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Abstract: We first reported the new application of a translate metal chelating ligand α-benzoin oxime
for improving Cu-catalyzed C-N coupling reactions. The system could catalyse coupling reactions of
(hetero)aryl halides with a wide of nucleophiles (e.g., azoles, piperidine, pyrrolidine and amino acids)
in moderate to excellent yields. The protocol allows rapid access to the most common scaffolds found
in FDA-approved pharmaceuticals.
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1. Introduction

N-Arylated compounds are ubiquitous synthons in numerous natural products and functional
molecules [1,2]. Particularly, their most important function is as structural fragment for FDA-approved
pharmaceuticals (Figure 1), for example, antibacterial agents (Ofloxacin [3] and Pipemidic
acid [4]), antidiabetic drug (Repaglinide [5]), nonsteroidal anti-inflammatory drug (Celecoxib [6]),
antihypertensive drug (Prazosin [7]), etc. Although C-N bond-formation reactions between (hetero)aryl
halides and N-nucleophiles are well known, including the SNAr reactions [8], classical Ullmann-type
coupling reactions [9–11], and Buchwald-Hartwig reactions [12–14]. Amongst Pd-catalyzed C-N
coupling reaction has been confirmed as a very useful method to build aromatic amines or
arylazoles [15–18]. However, considering to the cost and toxicity of both palladium catalyst and
auxiliary phosphine ligands, the arylation of N-nucleophiles with (hetero)aryl halides to form new
C-N bonds still remains a significant opportunity. In recent years, Cu-catalyzed Ullmann-type
couplings have attracted more and more attention due to the inexpensive catalyst and low toxicity.
Although many commercially available or novel designed ligands have been developed for promoting
copper-catalyzed couplings of aryl halides with N-nucleophiles, few of them are effective with less
inactivated heterocyclic aryl chlorides. Besides, an easy-removal catalyst system is also very important
for the environment.
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Figure 1. Chemical structures of selected pharmaceuticals containing the N-arylated core. 

During the past few years, Ma and co-workers have reported that the oxalic diamide ligands 
are powerful ligands for the copper-catalyzed couplings [19–21]. In the presence of ligands, the 
reaction temperature and catalyst loading could be significantly decreased while the yields were 
increased [22–24]. Following these studies, a number of bidentate ligands were reported for the 
synthesis of N-arylated compounds. 

On the other hand, α-benzoin oxime (BO) is a common ligand, which is usually applied to 
inspect and measure copper, molybdenum, and tungsten [25,26], and also as a chelating agent for 
extracting antimony, vanadium, tungsten [27]. However, the use of BO in improving the 
Cu-catalyzed Ullmann style reactions is never reported. Herein, it was found that BO could be used 
in the direct couplings of the (hetero)aryl halides with N-nucleophiles. The reaction allowed rapid 
access to N-arylated compounds, the most common scaffolds found in FDA-approved 
pharmaceuticals. These reactions were occurred at mild temperature (80 °C), with employing 
(hetero)aryl halides, nucleophiles (e.g., azoles, piperidine, pyrrolidine and amino acids) and 
inexpensive catalysts, and affording high yields. Importantly, this process was general with respect 
to both the (hetero)aryl halides and nucleophiles, including the use of secondary amines and amino 
acids. 

2. Results and Discussions 

To initiate our studies, 2-bromoanisole was treated with pyrrole in the presence of 0.28 mol CuI 
in DMF. Regrettably, coupling product 3a was obtained in 12% yield, along with unreacted starting 
material (Table 1, entry 1). The use of Cu powder and Cu(OTf)2 as catalyst in DMF delivered 3a in 
low yields (entries 2, 3). Consistently, Cu(II) gluconate and Cu2(OH)2CO3 did not provide the desired 
product (entries 4, 5), only a trace of 3a was observed. In the event, 10 mol% Cu(OAc)2 enabled the 
coupling of 2-bromoanisole and pyrrole to provide the desired product in 53% yield (entry 6). 
Attempts to improve the yield through changing the base were successful, with K3PO4 proving to be 
optimal in terms of yield (entries 6–11). Furthermore, with dioxane, toluene, DCE, H2O as solvents 
(entries 12–16), the yield was lower than that in DMF. Fortunately, DMSO gave significantly better 
results, and 3a was obtained in a much-improved 90% yield. Meanwhile, lowering the temperature 
to 60 °C decreased the yield and led incomplete conversion (entry 17). A significant amount of 
coupling product was observed when using BO as ligand, comparing with the corresponding 
control experiments (entries 12 and 18). The scalability of this protocol was also tested through 
synthesis of the 3a on a 4.4 g scale (entry 19). Additionally, the BO-promoted C-N reaction was also 
carried out under air, 3a was obtained in 61% yield, indicating that this catalytic system was 
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During the past few years, Ma and co-workers have reported that the oxalic diamide ligands
are powerful ligands for the copper-catalyzed couplings [19–21]. In the presence of ligands,
the reaction temperature and catalyst loading could be significantly decreased while the yields
were increased [22–24]. Following these studies, a number of bidentate ligands were reported for the
synthesis of N-arylated compounds.

On the other hand, α-benzoin oxime (BO) is a common ligand, which is usually applied to inspect
and measure copper, molybdenum, and tungsten [25,26], and also as a chelating agent for extracting
antimony, vanadium, tungsten [27]. However, the use of BO in improving the Cu-catalyzed Ullmann
style reactions is never reported. Herein, it was found that BO could be used in the direct couplings
of the (hetero)aryl halides with N-nucleophiles. The reaction allowed rapid access to N-arylated
compounds, the most common scaffolds found in FDA-approved pharmaceuticals. These reactions
were occurred at mild temperature (80 ◦C), with employing (hetero)aryl halides, nucleophiles (e.g.,
azoles, piperidine, pyrrolidine and amino acids) and inexpensive catalysts, and affording high yields.
Importantly, this process was general with respect to both the (hetero)aryl halides and nucleophiles,
including the use of secondary amines and amino acids.

2. Results and Discussions

To initiate our studies, 2-bromoanisole was treated with pyrrole in the presence of 0.28 mol CuI
in DMF. Regrettably, coupling product 3a was obtained in 12% yield, along with unreacted starting
material (Table 1, entry 1). The use of Cu powder and Cu(OTf)2 as catalyst in DMF delivered 3a in
low yields (entries 2, 3). Consistently, Cu(II) gluconate and Cu2(OH)2CO3 did not provide the desired
product (entries 4, 5), only a trace of 3a was observed. In the event, 10 mol% Cu(OAc)2 enabled the
coupling of 2-bromoanisole and pyrrole to provide the desired product in 53% yield (entry 6). Attempts
to improve the yield through changing the base were successful, with K3PO4 proving to be optimal in
terms of yield (entries 6–11). Furthermore, with dioxane, toluene, DCE, H2O as solvents (entries 12–16),
the yield was lower than that in DMF. Fortunately, DMSO gave significantly better results, and 3a was
obtained in a much-improved 90% yield. Meanwhile, lowering the temperature to 60 ◦C decreased
the yield and led incomplete conversion (entry 17). A significant amount of coupling product was
observed when using BO as ligand, comparing with the corresponding control experiments (entries 12
and 18). The scalability of this protocol was also tested through synthesis of the 3a on a 4.4 g scale
(entry 19). Additionally, the BO-promoted C-N reaction was also carried out under air, 3a was obtained
in 61% yield, indicating that this catalytic system was sensitive with air (entry 20). Finally, we checked
other ligands (including N,N-, N,O-, O,O-type bidentate ligands) that were applied in Cu-catalyzed
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N-arylation reactions, and discovered that only L3 and L4 could furnish 3a in moderate yields under
standard condition. It was reasoned that these reported ligands may be effective when chelating with
Cu(I).

Table 1. Identification of reaction condition a.
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With optimized conditions in hand, we set out to evaluate the scope of (hetero)aryl halides that 
would participate in this transformation (Table 2). The reaction tolerated a diverse array of 
functional groups on the (hetero)aryl halides, including methoxy (3a), aldehyde (3c), carboxyl (3d), 
amino (3e), ketone (3f), ester (3g, 3h), cyano (3i). Electronic properties of the (hetero)aryl halides 
were evaluated by introducing electron-withdrawing and electron-donating groups on the aryl 
moiety. Although electron-poor (hetero)aryl halides (e.g., 3c, 3d, 3i) underwent coupling faster than 
electron rich ones (3a, 3e), the desired products were successfully obtained in all cases. 
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Entry Cu Sources Base Solvent Yield (%) b

1 CuI K2CO3 DMF 12
2 Cu powder K2CO3 DMF 15
3 Cu(OTf)2 K2CO3 DMF 22
4 Cu(II) gluconate K2CO3 DMF Trace
5 Cu2(OH)2CO3 K2CO3 DMF Trace
6 Cu(OAc)2 K2CO3 DMF 53
7 Cu(OAc)2 Cs2CO3 DMF 60
8 Cu(OAc)2 K3PO4 DMF 72
9 Cu(OAc)2 NaHCO3 DMF 0 c

10 Cu(OAc)2 Et3N DMF 0 c

11 Cu(OAc)2 t-BuOK DMF Trace
12 Cu(OAc)2 K3PO4 DMSO 90
13 Cu(OAc)2 K3PO4 Dioxane 43
14 Cu(OAc)2 K3PO4 DCE Trace
15 Cu(OAc)2 K3PO4 Toluene 0 c

16 Cu(OAc)2 K3PO4 H2O 0 c

17 Cu(OAc)2 K3PO4 DMSO 70 d

18 Cu(OAc)2 K3PO4 DMSO 15 e

19 Cu(OAc)2 K3PO4 DMSO 90 f

20 Cu(OAc)2 K3PO4 DMSO 61 g
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a Reaction conditions: 2-Bromoanisole (2.81 mmol), pyrrole (3.37 mmol), Cu source (0.28 mmol), BO (0.28 mmol),
solvent (4 mL), base (5.62 mmol), under Ar, at 80 ◦C, unless otherwise noted for 8 h. b Isolated yield with column
chromatography. c Almost no reaction was observed by TLC. d 60 ◦C. e Without BO. f The loading of 2-bromoanisole
was 28.1 mmol. g The reaction was carried out under air. Red bond indicated cleavage bond; blue bond indicated
formed bond; and BO was α-benzoin oxime.

With optimized conditions in hand, we set out to evaluate the scope of (hetero)aryl halides
that would participate in this transformation (Table 2). The reaction tolerated a diverse array of
functional groups on the (hetero)aryl halides, including methoxy (3a), aldehyde (3c), carboxyl (3d),
amino (3e), ketone (3f), ester (3g, 3h), cyano (3i). Electronic properties of the (hetero)aryl halides
were evaluated by introducing electron-withdrawing and electron-donating groups on the aryl moiety.
Although electron-poor (hetero)aryl halides (e.g., 3c, 3d, 3i) underwent coupling faster than electron
rich ones (3a, 3e), the desired products were successfully obtained in all cases. Unfortunately,
chlorobenzene couldn’t provide the product 3b. By changing which heteroaryl chlorides were
employed, couplings were smoothly proceeded, although the yield was decreased. A more sterically
encumbered 2-methylimidazole also reacted without incidents (3l, 3n).
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Table 2. C-N Coupling reactions of substituted aryl compounds with pyrrole or azoles a,b.
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pyrrolidine), acyclic secondary amine (diethylamine), aliphatic primary amine (ethanolamine) were 
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were obtained in 87% and 88% yield, respectively. We also attempted the coupling of
4-chloropyridine to form 4c and 4d. In both cases, the products were obtained in good yields. Both
electron-rich (4g) and electron-poor (4i) aryl bromides participated equally well in the reaction. The
reaction was effective in the presence of unprotected polar functional groups such as alcohol. It was
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In order to explore the feasibility of this approach, cyclic secondary amines (piperidine and
pyrrolidine), acyclic secondary amine (diethylamine), aliphatic primary amine (ethanolamine) were
examined to achieve the desired coupling (Table 3). First, the reactions were carried out by using
2-chloropyridine as starting material. To our delight, the corresponding coupling product 4a and 4b
were obtained in 87% and 88% yield, respectively. We also attempted the coupling of 4-chloropyridine
to form 4c and 4d. In both cases, the products were obtained in good yields. Both electron-rich
(4g) and electron-poor (4i) aryl bromides participated equally well in the reaction. The reaction was
effective in the presence of unprotected polar functional groups such as alcohol. It was encouraged
that the ethanolamine substitute could provide 4l in 90% yield; the lower yield was due to incomplete
conversion of the starting material.
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In order to explore the feasibility of this approach, cyclic secondary amines (piperidine and 
pyrrolidine), acyclic secondary amine (diethylamine), aliphatic primary amine (ethanolamine) were 
examined to achieve the desired coupling (Table 3). First, the reactions were carried out by using 
2-chloropyridine as starting material. To our delight, the corresponding coupling product 4a and 4b
were obtained in 87% and 88% yield, respectively. We also attempted the coupling of
4-chloropyridine to form 4c and 4d. In both cases, the products were obtained in good yields. Both
electron-rich (4g) and electron-poor (4i) aryl bromides participated equally well in the reaction. The
reaction was effective in the presence of unprotected polar functional groups such as alcohol. It was

a Reactions conducted on (hetero)aryl halides (2.81 mmol), amines (3.37 mmol), Cu(OAc)2 (0.28 mmol),
BO (0.28 mmol), K3PO4 (5.62 mmol), DMSO (4 mL) under Ar at 80 ◦C for 8 h. b Isolated yield with
column chromatography.
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Although N-heterocycle electrophiles were the primary focus of this study, amino acids-based
electrophiles were also evaluated (Table 4). Amino acids underwent coupling to afford corresponding
products in moderate yields. Although the yields were modest, it was noted that these reactions
were conducted under the conditions developed for the 2-bromoanisole with minimal reoptimization.
Substrates bearing either electron-withdrawing (5b) or electron-donating groups (5c) on the (hetero)aryl
halides coupled with high yields. Introduction of an ester group into amino acid was also tolerated
(5a). Finally, we were pleased to find that our method was not limited to 2-chloropyrimidine. Using
2-chloropyrimidine as the substrate led to the formation of 5e, 5f in 86%, 87% yield, respectively.

Table 4. C-N Coupling reactions of substituted aryl compounds with amino acids/esters a,b.
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The ligand BO has been reported to be used as a metal chelating agent [28], which is a typical 
N,O-ligand. Thus, it was believed that the Cu-catalyzed couplings could process in a homogeneous 
manner due to the formation of Cu-benzoinoxime complex. Herein, it was proposed that the 
possible mechanism for the couplings might run via a prototypical Cu (I)/Cu (III) catalytic cycle. [29] 
As shown in Figure 2, the catalytic cycle initiated from a Cu complex (A). Then, coordinated copper 
species (B) were produced via oxidative addition of an ArX and A. Ligand exchange was 
subsequently occurred between A and N-heterocycles to form intermediate C, which could be 
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of D. 

a Reactions conducted on (hetero)aryl halides (2.81 mmol), amino acids/esters (3.37 mmol), Cu(OAc)2 (0.28 mmol), BO
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The ligand BO has been reported to be used as a metal chelating agent [28], which is a typical
N,O-ligand. Thus, it was believed that the Cu-catalyzed couplings could process in a homogeneous
manner due to the formation of Cu-benzoinoxime complex. Herein, it was proposed that the possible
mechanism for the couplings might run via a prototypical Cu (I)/Cu (III) catalytic cycle. [29] As shown
in Figure 2, the catalytic cycle initiated from a Cu complex (A). Then, coordinated copper species (B)
were produced via oxidative addition of an ArX and A. Ligand exchange was subsequently occurred
between A and N-heterocycles to form intermediate C, which could be converted to D in the presence
of base. The N-arylazole was obtained by final reductive elimination of D.
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Figure 2. Proposed mechanism for the couplings of (hetero)aryl halides with N-containing heterocycles.
NH-Het represented N-hetero nucleophiles; X was bromine or chloride.

3. Materials and Methods

All of the starting materials, reagents, and solvents are commercially available and used without
further purification. Melting points were determined with a X-4 apparatus (Beijing Taike Instrument
Co., Ltd., Beijing, China) and were uncorrected. The nuclear magnetic resonance (NMR) spectra were
recorded on a Bruker (Bruker Technology Co., Ltd., Karlsruhe, Germany) 400 MHz spectrometer in
CDCl3 or DMSO-d6 using tetramethylsilane (TMS) as an internal standard. Electrospray ionization
mass spectrometry (MS (ESI)) analyses were recorded in an Agilent 1100 Series MSD Trap SL (Santa
Clara, CA, USA). The reactions were monitored by thin-layer chromatography (TLC: HG/T2354-92,
GF254), and compounds were visualized on TLC with UV light (Gongyi Yuhua Instrument Co., Ltd,
Zhengzhou, China).

General Procedure for Catalytic Experiments

To a solution of (hetero)aryl halide (2.81 mmol), N-nucleophile (3.37 mmol), BO (0.28 mmol),
K3PO4 (5.62 mmol) in DMSO (4 mL), were added Cu(OAc)2 (0.28 mmol). The flask was evacuated
and backfilled with argon for three times. The resulting suspension was heated in a 80 ◦C oil bath
with stirring for the indicated time. The reactor was cooled to r.t., the flask was opened to air and the
reaction mixture was poured into water (20 mL), extracted with ethyl acetate (20 mL × 3), and organic
layer was washed with water (20 mL × 2) and once with brine (25 mL), dried over magnesium sulfate
and concentrated in vacuo. The product was purified by column chromatography on silica gel using
petroleum ether and ethyl acetate as eluent.

1-(2-Methoxyphenyl)-1H-pyrrole (3a) [30]: colorless oil (0.43 g, 88%). 1H-NMR (400 MHz, CDCl3) δ
(ppm): 7.30–7.23 (2H, m), 7.03–6.98 (4H, m), 6.30 (2H, t, J = 2.2 Hz), 3.82 (3H, s). MS (ESI) m/z: 174.11
[M + H]+, see Supplementary Materials.
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1-Phenyl-1H-pyrrole (3b) [31]: white solid (0.38 g, 94%). m.p. 60–62 C. 1H-NMR (400 MHz, CDCl3) δ
(ppm): 7.43–7.37 (4H, m), 7.25–7.21 (1H, m), 7.08 (2H, t, J = 2.2 Hz), 6.34 (2H, t, J = 2.2 Hz). MS (ESI)
m/z: 144.04 [M + H]+.

3-(1H-Pyrazol-1-yl)benzaldehyde (3c) [32]: off white solid (0.46 g, 95%), m.p. 28–30 ◦C. 1H-NMR (400 MHz,
CDCl3) δ (ppm): 10.08 (1H, s), 8.19 (1H, t, J = 1.8 Hz), 8.05–8.02 (2H, m), 7.81–7.76 (2H, m), 7.64 (1H, t,
J = 7.9 Hz), 6.52 (1H, t, J = 2.1 Hz). MS (ESI) m/z: 173.08 [M + H]+.

2-(1H-Pyrazol-1-yl)benzoic acid (3d) [33]: white solid (0.51 g, 96%), m.p. 128–129 ◦C. 1H-NMR (400 MHz,
CDCl3) δ (ppm): 11.40 (1H, br), 8.05–8.02 (1H, dd, J = 7.8 Hz, 1.2 Hz), 7.76–7.74 (2H, m), 7.62–7.58 (1H,
m), 7.49–7.40 (2H, m), 6.48 (1H, s). MS (ESI) m/z: 189.06 [M + H]+.

2-(1H-Pyrazol-1-yl)aniline (3e) [34]: brown oil (0.38 g, 85%). 1H-NMR (400 MHz, CDCl3) δ (ppm):
7.74–7.71 (2H, m), 7.19–7.13 (2H, m), 6.85–6.76 (2H, m), 6.44 (1H, t, J = 2.0 Hz), 4.63 (2H, br). MS (ESI)
m/z: 160.09 [M + H]+.

1-(4-(1H-Pyrazol-1-yl)phenyl)ethan-1-one (3f) [35]: yellow oil (0.47 g, 90%). 1H-NMR (400 MHz, CDCl3)
δ (ppm): 8.08–8.06 (2H, m), 8.02 (1H, d, J = 2.5 Hz), 7.83–7.81 (2H, m), 7.78 (1H, d, J = 1.4 Hz), 6.53 (1H,
t, J = 2.0 Hz), 2.63 (3H, s). MS (ESI) m/z: 187.09 [M + H]+.

Ethyl 3-(1H-pyrazol-1-yl)benzoate (3g) [36]: yellow liquid (0.55 g, 91%). 1H-NMR (400 MHz, CDCl3) δ
(ppm): 8.31 (1H, t, J = 1.8 Hz), 7.99 (1H, d, J = 2.4 Hz), 7.97–7.93 (2H, m), 7.74 (1H, d, J = 1.6 Hz), 7.53
(1H, t, J = 8.0 Hz), 6.49 (1H, t, J = 2.0 Hz), 4.44–4.38 (2H, q, J = 14.3 Hz, 7.2 Hz), 1.41 (3H, t, J = 7.1 Hz).
MS (ESI) m/z: 217.10 [M + H]+.

Methyl 4-(1H-pyrazol-1-yl)benzoate (3h) [37]: white solid (0.53 g, 93%), m.p. 103–105 ◦C. 1H-NMR
(400 MHz, CDCl3) δ (ppm): 8.15–8.12 (2H, m), 8.00 (1H, d, J = 2.4 Hz), 7.80–7.77 (2H, m), 7.76 (1H, d, J
= 1.4 Hz), 6.51 (1H, t, J = 2.1 Hz), 3.93 (3H, s). MS (ESI) m/z: 203.11 [M + H]+.

2-(1H-Pyrazol-1-yl)benzonitrile (3i) [38]: yellow oil (0.47 g, 98%). 1H-NMR (400 MHz, CDCl3) δ (ppm):
8.15 (1H, d, J = 2.5 Hz), 7.81–7.79 (3H, m), 7.77 (1H, d, J = 1.3 Hz), 7.72–7.68 (1H, m), 6.55 (1H, t, J =

2.1 Hz). MS (ESI) m/z: 170.07 [M + H]+.

2-(1H-Pyrrol-1-yl)pyridine (3j) [39]: colorless oil (0.34 g, 84%). 1H-NMR (400 MHz, CDCl3) δ (ppm):
8.43–8.42 (1H, m), 7.75–7.71 (1H, m), 7.52 (2H, t, J = 2.3 Hz), 7.32 (1H, d, J = 8.3 Hz), 7.11–7.08 (1H, m),
6.36 (2H, t, J = 2.3 Hz). MS (ESI) m/z: 145.04 [M + H]+.

2-(1H-Imidazol-1-yl)pyridine (3k) [40]: white solid (0.36 g, 88%), m.p. 40–41 ◦C. 1H-NMR (400 MHz,
CDCl3) δ (ppm): 8.50–8.48 (1H, m), 8.35 (1H, s), 7.85–7.80 (1H, m), 7.65 (1H, t, J = 1.3 Hz), 7.37–7.35
(1H, m), 7.27–7.23 (1H, m), 7.20 (1H, s). MS (ESI) m/z: 146.08 [M + H]+.

2-(2-Methyl-1H-imidazol-1-yl)pyridine (3l) [41]: colorless oil (0.38 g, 85%). 1H-NMR (400 MHz, CDCl3) δ
(ppm): 8.56–8.54 (1H, m), 7.86–7.82 (1H, m), 7.32–7.29 (2H, m), 7.28 (1H, d, J = 1.5 Hz), 7.02 (1H, d, J =

1.5 Hz), 7.02 (1H, d, J = 1.4 Hz), 2.59 (3H, s). MS (ESI) m/z: 160.09 [M + H]+.

2-(1H-Imidazol-1-yl)pyrimidine (3m) [42]: white solid (0.34 g, 83%), m.p. 120–122 ◦C. 1H-NMR (400 MHz,
CDCl3) δ (ppm): 8.71 (2H, d, J = 4.8 Hz), 8.64 (1H, s), 7.90 (1H, s), 7.21 (1H, t, J = 4.8 Hz), 7.18 (1H, s).
MS (ESI) m/z: 147.06 [M + H]+.

2-(2-Methyl-1H-imidazol-1-yl)pyrimidine (3n) [43]: white solid (0.36 g, 80%), m.p. 90–92 ◦C.1H-NMR
(400 MHz, CDCl3) δ (ppm): 8.72 (2H, d, J = 4.8 Hz), 7.86 (1H, d, J = 1.4 Hz), 7.18 (1H, t, J = 4.8 Hz), 6.97
(1H, d, J = 1.3 Hz), 2.82 (3H, s). MS (ESI) m/z: 161.10 [M + H]+.

2-(Piperidin-1-yl)pyridine (4a) [44]: colorless oil (0.40 g, 87%). 1H-NMR (400 MHz, CDCl3) δ (ppm):
8.16–8.15 (1H, m), 7.44–7.39 (1H, m), 6.63 (1H, d, J = 8.6 Hz), 6.54–6.51 (1H, m), 3.52 (4H, d, J = 4.9 Hz),
1.62 (6H, s). MS (ESI) m/z: 163.13 [M + H]+.
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2-(Pyrrolidin-1-yl)pyridine (4b) [45]: colorless oil (0.37 g, 88%). 1H-NMR (400 MHz, CDCl3) δ (ppm):
8.16–8.14 (1H, m), 7.44–7.39 (1H, m), 6.51–6.48 (1H, m), 6.35 (1H, d, J = 8.5 Hz), 3.46–3.43 (4H, m),
2.02–1.98 (4H, m). MS (ESI) m/z: 149.12 [M + H]+.

4-(Piperidin-1-yl)pyridine (4c) [46]: colorless oil (0.39 g, 85%). 1H-NMR (400 MHz, CDCl3) δ (ppm):
8.22–8.20 (2H, q, J = 5.1 Hz, 1.6 Hz), 6.62–6.61 (2H, q, J = 5.1 Hz, 1.6 Hz), 3.31 (4H, d, J = 4.9 Hz), 1.63
(6H, s). MS (ESI) m/z: 163.13 [M + H]+.

4-(Pyrrolidin-1-yl)pyridine (4d) [44]: colorless oil (0.36 g, 86%). 1H-NMR (400 MHz, CDCl3) δ (ppm):
8.18 (2H, d, J = 4.9 Hz), 6.36 (2H, d, J = 4.9 Hz), 3.30–3.27 (4H, m), 2.03–1.99 (4H, m). MS (ESI) m/z:
149.09 [M + H]+.

2-(Pyrrolidin-1-yl)pyrimidine (4e) [47]: colorless oil (0.37 g, 88%). 1H-NMR (400 MHz, CDCl3) δ (ppm):
8.32 (2H, d, J = 4.8 Hz), 6.45 (1H, t, J = 4.8 Hz), 3.59–3.56 (4H, m), 2.02–1.98 (4H, m). MS (ESI) m/z:
150.11 [M + H]+.

2-(Piperidin-1-yl)pyrimidine (4f) [47]: colorless oil (0.40 g, 87%). 1H-NMR (400 MHz, CDCl3) δ (ppm):
8.30 (2H, t, J = 5.6 Hz), 6.42 (1H, t, J = 5.6 Hz), 3.81–3.78 (4H, m), 1.72–1.59 (6H, m). MS (ESI) m/z: 164.14
[M + H]+.

1-(2-Methoxyphenyl)pyrrolidine (4g) [48]: colorless oil (0.40 g, 80%). 1H-NMR (400 MHz, CDCl3) δ (ppm):
6.90–6.81 (4H, m), 3.83 (3H, s), 3.30–3.27 (4H, m), 1.95–1.91 (4H, m). MS (ESI) m/z: 178.16 [M + H]+.

1-(2-Methoxyphenyl)piperidine (4h) [49]: colorless oil (0.44 g, 82%). 1H-NMR (400 MHz, CDCl3) δ (ppm):
6.99–6.84 (4H, m), 3.86 (3H, s), 2.99–2.97 (4H, m), 1.78–1.54 (6H, m). MS (ESI) m/z: 192.17 [M + H]+.

4-(Pyrrolidin-1-yl)benzaldehyde (4i) [50]: white solid (0.44 g, 89%), m.p. 83–85 ◦C.1H-NMR (400 MHz,
CDCl3) δ (ppm): 9.72 (1H, s), 7.73 (2H, d, J = 8.8 Hz), 6.58 (2H, d, J = 8.8 Hz), 3.40–3.37 (4H, m),
2.08–2.02 (4H, m). MS (ESI) m/z: 176.13 [M + H]+.

4-(Piperidin-1-yl)benzaldehyde (4j) [51]: white solid (0.48 g, 90%). m.p. 63–64 ◦C. 1H-NMR (400 MHz,
CDCl3) δ (ppm): 9.75 (1H, s), 7.75–7.71 (2H, m), 6.91 (2H, d, J = 8.9 Hz), 3.41–3.40 (4H, m), 1.68 (6H, s).
MS (ESI) m/z: 190.16 [M + H]+.

N,N-Diethylaniline (4k) [52]: yellow liquid (0.39 g, 92%). 1H-NMR (400 MHz, CDCl3) δ (ppm): 7.23–7.18
(2H, m), 6.69–6.61 (3H, m), 3.37–3.32 (4H, q, J = 14.1 Hz, 7.0 Hz), 1.15 (6H, t, J = 7.1 Hz). MS (ESI) m/z:
150.12 [M + H]+.

2-((4-Nitrophenyl)amino)ethan-1-ol (4l) [53]: yellow solid (0.46 g, 90%). m.p. 110–111 ◦C.1H-NMR
(400 MHz, DMSO-d6) δ (ppm): 8.05 (2H, d, J = 9.2 Hz), 7.35 (1H, t, J = 5.0 Hz), 6.73 (2H, d, J = 9.2 Hz),
4.86 (1H, t, J = 5.4 Hz), 3.65–3.61 (2H, q, J = 11.2 Hz, 5.6 Hz), 3.31–3.27 (2H, q, J = 11.4 Hz, 5.7 Hz). MS
(ESI) m/z: 183.08 [M + H]+.

tert-Butyl phenyl-D-valinate (5a) [54]: white solid (0.63 g, 90%), m.p. 64–66 ◦C. 1H-NMR (400 MHz,
CDCl3) δ (ppm): 7.17–7.13 (2H, m), 6.72–6.69 (1H, m), 6.64–6.62 (2H, m), 4.12 (1H, br), 3.75 (1H, d, J =

5.3 Hz), 2.15–2.04 (1H, m), 1.42 (9H, s), 1.05–1.01 (6H, m). MS (ESI) m/z: 250.16 [M + H]+.

(4-Nitrophenyl)glycine (5b) [55]: brown solid (0.51 g, 92%), 224–226 ◦C. 1H-NMR (400 MHz, DMSO-d6) δ
(ppm): 8.02 (2H, d, J = 9.0 Hz), 7.44 (1H, t, J = 5.6 Hz), 6.66 (2H, d, J = 9.1 Hz), 3.98 (2H, d, J = 6.0 Hz).
MS (ESI) m/z: 197.08 [M + H]+.

Phenyl-D-phenylalanine (5c) [56]: white solid (0.60 g, 88%), m.p. 173–176 ◦C .1H-NMR (400 MHz, CDCl3)
δ (ppm): 7.33–7.17 (7H, m), 6.80 (1H, t, J = 7.3 Hz), 6.62 (2H, d, J = 7.8 Hz), 4.32 (1H, t, J = 5.8 Hz),
3.30–3.10 (2H, m). MS (ESI) m/z: 242.11 [M + H]+.

Phenyl-L-alanine (5d) [57]: white solid (0.42 g, 90%), m.p. 133–135 ◦C. 1H-NMR (400 MHz, DMSO-d6) δ
(ppm): 7.06 (2H, t, J = 7.8 Hz), 6.56–6.53 (3H, m), 3.95–3.89 (1H, q, J = 14.0 Hz, 7.0 Hz), 1.37 (3H, d, J =

7.0 Hz). MS (ESI) m/z: 166.07 [M + H]+.
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Pyrimidin-2-yl-D-valine (5e): white solid (0.47 g, 86%), 113–115 ◦C. 1H-NMR (400 MHz, CDCl3) δ (ppm):
11.24 (1H, br), 8.25 (2H, s), 7.22 (1H, d, J = 8.1 Hz), 6.55 (1H, t, J = 4.9 Hz), 4.62–4.59 (1H, q, J = 13.1 Hz,
5.0 Hz), 2.37–2.29 (1H, m), 1.06 (6H, t, J = 7.2 Hz). MS (ESI) m/z: 196.16 [M + H]+, 218.11 [M + H]+. 13

C-NMR (100 MHz, CDCl3) δ (ppm): 176.0, 161.2, 110.4, 59.4, 31.0, 18.9, 18.2.

Pyrimidin-2-ylmethionine (5f): white solid (0.56 g, 87%). 1H-NMR (400 MHz, CDCl3) δ (ppm): 13.32 (1H,
br), 8.29 (2H, br), 7.92 (1H, d, J = 6.6 Hz), 6.62 (1H, t, J = 4.9 Hz), 4.88–4.84 (1H, q, J = 12.2 Hz, 6.1 Hz),
2.70–2.64 (2H, m), 2.37–2.22 (2H, m), 2.11 (3H, s). MS (ESI) m/z: 228.13 [M + H]+. 13 C-NMR (100 MHz,
CDCl3) δ (ppm): 175.8, 160.3, 110.3, 53.7, 31.9, 30.0, 15.4.

4. Conclusions

In summary, a highly effective coupling reaction has been developed for the preparation of
N-aryl compounds. This transformation occurs with good to excellent yields. A variety of substituted
(hetero)aryl halides can be used as electrophiles, and azoles, piperidine, pyrrolidine, and amino acids,
etc. function as nucleophiles. The key to this discovery was the identification of benzoin oxime ligand
that can promote the (hetero)aryl halides to the corresponding N-arylation compounds. Efforts to
apply our Cu-based system to other catalytic reactions and to expand the scope of the N-nucleophiles
to other classes of nucleophiles are currently underway in our laboratory.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/22/4177/s1.
Copies of 1H NMR and MS for known compounds and copies of 13C NMR for new compounds.
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