated no difference 
in respiration rates, but higher levels of digestive enzymes in pre-adult stage CV individuals feeding on toxic 
Alexandrium spp. compared with those on a non-toxic diet51. The difference in digestive enzymes is consistent 
with the transcriptomic response in adult females, which included the up-regulation of multiple genes involved 
in digestion (24 DEGs). This was the only response that was shared across toxic algal dose and time points out of 
more than 1,000 DEGs25.

Additional support for a defense mechanism that limits absorption of the toxin comes from measurements 
of STX levels in C. finmarchicus11,52. In the clam, M. arenaria, which only appears to possess mutation in the 
NaV channel as mechanism of resistance to STX, retention efficiency in resistant individuals is high and ranges 
between 60 to 70%15,29. This high retention efficiency, as result of the fact that the toxin is not actively removed 
from the organism, contributes to clams being an important risk factor for human PSP under red tide condi-
tions15. In contrast, retention efficiency is low in C. finmarchicus and ranges between 2–8% of total ingested 
toxins11,52, which is consistent with a mechanism that limits absorption of the toxin. The mussel Mytilus edulis, 
which also shows low accumulation53, eliminates STX presumably through bacterial action in the digestive tract53. 
A detoxification mechanism that involves gut bacteria has been demonstrated in insects54 and similar mechanism 
may be present in the copepods. In the current experiments the females were wild-caught, while the nauplii were 
laboratory reared, which could have led to differences in their microbiome.

Methods
Identification of candidate toxin-resistant NaV channels in C. finmarchicus.  Voltage-gated sodium 
channel analysis.  The voltage-gated sodium channel transcripts identified in the de novo assembly of C. fin-
marchicus28 were retrieved and translated using the EMBOSS Transeq web tool55 and additional fragments of 
channels containing P-loops were identified by BLASTing those channel sequences into the transcriptome and 
checking for a good alignment of the retrieved sequences with the query. Each of the Calanus protein fragments 
was then used as a query in a reciprocal BLAST against the non-redundant proteins curated at NCBI to confirm 
that the most similar annotated protein in that database was a NaV.

Relative expression of NaV1.1– targeted mapping of reads.  We examined the relative expression of the NaV1.1-8a 
and 8b variants (NCBI Acc. No. GAXK01042241) as well as the second fragment predicted to be TTX resist-
ant (NCBI Acc. No. GAXK01009404) in different RNA-Seq C. finmarchicus datasets: 1) multiple developmental 
stages (embryo to adult female) from the Gulf of Maine (GOM) population (NCBI Bioproject PRJNA236528)28; 
2) late-copepodite (CV) stage individuals from field-collected and cultured Norwegian populations (NCBI 
Bioproject PRJNA231164)35; 3) GOM adult females that had been exposed to three experimental diets (control, 
low dose A. fundyense 25% by volume [LD], and high dose A. fundyense 100% by volume [HD])25; and 4) late 
nauplii (NV-NVI) from the GOM population exposed to A. fundyense diet (current study; NCBI Bioproject: 
PRJNA356331).

For each dataset, RNA-Seq reads were mapped against partial sequences of the NaV1.1 transcript that included 
the two variants (8a, 8b) using the software Kallisto (v. 0.43.0), which is designed to accurately map reads to sim-
ilar sequences56; specifically, short NaV1.1 reference sequences that included segments “6”, “7” and “8 (a or b)28 
(see Fig. 1). The lengths of the two alternative reference sequences were 600 and 594 nucleotides for segments 
8a and 8b, respectively. The two reference sequences only extended 51 nucleotides beyond segment 8 in order to 
ensure that the target locus (seg 8) was included in the mapping, while maximizing the number of mapped reads. 
Similarly, RNA-Seq for each datasets were mapped against the second fragment predicted to be TTX resistant 
using the software Kallisto (v. 0.43.0)56.

Statistical analysis for the relative expression of the NaV1.1 gene 8a and 8b isoforms and the TTX-resistant 
segment across the different datasets was performed using the BioConductor package edgeR using the general-
ized linear model (GLM) likelihood ratio test with a correction for false discovery using the Benjamini–Hochberg 
method (false discovery rate [FDR] < 5%)57.

Naupliar response to A. fundyense.  The experimental design, field collection and cultivation of C. fin-
marchicus as well as RNA-Seq analysis are described in detail in Supplementary material. Briefly, three biologi-
cal replicates of C. finmarchicus “late naupliar stage” (mix of NV and NVI individuals) were incubated at 10 °C 
and 14 light:10 dark cycle in 100 mL crystallizing dishes with filtered seawater and fed for two days on one of 
two experimental diets: control and high dose of A. fundyense (100% by volume HD) (Supplementary material, 
Table S2). The control and A. fundyense phytoplankton cultures used in this study were the same as those in 
three parallel studies24–26. Nauplii were checked under a dissecting microscope to assess mortality, algal inges-
tion (colored/filled guts), possible malformations (none were found) and behavior (active swimming, escape 
swims) after 1 and 2 days. On day 2, nauplii (approximately 70 individuals per sample) were harvested from each 
treatment and biological replicate and immediately processed for total RNA extraction. cDNA library prepara-
tion and high-throughput sequencing was performed for each replicate at the University of Missouri DNA Core 
Facility (http://biotech.missouri.edu/dnacore). The six libraries were multiplexed and loaded into a single lane 
and sequenced on an Illumina HiSeq. 2000 instrument using paired-end sequencing (100 bp). Summary of RNA 
Seq yields are found in Supplementary material, Table S3.

Gene expression and functional annotation.  Gene expression analysis is described in detail in the Supplementary 
material. Briefly, quality filtered Illumina reads for the six RNA-Seq libraries were mapped to an existing C. fin-
marchicus reference transcriptome28 using software Bowtie (v. 2.0.6)58. Relative expression was calculated as reads 
per kilobase per million mapped reads (RPKM) for each gene using a custom script written in Perl (https://

http://S2
http://biotech.missouri.edu/dnacore
http://S3
https://github.com/LenzLab/RNA-seq-scripts
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github.com/LenzLab/RNA-seq-scripts). Differential gene expression between the control and experimental treat-
ment (CONTROL vs HD) was calculated using the BioConductor package edgeR57 with a TMM normaliza-
tion (trimmed means of M values) prior the statistical tests. Transcripts with a Benjamini-Hochberg corrected 
p-value smaller then 0.05 were considered differentially expressed (DEGs). DEGs were annotated against NCBI 
SwissProt protein database followed by the Gene Ontology (GO) database using UniProt (http://www.uniprot.
org/uploadlists/). Enrichment analysis was performed separately for up- and down-regulated genes with GO 
terms against the genes with assigned GO terms in the C. finmarchicus reference transcriptome27,28. The analysis 
was implemented using BLAST2GO (v. 2.6.4) performing the Fisher’s Exact Test followed by Multiple Testing 
correction of False Discovery rate (FDR < 5%)59.

Comparison with the adult female response to A. fundyense.  The response to A. fundyense meas-
ured in the nauplii was compared with the one previously reported in adult females exposed to the same exper-
imental condition25,27. The list of DEGs between adult females feeding on A. fundyense HD (100% by volume) 
treatment and a control diet for 2 days included the total number of up- and down-regulated genes (1,388) and 
the fold change difference in expression between the experimental and control diets27. In addition, relative expres-
sion levels for different genes were calculated as RPKM as described for the nauplii (RNA-Seq data available on 
NCBI BioProject: PRJNA312028).

Data availability.  Sequence data have been submitted to the National Center of Biotechnology Information 
(NCBI; www.ncbi.nlm.nih.gov) under the NCBI Bioproject: PRJNA356331.

References
	 1.	 McGlothlin, J. W. et al. Parallel evolution of tetrodotoxin resistance in three voltage-gated sodium channel genes in the garter snake 

Thamnophis sirtalis. Mol. Biol. Evol. 31(11), 2836–2846 (2014).
	 2.	 Cree, I. A. & Charlton, P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC cancer 17(1), 10 (2017).
	 3.	 Tiewsiri, K. & Wang, P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin 

Cry1Ac in cabbage looper. PNAS 108(34), 14037–14042 (2011).
	 4.	 Rushmore, T. H. & Tony Kong, A. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing 

enzymes. Curr. Drug Metab. 3(5), 481–490 (2002).
	 5.	 Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45(1), 371–391 (2000).
	 6.	 Rharrabe, K., Alla, S., Maria, A., Sayah, F. & Lafont, R. Diversity of detoxification pathways of ingested ecdysteroids among 

phytophagous insects. Arch. Insect Biochem. Physiol. 65(2), 65–73 (2007).
	 7.	 Zimmer, R. K. & Ferrer, R. P. Neuroecology, chemical defense, and the keystone species concept. Biol. Bull. 213(3), 208–225 (2007).
	 8.	 Brodie, E. D. III and Brodie Jr. Cost of exploiting poisonous prey: Evolutionary trade-offs in a predator-prey arms race. Evolution 

53(2), 626–631 (1999).
	 9.	 MacQuarrie, S. P. & Bricelj, V. M. Behavioral and physiological responses to PSP toxins in Mya arenaria populations in relation to 

previous exposure to red tides. Mar. Ecol. Progr. Ser. 366, 59–74 (2008).
	10.	 Venkatesh, B. et al. Genetic basis of tetrodotoxin resistance in puffer fishes. Curr. Biol. 15, 2069–2072 (2005).
	11.	 Teegarden, G. J., Cembella, A. D., Capuano, C. L., Barron, S. H. & Durbin, E. G. Phycotoxin accumulation in zooplankton feeding 

on Alexandrium fundyense- vector or sink? J. Plankton Res. 25, 429–443 (2003).
	12.	 Colin, S. P. & Dam, H. G. Latitudinal differentiation in the effects of the toxic dinoflagellate Alexandrium spp. on the feeding and 

reproduction of populations of the copepod Acartia hudsonica. Harmful Algae 1, 113–125 (2002).
	13.	 Narahashi, T. O. Mechanism of action of tetrodotoxin and saxitoxin on excitable membranes. Fed. Proc. 31(3), 1124 (1972).
	14.	 Backx, P. H., Yue, D. T., Lawrence, J. H., Marban, E. & Tomaselli, G. F. Molecular localization of an ion-binding site within the pore 

of mammalian sodium channels. Science 257(5067), 248–252 (1992).
	15.	 Bricelj, V. M. et al. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature 434, 763–767 

(2005).
	16.	 Geffeney, S. L., Fujimoto, E., Brodie, E. D. & Ruben, P. C. Evolutionary diversification of TTX-resistant sodium channels in a 

predator–prey interaction. Nature 434(7034), 759–763 (2005).
	17.	 Lee, C. H. & Ruben, P. C. Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels 2(6), 

407–412 (2008).
	18.	 Rossini, G. P. Toxins And Biologically Active Compounds From Microalgae: Biological Effects And Risk Management. Vol. 2 (CRC 

Press, 2014).
	19.	 Natsuike, M. et al. Possible spreading of toxic Alexandrium tamarense blooms on the Chukchi Sea shelf with the inflow of Pacific 

summer water due to climatic warming. Harmful Algae 61, 80–86 (2017).
	20.	 Turner, J. T. Planktonic marine copepods and harmful algae. Harmful Algae 32, 81–93 (2014).
	21.	 Melle, W. et al. The North Atlantic Ocean as habitat for Calanus finmarchicus: Environmental factors and life history traits. Progr. 

Oceanogr. 129, 244–284 (2014).
	22.	 Darbyson, E., Swain, D. P., Chabot, D. & Castonguay, M. Diel variation in feeding rate and prey composition of herring and mackerel 

in the southern Gulf of St Lawrence. J. Fish Biol. 63(5), 1235–1257 (2003).
	23.	 Heath, M. R. & Lough, R. G. A synthesis of large‐scale patterns in the planktonic prey of larval and juvenile cod (Gadus morhua). 

Fish. Oceanogr. 16(2), 69–185 (2007).
	24.	 Roncalli, V., Turner, J. T., Kulis, D., Anderson, D. M. & Lenz, P. H. The effect of the toxic dinoflagellate Alexandrium fundyense on the 

fitness of the calanoid copepod Calanus finmarchicus. Harmful Algae 51, 56–66 (2016).
	25.	 Roncalli, V., Cieslak, M.C. and Lenz, P.H. Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin 

producing dinoflagellate Alexandrium fundyense. Scientific Reports 6 (2016).
	26.	 Roncalli, V., Jungbluth, M. J. & Lenz, P. H. Glutathione S-Transferase regulation in Calanus finmarchicus feeding on the toxic 

dinoflagellate Alexandrium fundyense. PloS one, 11(7), p.e0159563 (2016).
	27.	 Roncalli, V., Cieslak M.C., Lenz, P. H. Data from: Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the 

saxitoxin producing dinoflagellate Alexandrium fundyense. Dryad Digital Repository., https://doi.org/10.5061/dryad.11978 (2016).
	28.	 Lenz, P. H. et al. De novo assembly of a transcriptome for Calanus finmarchicus (Crustacea, Copepoda)–the dominant zooplankter 

of the North Atlantic Ocean. PloS one 9(2), e88589 (2014).
	29.	 Bricelj, V. M., MacQuarrie, S. P., Doane, J. A. E. & Connell, L. B. Evidence of selection for resistance to paralytic shellfish toxins 

during the early life history of soft-shell clam (Mya arenaria) populations. Limnol. Oceanogr. 55(6), 2463–2475 (2010).
	30.	 Al-Sabi, A., McArthur, J., Ostroumov, V. & French, R. J. Marine toxins that target voltage-gated sodium channels. Marine Drugs 4(3), 

157–192 (2006).
	31.	 Goldin, A. L. Evolution of voltage-gated Na+ channels. J Exp Biol 205(5), 575–584 (2002).

https://github.com/LenzLab/RNA-seq-scripts
http://www.uniprot.org/uploadlists/
http://www.uniprot.org/uploadlists/
http://www.ncbi.nlm.nih.gov
http://dx.doi.org/10.5061/dryad.11978


www.nature.com/scientificreports/

1 0Scientific REPOrTS | 7: 14201  | DOI:10.1038/s41598-017-14545-z

	32.	 Lipkind, G. M. & Fozzard, H. A. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys. J. 
66(1), 1 (1994).

	33.	 Ahern, C. A., Payandeh, J., Bosmans, F. & Chanda, B. The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J. Gen. 
Physiol. 147(1), 1–24 (2016).

	34.	 Feldman, C. R. et al. Is there more than one way to skin a newt? Convergent toxin resistance in snakes is not due to a common 
genetic mechanism. Heredity 116, 84–91 (2016).

	35.	 Tarrant, A. M. et al. Transcriptional profiling of reproductive development, lipid storage and molting throughout the last juvenile 
stage of the marine copepod Calanus finmarchicus. Front. Zool. 11(1), 1 (2014).

	36.	 Catterall, W. A. Voltage‐gated sodium channels at 60: structure, function and pathophysiology. Journal Physiol. 590(11), 2577–2589 
(2012).

	37.	 Du, Y., Nomura, Y., Liu, Z., Huang, Z. Y. & Dong, K. Functional expression of an arachnid sodium channel reveals residues 
responsible for tetrodotoxin resistance in invertebrate sodium channels. J. Biol. Chem. 284(49), 33869–33875 (2009).

	38.	 Kültz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67, 225–257 (2005).
	39.	 Roncalli, V., Cieslak, M. C., Passamaneck, Y., Christie, A. E. & Lenz, P. H. Glutathione S-Transferase (GST) Gene Diversity in the 

Crustacean Calanus finmarchicus–Contributors to Cellular Detoxification. PloS one 10(5), p.e0123322 (2015).
	40.	 Terlau, H. et al. Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett. 293(1-2), 93–96 (1991).
	41.	 Dong, K. Insect sodium channels and insecticide resistance. Invert. Neurosci. 7(1), 17–30 (2007).
	42.	 Geffeney, S., Brodie, E. D. & Ruben, P. C. Mechanisms of adaptation in a predator-prey arms race: TTX-resistant sodium channels. 

Science 297(5585), 1336–1339 (2002).
	43.	 Sorensen, J. S., Turnbull, C. A. & Dearing, M. D. A specialist herbivore (Neotoma stephensi) absorbs fewer plant toxins than does a 

generalist (Neotoma albigula). Physiol. Biochem. Zool. 77(1), 139–148 (2004).
	44.	 Glendinning, J. I. How do predators cope with chemically defended foods? Biol. Bull. 213(3), 252–266 (2007).
	45.	 Núñez-Acuña, G., Aballay, A. E., Hégaret, H., Astuya, A. P., Gallardo-Escárate, C. Transcriptional responses of Mytilus chilensis 

exposed in vivo to saxitoxin (STX). J. Mollusc. Stud. eyt030 (2013).
	46.	 Fabioux, C. et al. Exposure to toxic Alexandrium minutum activates the detoxifying and antioxidant systems in gills of the oyster 

Crassostrea gigas. Harmful Algae 48, 55–62 (2011).
	47.	 Gubbins, M. J. et al. Paralytic shellfish poisoning toxins induce xenobiotic metabolizing enzymes in Atlantic salmon (Salmo salar). 

Mar. Environ. Res. 50(1), 479–483 (2000).
	48.	 Suzuki, T., Ichimi, K., Oshima, Y. & Kamiyama, T. Paralytic shellfish poisoning (PSP) toxin profiles and short-term detoxification 

kinetics in mussels Mytilus galloprovincialis fed with the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 31, 201–206 
(2003).

	49.	 Dutz, J. Alexandrium lusitanicum: relationship between feeding and egg production. Mar. Ecol. Prog. Ser. 175, 97–107 (1998).
	50.	 Asselman, J. et al. Identification of pathways, gene networks, and paralogous gene families in Daphnia pulex responding toexposure 

to the toxic cyanobacterium Microcystis aeruginosa. Environ. Sci. Technol. 46(15), 8448–8457 (2012).
	51.	 Hassett, R. P. Effects of the red-tide dinoflagellate Alexandrium tamarense on copepod digestion: toxin level does not predict 

physiological impact. EOS Transactions 76, OS12G-3 (1996). cited in [Teegarden, G. J., Cembella, A. D., Capuano, C. L., Barron, S. 
H. and Durbin, E. G. Phycotoxin accumulation in zooplankton feeding on Alexandrium fundyense—vector or sink?. J Plankton Res. 
25(4), 429–443 (2003)].

	52.	 Hamasaki, K., Takahashi, T. & Uye, S. I. Accumulation of paralytic shellfish poisoning toxins in planktonic copepods during a bloom 
of the toxic dinoflagellate Alexandrium tamarense in Hiroshima Bay, western Japan. Marine Biology 143(5), 981–988 (2003).

	53.	 Bricelj, V. M., Lee, J. H., Cembella, A. D. & Anderson, D. M. Uptake kinetics of paralytic shellfish toxins from the dinoflagellate 
Alexandrium fundyense in the mussel Mytilus edulis. Mar. Ecol. Progr. Ser. 63(2), 177–188 (1990).

	54.	 Engel, P. & Moran, N. A. Thegut microbiota of insects–diversity in structure and function. FEMS Microbi. Rev. 37(5), 699–735 
(2013).

	55.	 Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16(6), 276–277 
(2000).

	56.	 Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnol. 34(5), 
525–527 (2016).

	57.	 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene 
expression data. Bioinformatics 26, 139–140 (2010).

	58.	 Langmead, B., Trapnell, C., Pop, M., Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human 
genome. Genome Biol. 10(3) (2009).

	59.	 Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 
21, 3674–3676 (2005).

Acknowledgements
We wish to extend our appreciation to R.P. Hassett from Ohio University, B.L. King from University of Maine, 
C.M. Smith from Mount Desert Island Biological Laboratory, J.T. Turner from University of Massachusetts 
Dartmouth, R.L. Preston from Illinois State University and many other colleagues who generously contributed 
to this study from the initial planning stages to its completion. We would like to thank M. Belanger and R. 
Nilsen from the Georgia Genomics Facility at the University of Georgia. This research was supported by the 
National Science Foundation Grants OCE-1040597 to Petra H. Lenz and OCE-1459235 to Petra H. Lenz and 
Andrew E. Christie, the Cades Foundation of Honolulu to Daniel K. Hartline and Mount Desert Island Biological 
Laboratory’s David W. Towle Fellowship 2012 to Vittoria Roncalli. The views expressed herein are those of the 
authors and do not reflect the views of the funding agencies. This is the University of Hawaii at Manoa School of 
Ocean and Earth Science and Technology contribution Number 10257 .

Author Contributions
Conceived and designed the experiments: V.R., P.H.L. Performed the experiments: V.R., P.H.L. Analyzed the data: 
V.R., P.H.L., M.C.C., D.K.H. Wrote the paper: V.R., P.H.L., D.K.H.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-14545-z.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1038/s41598-017-14545-z


www.nature.com/scientificreports/

1 1Scientific REPOrTS | 7: 14201  | DOI:10.1038/s41598-017-14545-z

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Complementary mechanisms for neurotoxin resistance in a copepod

	Results

	Identification of possible STX-resistant NaV channels in C. finmarchicus. 
	Expression of mutant and non-mutant NaV1.1 in C. finmarchicus. 
	Expression of NaV isoforms in C. finmarchicus feeding on A. fundyense. 
	Effect of A. fundyense on late nauplii. 
	Feeding, survival and behavior. 
	Global gene expression. 

	Comparison between transcriptomic responses: adult females vs. nauplii. 

	Discussion

	Mechanism 1: Saxitoxin block of voltage-gated sodium channels. 
	STX binding to NaVs. 
	Evolution of tolerance to channel-blockers. 

	Mechanism 2: physiological regulation. 
	No evidence of activation of two common defense mechanisms: Multi-xenobiotic resistance and detoxification pathways. 
	Role of digestion in detoxification. 


	Methods

	Identification of candidate toxin-resistant NaV channels in C. finmarchicus. 
	Voltage-gated sodium channel analysis. 
	Relative expression of NaV1.1– targeted mapping of reads. 

	Naupliar response to A. fundyense. 
	Gene expression and functional annotation. 

	Comparison with the adult female response to A. fundyense. 
	Data availability. 

	Acknowledgements

	Figure 1 Voltage-gated sodium channel (NaV1).
	Figure 2 Expression of mutant and non-mutant NaV 1.
	Figure 3 Comparison of C.




