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The COVID-19 pandemic is a global stressor with inter-individually differing influences on mental health trajectories. Polygenic Risk
Scores (PRSs) for psychiatric phenotypes are associated with individual mental health predispositions. Elevated hair cortisol
concentrations (HCC) and high PRSs are related to negative mental health outcomes. We analyzed whether PRSs and HCC are
related to different mental health trajectories during the first COVID lockdown in Germany. Among 523 participants selected from
the longitudinal resilience assessment study (LORA), we previously reported three subgroups (acute dysfunction, delayed
dysfunction, resilient) based on weekly mental health (GHQ-28) assessment during COVID lockdown. DNA from blood was collected
at the baseline of the original LORA study (n= 364) and used to calculate the PRSs of 12 different psychopathological phenotypes.
An explorative bifactor model with Schmid-Leiman transformation was calculated to extract a general genetic factor for psychiatric
disorders. Hair samples were collected quarterly prior to the pandemic for determining HCC (n= 192). Bivariate logistic regressions
were performed to test the associations of HCC and the PRS factors with the reported trajectories. The bifactor model revealed 1
general factor and 4 sub-factors. Results indicate a significant association between increased values on the general risk factor and
the allocation to the acute dysfunction class. The same was found for elevated HCC and the exploratorily tested sub-factor
“childhood-onset neurodevelopmental disorders”. Genetic risk and long-term cortisol secretion as a potential indicator of stress,
indicated by PRSs and HCC, respectively, predicted different mental health trajectories. Results indicate a potential for future studies
on risk prediction.
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INTRODUCTION
The etiology of stress-related disorders is multifactorial and likely
depends on both genetic and environmental factors [1, 2]. Few
studies so far have examined the combined effect of different
polygenic risk scores (PRSs) and hair cortisol concentration (HCC)
[3, 4], a highly heritable indicator of long-term cortisol secretion
and a potential indicator of environmental stress, to identify
people at-risk for developing mental disorders. There is clear
evidence that adverse experiences and stress can induce stress-
related disorders [5]. However, individuals show differential
mental health trajectories after adverse events [6]. Currently, it is
unclear whether these different trajectories can be predicted by
genetic predisposition and/ or long-term cortisol secretion and
stressability. In an earlier investigation, we identified three
subgroups with differing mental health trajectories during the
first COVID lockdown in Germany and two groups emerged as
particularly at increased risk of developing a mental disorder,

while exposed to the same amount of COVID-19 specific stressors
[7, 8]. To understand the potential (patho-)mechanisms defining
these groups, we here investigated the association between these
subgroups with both HCC as well as PRSs for phenotypes of
mental disorders and traits.
Stress, an established risk factor for mental disorders [5] is

known to activate the hypothalamus-pituitary-adrenal (HPA) axis.
HPA axis activation is highly heritable and can be measured by its
end product, the steroid hormone cortisol [4]. As cortisol is
incorporated into growing hair, long-term cortisol secretion can
retrospectively be measured by HCC [9] and HCC may be a
promising indicator of environmental stress and stressability [9].
While previous studies have shown increased HCC in individuals
with different objectively observable stressors [10–14], current
meta-analyses have shown inconsistent results regarding associa-
tions of HCC with stress-related disorders [9, 15, 16]. However, only
very few studies have examined the predictive value of actually
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past cortisol levels for future stress reactions in prospective
longitudinal designs (exception see [17]). In most so-called
“prospective” studies hair samples were collected immediately
after the traumatic event. Since 3 cm hair samples express
cumulative cortisol secretion over three months preceeding the
event, they are referred to as pretraumatic HCC levels [18, 19].
Regarding this particular time of sampling, it is unknown if the
HCC values confound with acute cortisol secretion during the
traumatic event. The present understanding of HCC as a potential
predictor for stress vulnerability is therefore still limited.
In addition to HCC, the genetic predisposition of individuals for

developing mental disorders is another important risk factor.
Genome-wide association studies (GWAS) provide strong evidence
of multiple independent loci contributing additively to the etiology
of different psychiatric disorders [20]. To determine this genetic risk
at the individual level, polygenic risk score (PRS) can be calculated
[21], defining single values to quantify an individual’s additive
genetic trait predisposition. Schultebraucks et al. [22] used 21 PRSs
and supervised machine learning and predicted mental health
trajectories following a major life event on the basis of multiple PRSs.
Moreover, among others, the Brainstorm Consortium [23], as well as
the Cross-Disorder Group of the Psychiatric Genomic Consortium
[24, 25] pointed to pleiotropic mechanisms among psychiatric
disorders. For instance, Lee et al. provided strong empirical evidence
for the existence of pleiotropic mechanisms by combining eight
different neuropsychiatric disorders using exploratory factor analysis
into three factors that explained 51% of the variance [26]. These
pleiotropic mechanisms are not an entirely new concept. Addition-
ally, a general factor for psychopathology has already been
established, following the concept of the general factor in
intelligence (g factor) [27, 28]. Various studies demonstrated that
different mental disorders directly loaded on an orthogonal general
bifactor [27–29]. A more recent example is the study by Grotzinger
et al. [29]. In this study the possibility of describing 11 major
psychiatric disorders by a bifactor model with four domain-specific
factors and one p-factor was demonstrated [29]. However, many
important issues, such as adequate integration of different genetic
risk factors or the combination of genetic risk for psychiatric disorders
with other types of biomarkers, have remained unexplored [30]. The
present study aimed at tackling these issues by integrating HCC as an
indicator of long-term cortisol secretion and a potential outcome of
environmental stress as well as the PRSs as indicators of genetic risk
for psychiatric disorders, while at the same time considering the
interaction of HCC and PRSs. We included this interaction because
identifying individuals in whom environmental conditions such as
stress increase genetic influence would be very helpful in preventing
psychiatric disorders. Moreover, it has recently received attention by
a study from Bolhuis et al., who examined the moderating effect of
HCC on the association of the genetic risk of schizophrenia with pre-
adolescent brain structure [3]. In this study the interaction effect did
not surpass the multiple testing threshold [3] and therefore remained
inconclusive. In addition, Rietschel and colleagues showed no
association between HCC and the PRSs for MDD or the PRS for
neuroticism [4]. We reasoned that the investigation of this interaction
would therefore be beneficial as an additional exploratory analysis.
This study builds on data from the LOngitudinal Resilience

Assessment (LORA)-study [31]. To quantify stress vulnerability, we
referred to three groups of participants with different mental
health trajectories during the first 8 weeks of lockdown of the
COVID-19 pandemic that were identified in previous work: [7, 8]
the largest class with 82.6% is the “resilient” class, which
maintained a level of low mental distress due to the major
stressor. The smallest group, with 8.4%, showed significant
deterioration of mental health after week 3 and is therefore
called “delayed dysfunction”. The last class entails 9.0% of the
participants and initially reacted with significant mental health
deterioration but an improvement beyond the baseline level from
week 5. In this study, we will call the class of participants “acute

dysfunction”, as it reacts immediately with a stress response to the
pandemic and associated socio-political restrictions. Noteworthy,
the two groups that reacted with a significant deterioration of
mental health during the pandemic also had significantly worse
mental health values prior to the pandemic compared to the
resilient class [7]. Accordingly, both groups (“acute dysfunction”
and “delayed dysfunction”) are considered to represent vulnerable
individuals that should have been identified in time and
supported through appropriate interventions.
To account for the high genetic correlation of different

psychiatric disorders mentioned above, we decided to use PRSs
for different mental disorders and an associated personality trait:
attention deficit hyperactivity disorder (ADHD) [32], alcohol
dependence (ALC) [33], anorexia nervosa (ANO) [34], anxiety
disorder (ANX) [35], autism spectrum disorder (AUT) [36], bipolar
disorder (BPD) [37], major depressive disorder (MDD) [38],
obsessive-compulsive disorder (OCD) [39], opioid dependence
(OPI) [40], posttraumatic stress disorder (PTSD) [41], schizophrenia
(SCZ) [42], and neuroticism (NEU) [43]. NEU was added to this
comprehensive set of the most common psychiatric disorders,
because it is a risk factor for a variety of psychiatric disorders, e.g.,
depression and schizophrenia [43]. To capture the pleiotropic
mechanisms among psychiatric disorders, we followed the
bifactor model and additionally computed the risk for the general
p factor based on the 12 different PRSs.
This current study thus seeks to investigate the utility of

prospectively sampled biological parameters to identify individuals
belonging to a group of participants with deteriorated mental
health after the outbreak of the COVID-19 pandemic in Germany.
According to earlier evidence linking HCC to stress-related

disorders and the development of associated symptoms, we
hypothesize (1) that elevated pre-pandemic HCC are associated
with their allocation to the “acute dysfunction” and the “delayed
dysfunction” classes during the pandemic. In addition, we
hypothesize (2) that subjects with a general increased genetic
risk for developing a psychiatric disorder will also be more likely to
have deteriorating mental health in response to the COVID
lockdown. Furthermore, we exploratorily test (3) the impact of
disorder-specific PRSs and (4) whether there is an interaction
effect of long-term cortisol secretion and genetic risk, i.e. that the
combination of high cortisol levels in hair, physiological differ-
ences and high genetic risk for developing a mental illness are
more likely to occur in vulnerable individuals compared to resilient
individuals.

MATERIALS AND METHODS
Study design
The present study is an extension of the LOngitudinal Resilience
Assessment (LORA)-study, which is ongoing since 2017. For a more
detailed description of the LORA study, see the Supplemental Material and
Chmitorz et al. [31].
With the onset of the pandemic, all participants of the original LORA

study were offered the opportunity to take part in additional weekly
surveys to assess their reaction to the pandemic-associated measures to
restrict social contact. 523 of the 1191 LORA participants participated in
the additional survey (for a detailed description of the COVID subsample,
see Ahrens et al. [7]). Participants mental health was measured with the
General Health Questionnaire 28 (GHQ-28), which assesses the degree of
participants’ internalizing symptoms [44, 45]. Based on their mental health
trajectories during the first 8 weeks of the pandemic, participants were
clustered into three classes using latent growth mixture models as
described in Ahrens et al. [7]. There was a larger resilient group and two
smaller, vulnerable groups as described above and in the Supplemental
Material. The trajectories of the classes are shown in Fig. 1A, which is
adapted from Ahrens et al. [7] and extend up to 12 weeks. The classes
represent typical classes found in the population after a major life event
[6, 46]. The results presented here pertain only to LORA participants who
opted into the additional COVID survey and additionally provided pre-
pandemic hair and/or blood samples.
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Participants
Detailed inclusion criteria are described in the Supplement. Of the 523
participants who took part in the COVID surveys (for detailed descriptive
analyses, see Ahrens et al. [7]), hair cortisol analyses were available from
n= 192 participants. Genetic analyses were obtained from n= 364
participants, and for n= 142, both hair cortisol and genetic analyses were
available. The descriptive demographic statistics for the three groups in
the hair cortisol and the PRS datasets are shown in Tables 1–2, the
descriptive demographic statistics for the complete dataset are shown in
Supplementary Table 1. All participants provided written informed
consent. The study meets the terms with the Code of Ethics of the World
Medical Association (Declaration of Helsinki; Rickham, 2013) and was
accepted by the respective Ethics Committees in Frankfurt am Main
(registration number: 244/16) and Mainz (registration number:
837.105.16(10424)), Germany.

Polygenic risk score calculation
DNA from blood was collected from the original LORA study at baseline
assessments and was used to perform Polygenic Risk Score calculations for
participants from the LORA-COVID subsample. To calculate a PRS, the
amount of trait-associated alleles in individuals are weighted by per-allele
effect sizes derived from previously published large GWAS and normalized
by a relevant population distribution [47]. Therefore, genotyping of the
LORA study participants was performed in n= 959 participants, using an
Illumina GSA-MD V 1.0 DNA Bead Array at the Broad Institute in
Cambridge, Massachusetts, USA. All participants underwent quality control
using PLINK v1.9 [48]. The SNPs were filtered applying the following quality
control criteria: minor allele frequency ≤ 0.01, not uniquely mappable or tri-
allelic variants, calling rate of ≤ 0.98 and Hardy-Weinberg-Equilibrium
deviations (p < 1 × 10−6). Participants with heterozygosity rate > 0.2,
missingness > 0.02, and sex mismatch were excluded from our study.
Participants with a cryptic relationship with a pi-HAT > 0.2 were excluded.
Filtering for population structure and criteria was performed using the
following criteria: HWE p < 0.02, missingness = 0, MAF > 0.2, and a pruned

SNP set (r² = 0.1, i.e. if among any pair of SNPs across the dataset these
pairs surpass the linkage disequilibrium threshold, the first marker will be
removed from the dataset). Using principal component analysis (PCA) we
ruled out hidden population stratification using the criteria: exclusion of
subjects with SD > 6 among the first 20 principal components (see
Supplementary Fig. 1). In total, 59 participants were excluded due to the
above-mentioned quality control steps from the LORA cohort (final
n= 897). Out of 897 (after QC) participants of the LORA cohort, 364
participants who also participated in the LORA-COVID study had available
genetic information for further analysis. PRS calculation was performed
using the PRSice software version 2.3.1.e with default options [clump-kb
250, clump-p 1.0, clump r2 0.1, interval 5e-05, lower 5e-08, stat OR] [49]. We
calculated all PRSs using the following base file data from the following
GWAS and the pT thresholds with the highest variance explained,
respectively: 1) ADHD, pT = 0.1; [32], 2) Bipolar Disorder, pT = 0.01; [37]
3) Alcohol Dependence, pT = 0.01; [33] 4) Anorexia nervosa, pT = 0.05; [34]
5) Anxiety disorder, pT = 0.1; [35], 6) Autism Spectrum Disorder, pT = 0.5;
[36], 7) Major depression, pT = 0.3; [38], 8) Obsessive-Compulsive Disorder,
pT = 0.1; [39], 9) Opioid Dependence, pT = 1.0; [40], 10) Posttraumatic
Stress Disorder, pT = 0.2; [41], 11) Schizophrenia, pT = 0.05; [42], 12)
Neuroticism, pT = 0.1 [43]. All base files were filtered for minor allele
frequencies ≤0.01 and INFO score filtering (INFO > 0.8). There was no
participant overlap between the present study sample and the used base
files from the different studies. PRS calculation was performed using age,
sex, and the first five principal components for population stratification as
covariates. All PRS were z-transformed prior to further processing.
After PRSs calculation, an exploratory bifactor analysis with Schmid-

Leiman transformation was performed for dimensionality reduction
[50, 51]. For a detailed description of the assumptions of a bifactor model
see Supplemental Material.

Hair cortisol concentration calculation
Hair samples were collected quarterly in the LORA sample to determine
glucocorticoid hair cortisol concentration and capture the individual’s

Fig. 1 Mental health trajectories and study design. A Mental dysfunction of different mental health trajectories over time. Red area
represents “soft” lockdown in Germany, with comparatively mild measures to restrict social contact. Calculation of latent class membership
was based on their most likely latent class membership on the pre lockdown mental dysfunction value and the mental dysfunction values
during the first 8 weeks of lockdown: “acute dysfunction” class = 9.0% (n= 47), “resilient” class = 82.6% (n= 432), “delayed dysfunction” class
= 8.4% (n= 44) [7]. B Study design – bio samples collected at baseline, T1, and T1 of LORA study. Groups with different mental health
trajectories were calculated based on weekly online surveys during the COVID lockdown in Germany.
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potential environmental risk as well as physiological differences. As
illustrated in Fig. 1B, the first 3 HCC values from the original LORA study
were obtained for each participant. Because participants were continu-
ously enrolled in the original LORA study from the beginning of 2017 to
the end of 2019, the last hair sample for individual participants ranged
from 5 to 27 months prior to the pandemic outbreak in each case. Since it
has also been demonstrated that HCC shows a strong trait component and
state influences are lower [9], we averaged the cortisol levels over the first
three measurements of the original LORA study, spanning a time of nine
months and interpreted these as trait-like baseline levels.
For HCC calculation two hair strands of at least 3 cm length,

corresponding to 10mg of hair, were cut as close to the scalp as possible
from a posterior vertex position. Hair cortisol analyses were carried out by
the Laboratory from Prof. Clemens Kirschbaum (DRESDEN LAB SERVICE
GMBH). Here, strands were cut into 3 cm segments. In line with the
protocol of Davenport et al. [52], hair was washed and steroids extracted.
Therefore, each hair segment was put into a 10ml glass container, then
2.5 ml isopropanol was added, and the tube gently mixed on an overhead
rotator for three minutes. After decanting, the wash cycle was repeated
two times. Then the hair samples were allowed to dry for at least 12 hours.
Next, the hair segments were weighed out and 7.5 mg were transferred
into a 2ml cryo vial. 1.5 ml of pure methanol was added and the steroid
extraction was performed for 18 hours. Samples were then spun in a
microcentrifuge at 10.000 rpm for 2 min, and 1ml of the clear supernatant
was transferred into a new 2ml glass vial. The alcohol was evaporated at
50 degrees Celsius under a constant stream of nitrogen until the samples
were completely dried. Finally, 0.4 ml of water was added and the tube
vortexed for 15 sec. Fifty microliters were removed from the vial and used
for cortisol determination with a commercially available immunoassay with
chemiluminescence detection (CLIA, IBL-Hamburg, Germany). The intraas-
say and interassay coefficient of variance of this assay is below 8%. HCC
were checked for extreme outliers (3rd quartile + 3*interquartile range; 1st

quartile – 3*interquartile range) and log- and z-transformed prior to further
processing. The intraclass correlation coefficient of the three measure-
ments at an interval of 3 months based on mean-rating (k= 3), absolute
agreement, 2-way mixed-effects model showed moderate to good
reliabilities [53] (ICC= 0.76, CI= [0.69; 0.82], F(147,291) = 4.22, p < 0.001).
These results are consistent with the high test-retest reliabilities of 0.68 to
0.79 reported by Stalder and Kirschbaum [9].

Statistical Analysis
For a detailed description of the statistical analyses, included covariates
and power analyses see Supplemental Material.

RESULTS
Means, standard deviations, and correlations with confidence
intervals of the PRS are shown in Supplementary Table 2.

Bifactor model of genetic risk factors
Kaiser-Meyer-Olkrin measure, Bartlett’s test of sphericity and
Eigenvalue calculation verified the sampling adequacy for factor
analysis (see Supplemental Material for results). An explorative
bifactor analysis with Schmid-Leiman transformation was calcu-
lated. The model fit the data well with χ²(24) = 20.36, p < 0.68,
BIC=−121.17, RMSR= 0.02.RMSEA < 0.01, CI10%[0;0.04], with a
reliability of the general factor and the sub-factors of Omega
total= 0.61; Alpha= 0.51.
The bifactor model with 4 factors based on our 12 PRSs and a

general factor g (general pleiotropic pPRS factor), with Schmid-
Leiman factor loadings greater than 0.2, is displayed in Fig. 2.

Table 1. Demographics of individuals with hair cortisol data N= 192.

Variable Delayed
Dysfunction

Resilient Acute
Dysfunction

Test statistic p

M ± SD/
frequency

M ± SD/
frequency

M ± SD/
frequency

N 28 (14.58%) 132 (68.75%) 32 (16.67%)

Sex ♀ 25(13.02%) 104 (54.17%) 29 (15.10%)

♂ 3 (1.56%) 28 (14.58%) 3 (1.56%) Fisher’s
exact test

0.2057

Age 32.9 (9.25) 32.6 (9.01) 28.3 (5.23) H(2)= 4.18 0.1237

Marital status (baseline
lockdown)

Nonmarried 9 (4.69%) 45 (23.44%) 8 (4.17%)

Married 5 (2.60%) 30 (15.63%) 3 (1.56%)

Permanent
relationship

14 (7.29%) 55 (28.65%) 16 (8.33%)

Separated/divorced 1 (0.52%) 1 (0.52%)

Other 1 (0.52%) 4 (2.08%) χ(8)= 19.91 0.0107

Number of persons living
in the household

2 (0.90) 2.20 (0.93) 2.14 (0.79) H(2)= 1.01 0.6022

Employment status* Full time 12 (6.25%) 53 (27.60%) 15 (7.81%)

part-time 2 (1.04%) 25 (13.02%) 3 (1.56%)

Self-employed 3 (1.56%)

Parental leave 1 (0.52%)

Unemployed 1 (0.52%)

Full-time study/
training

13 (6.77%) 45 (23.44%) 10 (5.21%)

retired

Other/ no answer 22 (11.46%) 3 (1.56%) χ(12)= 13.11 0.3611

Life Events T0-T2 pre
pandemic

LE 3.49 (2.49) 3.68 (1.88) 33.71 (1.66) H(2)= 1.09 0.5797

GHQ last measure pre
lockdown

GHQ 26 (10.30) 19.1 (8.12) 26.2 (13.50) F(2)= 11.15 < 0.001
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Factor 1 called “INT” consisted of internalizing disorders and an
associated personality trait (MDD, ANX, NEU). Factor 2 named
“PSY” was characterized by disorders with mainly psychotic
features and Anorexia nervosa (SCZ, BPD, ANO). Factor 3 titled
“ND” was expressed by childhood-onset neurodevelopmental
disorders (ADHD, AUT). Factor 4 named “DYS” was designated to
dysfunctional coping disorders and the opposite of controlled
behavior (PTSD, ALC, OPI, negatively OCD). The general pleiotropic
pPRS factor loaded on all PRSs (with loadings over 0.2 on MDD,
ANX, NEU, SCZ, AUT, ADHD, PTSD).

Main effects of genetic risk and long-term cortisol secretion
Results showed a significant main effect of long-term HPA axis
activation for the association with the acute dysfunction class
compared to the resilient class. Specifically, elevated HCC during a
time period of 9 months significantly predicted whether a
participant belonged to the acute or the resilient class, b= 0.45,
p= 0.045; odds = 1.56, Nagelkerke R2= 0.25. The effects
remained stable even when controlling for the usage of hormonal
contraceptives, hair treatment, or time interval between hair
sample collection and lockdown, and mental health at the last
measurement point before lockdown (see Supplementary Table 3
for sensitivity analyses). There was no significant association of
HCC with the delayed dysfunction class compared to the
resilient class.
At genetic level, there was a significant association of the acute

class with the general pleiotropic pPRS factor, where a higher
genetic load predicted the class membership, b= 0.44, p= 0.025,

odds ratio = 1.55, Nagelkerke R2= 0.21. The delayed dysfunction
class showed no significant association of the general pPRS factor
when compared with the resilient class. Similarly, as exploratorily
tested, the combined genetic risk factor for ADHD and ASD was
associated with the acute class compared with the resilient class,
with a higher genetic risk of individuals in the acute class, b= 0.43,
p= 0.031, odds ratio = 1.53, Nagelkerke R2= 0.21. This association
again was not significant for the delayed dysfunction class
compared to the resilient class. The main effects of genetic risk
and long-term cortisol secretion as potential environmental risk
factor are displayed in Table 3. The observed effects remained
significant even when controlling for age, gender, and mental
health at the last measurement point before lockdown (see Fig. 3
for significant class comparisons). In the explorative analyses none
of the risk groups were associated with the PRS-factors
“internalizing disorders”, “psychotic disorders”, and “dysfunctional
coping disorders”.

Interaction effects of genetic risk and long-term cortisol
secretion
When integrating both genetic risk factors and HCC in one
analysis to predict the membership to the acute dysfunction class,
compared to the resilient class, we found neither a significant
interaction effect of HCC with the general pleiotropic pPRS factor
(b=−0.17, CI= [−0.84;0.44], p= 0.593) on class nor a significant
interaction of HCC with the factor neurodevelopmental disorders
(b= 0.05, CI= [−0.48;0.66], p= 0.846). Nonetheless, the main
effect of the potentially environmental and physiological factor

Table 2. Demographics of individuals with PRS data N= 364.

Variable Delayed
Dysfunction

Resilient Acute
Dysfunction

Test statistic p

M ± SD/
frequency

M ± SD/
frequency

M ± SD/
frequency

N 34 (9.34%) 298 (81.87%) 32 (8.79%)

Sex ♀ 23 (6.32%) 192 (52.75%) 29 (7.97%)

♂ 11 (3.02%) 106 (29.12%) 3 (0.82%) Fisher’s
exact test

0.0068

Age 32.8 (8.24) 32.6 (8.44) 27.4 (4.73) H(2) = 11.00 0.0041

Marital status (baseline
lockdown)

Nonmarried 11 (3.02%) 86 (23.63%) 8 (2.20%)

Married 8 (2.20%) 81 (22.25%) 2 (0.55%)

Permanent
relationship

15 (4.12%) 117 (32.14%) 18 (4.95%)

Separated/
divorced

3 (0.82%) 1 (0.27%)

Other 11 (3.02%) 3 (0.82%) χ(8) = 12.97 0.1130

Number of persons living in
the same household

1.88 (0.77) 2.21 (0.85) 2.17 (0.89) H(2) = 4.52 0.1043

Employment status Full time 16 (4.40%) 126 (34.62%) 11 (3.02%)

part-time 3 (0.82%) 48 (13.19%) 4 (1.10%)

Self-employed 10 (2.75%)

Parental leave 5 (1.37%)

Unemployed 1 (0.27%) 2 (0.55%)

Full-time study/
training

14 (3.85%) 85 (23.35%) 14 (3.85%)

retired

Other/ no answer 22 (6.04%) 3 (0.82%) χ(12) = 13.55 0.3307

Life Events T0-T2 pre
pandemic

LE 3.25 (2.42) 3.63 (2.00) 4.12 (1.87) H(2) = 4.50 0.1054

GHQ last measure pre
lockdown

GHQ 24 (11.20) 19.2 (8.81) 25.1 (11.90) F(2) = 8.78 <0.001
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HCC remained significant and stable, also when controlling for the
covariates age, sex, mental health at the last measurement time
point before the pandemic, hormonal contraception, hair treat-
ment, and time interval of hair sampling to the pandemic. Means,
standard deviations, and correlations with confidence intervals of
the genetic risk factors and HCC are shown in Supplementary
Table 4. See Supplementary Tables 5-6 for the results on the
interaction analyses.

DISCUSSION
The present study investigated the utility of prospectively sampled
biological parameters to identify individuals belonging to a group
of participants with deteriorated mental health after the outbreak
of the COVID-19 pandemic in Germany. The largest group of
participants showed a stable mental health trajectory, as shown in
previous work [7], and served as a reference class herein. The
likelihood of belonging to one of the two smaller groups, which
showed either an acute dysfunction or a delayed dysfunction, was
estimated. For risk prediction, one overall genetic risk factor and
four sub-factors extracted from a bifactor model of the genetic risk
for 12 different psychiatric disorders in combination with HCC, a
highly heritable indicator of long-term cortisol secretion and a
potential indicator of environmental stress and physiological risk,
were used. Overall, the results suggest an increased likelihood for
individuals with higher values on the general pleiotropic pPRS to
be assigned to the acute dysfunction class rather than to the
resilient class. The same holds true for the association with HCC
and for the exploratorily tested genetic risk factor for childhood-
onset neurodevelopmental disorders (ND). Participants with
higher HCC, or with higher values on the “ND” factor, were more
likely to belong to the acute dysfunction class compared to the
resilient class. Neither factor had an effect on the risk for
belonging to the delayed dysfunction class compared to the
resilient class.

Genetic risk factors
Regarding the genetic risk for a comprehensive set of the most
common psychiatric disorders and a related personality trait, a

bifactor model was calculated that described the data well, as
indicated by the fit indices. The resulting five factors entailed four
sub-factors and one general factor. The composition of the
extracted factors is not a main hypothesis of this study, therefore a
detailed description of the factors and contextualization in the
literature can be found in the Supplemental Material. The found
factors in the current study are in line with previous studies. It has
already been shown that mental disorders differentially share
variance with one common genetic factor beyond the influence of
disease-specific factors [27, 28, 54]. E.g., Grotzinger et al. showed
that 11 major mental disorders share variance with four factors
and can be calculated in addition to a general factor [29]. The four
broad factors (Neurodevelopmental, Compulsive, Psychotic, and
Internalizing) postulated by Grotzinger et al. [29] are of similar
content and support the factor structure found in the
current study.
Out of the five factors identified in this study, the general

pleiotropic pPRS factor and the exploratorily tested neurodeve-
lopmental disorders factor distinguished between the acute
dysfunction and resilient class membership, but not between
the delayed dysfunction and resilient class membership. Accord-
ingly, the hypothesis that the vulnerable subjects of the risk
groups “acute dysfunction” and “delayed dysfunction” both have a
generally increased genetic risk for developing a psychiatric
disorder could only partially be confirmed. It can be hypothesized
why the general factor of genetic risk, as well as the “ND” factor,
are suitable for the distinction between the groups, while the
other risk factors do not provide any explanatory meaning.
Hypothetically speaking, the effect may be explained by impaired
emotion regulation and irritability. A detailed discussion of the
exploratorily discovered “ND“ factor for distinguishing the acute
dysfunction and resilient group can be found in the Supplemental
Material under the section “Discussion of extracted factors”
Research underlines the fact that PRSs currently have no clinical

utility because effects are too small and PRS do not serve well for
risk prediction [55]. Here, the factors of our bifactor model suggest
that using compound PRSs might be a promising approach,
however, the predictive power does not seem to improve beyond
single PRS. Nevertheless, this approach fits the dimensional

Fig. 2 Bifactor model omega with Schmid-Leiman transformation of the 12 genetic risk factors. Factor 1: “INT”= internalizing disorders;
factor 2: “PSY”= psychotic disorders; factor 3: “ND”= neurodevelopmental disorders; factor 4: “DYS”= dysfunctional coping disorders; “g”:
general pleiotropic pPRS factor. Dotted arrows = loadings < 0.20; black arrows = positive loadings; red arrow = negative loading.
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concept of psychiatric disorders, which understands them on a
continuum [56]. Thus, our approach is in line with the work by
Caspi, who postulated that biomarkers related to the general risk
for a psychiatric disorder should be identified first [28]. In a second
step, the identification of general risk factors should be followed
by an examination of specific genetic risk factors for particular
disorders [28]. This approach takes into account the pleiotropic
mechanisms between different mental disorders. Hence, associa-
tions with a general pleiotropic factor may be found that cannot
be identified at the individual level of diagnosis-specific PRS.

Chronic HPA axis activation as a potential risk factor
Considering the HCC effect, we found similar results as for genetic
risk factors. Again, participants with an acute deterioration in
mental health in reaction to the pandemic showed significantly
higher HCC prior to the pandemic compared to resilient
participants. The results indicate that individuals who tend to
react directly within one month to an external stressor generally
show an increased long-term HPA axis activity. One explanation
could be that participants of the acute dysfunction class may have
experienced prolonged environmental stress (e.g., quarrels in the
family or at work). This chronic stress may have led to long-term
overactivity of the HPA axis and may have resulted in relatively
increased exposure to cortisol, negatively impacting mental
health. However, all of our cortisol levels were within the range
reported by other studies with healthy participants [57]. Another
explanation would be physiological differences that result in an
increased endogenous cortisol release rate, even though they had
the same amount of stress exposure as the participants belonging
to the resilient class. Because of inherited increased HPA activation
they might have had a relatively increased secretion of cortisol.
HCC is proven to have a more substantial trait than a state
component [9], which can be interpreted as a physiological
predisposition to cortisol secretion. It has already been shown that
HPA regulation is heritable to a non-negligible extent. Twin
studies suggest that cortisol secretion is up to 62% heritable [58].
In vervet monkeys, the genetic contribution to individual
differences in HCC was shown [59]. In addition, an initial study
in humans showed that the heritability of HCC is reported to be as
high as 72% [4]. In combination with earlier evidence on the
association of HCC with diurnal cortisol secretion [16, 60], it is
possible that participants with higher HCC, due to genetic
predispositions or experienced prolonged environmental stress,
are stressed more easily or react more physiologically. Accord-
ingly, this would also explain why they responded stronger and

faster to the pandemic and associated socio-political restrictions
than participants with less HPA axis activation. Moreover, we
expected similar results for the comparison between the delayed
dysfunction and the resilient group, but this hypothesis was not
confirmed. A replication of the current study with larger risk
groups and therefore improved power could provide further
insights. Notably, the lack of a significant difference in HCC
between the delayed dysfunction and the resilient group is not
equal to an actual absence of a group difference in the trait
release of endogenous cortisol. Regarding the previously calcu-
lated minimum effect size required for detecting a significant
difference in our sample with a power of 0.80, it can be concluded,
that the actual effect is probably smaller than OR= 1.68.
These results are in line with other studies that reported

increased HCC in individuals with objectively stressful living
conditions, such as shift workers, pain patients, hospitalized
infants, and students who experienced major live events [10–14].
However, further research needs to be pursued to target the utility
of HCC as a stress marker.

Interaction of HCC and PRSs
We did not detect a significant interaction between HCC and
genetic risk. We had hypothesized to see an interaction based on
the trend found by Bolhois et al., who studied the interaction of
HCC and the schizophrenia PRS on brain structure [3]. In contrast,
the results obtained in the current study fit with analyses by
Rietschel et al., who have shown no association between the
genetic risk for MDD and neuroticism with HCC [4]. This may
suggests that PRSs and HCC have additive value to identify
vulnerable individuals, but not represent an exponential increase
in risk. At the same time, our analyses may also have been
underpowered to detect a significant interaction effect. To detect
a main effect with the given sample size of the complete data, a
main effect of OR= 1.71 would be detectable with a power of
0.80. As pointed out by Luan et al. [61] and Musliner et al. [62], to
detect the main effect of environmental factors, smaller sample
sizes are required than when investigating gene x environment
interactions. Accordingly, the interaction effect would have to be
significantly above the calculated size to be detectable.

Relevance
The study combined several biological and potential environ-
mental factors in the prospective identification of individuals at
increased risk for developing mental disorders. To determine an
individual’s baseline level of HCC, hair strains were sampled not

Table 3. Multiple bivariate logistic regressions: Main effects of genetic risk and long-term cortisol secretion.

Variable Delayed Dysfunction vs. Resilient Acute Dysfunction vs. Resilient

Estimate CI p odds R² Estimate CI p odds R²

N= 192

HCC 0.34 −0.13;0.84 0.161 1.41 0.16 0.45 0.02;0.91 0.045* 1.56 0.25

N= 364

g-factor 0.11 −0.26;0.49 0.549 1.12 0.05 0.44 0.06;0.82 0.025* 1.55 0.21

INT-factor −0.16 −0.53;0.20 0.383 0.85 0.05 0.18 −0.21;0.57 0.361 1.19 0.18

PSY-factor 0.16 −0.20;0.52 0.394 1.17 0.05 0.00 −0.38;0,38 0.994 1.00 0.18

ND-factor 0.25 −0.12;0.61 0.185 1.28 0.06 0.43 0.04;0.82 0.031* 1.53 0.21

DYS-factor 0.10 −0.26;0.46 0.574 1.11 0.05 0.30 −0.06;0.66 0.099 1.35 0.19

The main effects of bivariate logistic regressions are shown. Bivariate logistic regressions regarding the main effect of hair cortisol were calculated in a sample
of n= 192 participants. Bivariate logistic regressions regarding the main effects of genetic risk factors were calculated in a sample of n= 364 participants. All
bivariate logistic regressions were controlled for age, sex, and pre-lockdown mental health status. R²=Nagelkerke pseudo R². The hair cortisol analysis also
took into account the time interval between the hair sample collection and the pandemic. HCC hair cortisol concentration, INT internalizing disorders, PSY
psychotic disorders, ND neurodevelopmental disorders, DYS dysfunctional coping disorders; g general pleiotropic pPRS factor. Bold indicates bivariate logistic
regression is significant.

K.F. Ahrens et al.

7

Translational Psychiatry          (2022) 12:396 



only prospectively but also over a considerable period of time
(9 months). While other studies on prospective measures did not
collect hair until after the occurrence of a major stressor, we
obtained truly prospective values in the 27 to 5 months period
prior to the pandemic. The study design also ensured that no
psychiatric diagnosis was present at the time the first hair sample
was collected. Moreover, we provided evidence of a predictive
character of PRSs as summarized in a bifactor model, to classify
participants with a not clinically defined trait. This approach merits
further investigation. The way it condenses genetic information
may be used to identify individuals’ risk for psychiatric disorders at
a very early stage. Implementing preventive measures and
interventions to buffer the acute stress response to environmental
stressors might prove beneficial for these individuals at risk.
Therefore, the found factor structure warrants replication in other
independent samples.

Limitations
The findings of this study should be interpreted in light of several
limitations. Two apparent limitations are the experimental nature
of the analyses and the limited sample sizes/power. In particular,
participants are notably underrepresented in the at-risk groups,
especially in the HCC dataset (delayed dysfunction n= 28, acute
dysfunction n= 32) and complete dataset (delayed dysfunction
n= 20, acute dysfunction n= 22).
Moreover, the exploratory bifactor model showed two anoma-

lies, which require further investigation before generalizing the
result. The first anomaly concerned the correlation of the g-factor
with the other four sub-factors (as shown in Supplementary Table
4). The second anomaly was the phenomenon that not all PRS had
loadings above 0.2 on the pleiotropic p-factor. Conceptually a
bifactor model assumes the existence of a general factor on which
all items (in our case PRSs) load and sub-factors that are
orthogonal to the general factor and to each other. As pointed
out by Eid et al. [92], those anomalies have to be expected when
bifactor models are applied and are common phenomena. A
structured review on studies that have applied bifactor models
revealed that anomalies occurred in 61% of the studies included in
the review [92]. Since it is a known problem and the model fit was
good, we have not rejected the model [92]. However, the
appropriateness of the bifactor model is questionable and
requires further investigation. Therefore, future research should
critically examine whether there is indeed an orthogonal general
pleiotropic pPRS factor. Furthermore, as with many studies
investigating HCC, women were overrepresented in the current
study, especially in the comparatively small risk groups. This is
most likely because female sex represents a risk factor for mental
deterioration during the pandemic [63], and women are therefore
more likely to fall into the risk trajectories. Another possible
explanation for the overrepresentation of women in the current
study sample is the required hair sample length of 3 cm for HCC

analyses. Notably, the overall HCC effect remained significant
when corrected for sex. Thus, the overrepresentation of women in
the study sample does not hamper the generalizability of the
findings. Also, we used GWAS, which predominantly contain
individuals of European ancestry. Thus, it is possible that the
bifactor model cannot be replicated in other ethnicities. Never-
theless, the class allocation of the participants was not driven by
genetic heterogeneity.
In addition, the main effects were just significant, may not be

very stable, and should therefore be interpreted with caution. The
main effect of the ND factor discovered in the exploratory analyses
did not survive correction for multiple testing. Accordingly, the
results need to be replicated in larger samples. The results
described in this study do not yet allow us to infer the
mechanisms underlying the differences in the groups. The
mechanistic underpinnings of the observed effects should be
analyzed in further studies, as such explanations are beyond the
scope of the present work. Since there is evidence for the trait
character of the heritable marker HCC [9], it might be interesting
to look at the genetic risk of elevated HCC levels. A first approach
has already been made by Rietschel [4], who investigated a PRS for
plasma cortisol, but to our knowledge, there is currently no
suitable PRS for long-term cortisol levels. Future studies should
focus on this aspect.

Implications and conclusion
The present study provides first evidence that long-term elevated
basal cortisol secretion is associated with a direct deterioration of
mental health in the form of an extreme stress response during
the COVID lockdown in Germany as a defined psychosocial
stressor. A higher basal hair cortisol level could be indicative of a
lowered threshold for a (negative) reaction towards environmental
stressors and thus may represent a vulnerability factor that may
also be genetic. Therefore, HCC, a general pleiotropic p factor for
genetic risk, and a factor containing childhood-onset neurodeve-
lopmental disorders may be helpful to timely identify vulnerable
individuals with strong stress overreactivity for future potentially
traumatic events. These individuals could be addressed by
services to buffer the first extreme stress reaction and the
resulting individual risk. At the same time, the determined
biological factors are currently limited as general predictors,
because they failed to identify another vulnerable group with a
delayed reaction to the lockdown. Further research with larger
sample sizes is necessary to assert whether this specificity in
prediction is biologically grounded, to replicate these first
indications, and to increase the validity of HCC and PRSs as
biomarkers. In addition, it is also essential to examine how the two
risk groups (acute dysfunction, delayed dysfunction) evolve as the
pandemic progresses to draw conclusions about the long-term
mental health outcomes and assess the importance of biological
predictors for these groups.

Fig. 3 Class comparisons regarding significant environmental and genetic factors. Significance based on bivariate logistic regressions
(reference class= “resilient”). Data is z-transformed. Error bars=+/− 1 standard error (SE). “Delayed” = “delayed dysfunction” class; “acute” =
“acute dysfunction” class.
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In conclusion, this study provides empirical evidence that
integrating biological risk factors into the diagnostic routine could
support an early identification of individuals with an acute
overcompensation to stressors.
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