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Cluster randomized trials are frequently used in health service evaluation. It is
common practice to use an analysis model with a random effect to allow for clus-
tering at the analysis stage. In designs where clusters are exposed to both control
and treatment conditions, it may be of interest to examine treatment effect het-
erogeneity across clusters. In designs where clusters are not exposed to both
control and treatment conditions, it can also be of interest to allow heterogeneity
in the degree of clustering between arms. These two types of heterogeneity are
related. It has been proposed in both parallel cluster trials, stepped-wedge, and
other cross-over designs that this heterogeneity can be allowed for by incorporat-
ing additional random effect(s) into the model. Here, we show that the choice of
model parameterization needs careful consideration as some parameterizations
for additional heterogeneity induce unnecessary or implausible assumptions.
We suggest more appropriate parameterizations, discuss their relative advan-
tages, and demonstrate the implications of these model choices using a real
example of a parallel cluster trial and a simulated stepped-wedge trial.
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1 INTRODUCTION

Cluster randomized trials (CRTs) randomize entire clusters of individuals to treatment or control conditions.1 Another
related design, which again randomizes entire clusters, is one in which all clusters are randomized to a treatment sequence
that is either treatment followed by control, or control followed by treatment.2 Stepped-wedge cluster randomized trials
(SW-CRTs) also randomize entire clusters but randomize clusters to a sequence of time periods spent in the control condi-
tion followed by time periods spent in the treatment condition.3 All cluster trials need to allow for the non-independence
of observations within the same cluster. This is typically done by using a linear or generalized linear mixed model with a
random effect for cluster. 1

The effect of the treatment might vary across clusters, and it can be of interest to explore any treatment effect hetero-
geneity at the analysis stage. In stepped-wedge designs or other cluster randomized designs in which clusters are exposed
to both treatment and control, this treatment effect heterogeneity can be identified.4-7 In the conventional parallel CRT,
there may also be treatment effect heterogeneity. However, in trials such as the parallel CRT in which each cluster is
exclusively exposed to either the treatment or control condition, this heterogeneity cannot be separated out from the
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cluster effect. But a related issue is where the variability between clusters may differ according to treatment arm in par-
allel cluster trials.8 While these two sources of heterogeneity are inherently different, they have similar implications for
design and analysis when this heterogeneity is modeled using random effects. There is a confusing array of different
parameterizations that have been proposed in the literature to model these different but related sources of heterogene-
ity, which all make different assumptions. This paper aims to review these models and make some recommendations for
which models make fewer assumptions.

In this paper, we demonstrate that in cross-sectional CRTs, the choice of model parameterization to incorporate treat-
ment effect or cluster heterogeneity has important underlying assumptions. We demonstrate the implications of these
model choices using practical examples of a parallel cluster trial and a simulated stepped-wedge trial.

2 THEORETICAL MODELS

2.1 Differential clustering in parallel arm CRTs
In parallel arm CRTs, clusters are either fully exposed or unexposed to the treatment. Therefore, any treatment effect het-
erogeneity cannot be disentangled from the cluster effect. However, the correlation between observations within clusters
might vary across treatment arms. The potential for such differential correlation is intuitive because different treatments
might be expected to induce homogeneity—or even heterogeneity. This is particularly relevant in trials with differen-
tial clustering between arms—perhaps where a group therapy is compared with an individual therapy. Here, we review
the parameterizations that have been proposed for these models in the context of parallel cluster trials and outline their
respective assumptions. In Appendix A, we show derivations of the correlations for model 2b (one of the more com-
plex models). In the next section, we show how these models for differential clustering are related to treatment effect
heterogeneity models.

2.1.1 Basic model: single random effect
Let us consider a 2-arm parallel CRT. We assume that there is a continuous outcome yij, where i = 1, … ,m represents the
individual and j = 1, … , k represents the clusters. We assume that there are k clusters each of equal size m. One analysis
model for this simple setup is1

yij = 𝜇 + xij𝜃 + 𝛼j + eij 𝛼j ∼ N[0, 𝜏2] eij ∼ N[0, 𝜎2
w], (1)

where xij represents the treatment indicator. We code this treatment indicator as 1 for the treatment and 0 for the control
(coding of contrasts is important, a point to which we return in the discussion). Then, 𝜃 is the treatment effect, and
𝛼j is a random effect for cluster j. Under this model, the correlation between two observations in the same cluster, the
intra-cluster correlation (ICC), will be

𝜌 = 𝜏2

𝜏2 + 𝜎2
w
. (2)

The model thus assumes that for any cluster, observations within that cluster share a common correlation 𝜌 and this is
the same for both treatment and control clusters.

2.1.2 Model extension 1: two separate random effects
To allow for different within- and between-cluster variability in treatment and control clusters, two separate random
effects, one for treatment and one for control, are incorporated:

yij = 𝜇 + xij𝜃 + xij𝛼(T)j + (1 − xij)𝛼(C)j + eij 𝛼(T)j ∼ N[0, 𝜏2
T] 𝛼(C)j ∼ N[0, 𝜏2

C] eij ∼ N[0, 𝜎2
w], (3)

where 𝛼(T) and 𝛼(C) represent random cluster effects for the treatment and control clusters. We use the sub-scripts capital
T and capital C to denote the treatment and control clusters. This induces differing ICCs in control and treatment clusters.
The ICC in the control clusters will be

𝜌C =
𝜏2

C

𝜏2
C + 𝜎2

w
, (4)

and the ICC in the treatment clusters will be

𝜌T =
𝜏2

T

𝜏2
T + 𝜎2

w
. (5)
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Using this parameterization, there is no restriction on whether 𝜌C is bigger or smaller than 𝜌T. The model allows
for random variation between the control clusters (variance 𝜏2

C), and a different random variation between treatment
clusters, 𝜏2

T .

2.1.3 Model extension 2: a random interaction
Seen perhaps as a more intuitive way to model heterogeneity in cluster variability across arms, an alternative to the above
model is to use a parameterization that includes a random (simple multiplicative) interaction between the treatment
covariate and cluster:

yij = 𝜇 + xij𝜃 + 𝛼(M)j + xij𝛼(I)j + eij 𝛼(M)j ∼ N[0, 𝜏2
M] 𝛼(I)j ∼ N[0, 𝜏2

I ] eij ∼ N[0, 𝜎2
w], (6)

where 𝛼(M) and 𝛼(I) are independent. We use the notation M to represent the main effect term, and I the interaction
term. We have used different notation to that assumed in model extension 1 to make explicit that this is a different model.
Under this assumption, the ICC in the control clusters will be

𝜌C =
𝜏2

M

𝜏2
M + 𝜎2

w
, (7)

and the ICC in the treatment clusters will be

𝜌T =
𝜏2

M + 𝜏2
I

𝜏2
I + 𝜏2

M + 𝜎2
w
. (8)

Using this parameterization, then 𝜌C <= 𝜌T. That is, there is an implicit assumption that the total variance in the
treatment clusters is greater than or equal to the total variance in the control clusters. This of course is not a tenable
assumption in all situations. This means that if the treatment comparison was switched around, so that the control clusters
were coded as 1 and the treatment clusters as 0 model results would differ, an aspect of a model fit which is clearly
undesirable.

2.2 Treatment effect heterogeneity in cluster randomized designs
The previous section focused on differential clustering by arm (or heteroscedasticity), as appropriate in parallel designs
as treatment is nested within clusters. We now move on to consider treatment effect heterogeneity in designs in which
the treatment is crossed with cluster (cross-over and stepped-wedge trials).

We consider a conventional stepped-wedge study, with S sequences to which the k clusters are randomly allocated, and
where at each of the S + 1 time points, a cross-section of observations is taken.3,9 Because each cluster in a SW-CRT is
exposed both to the treatment and control condition, treatment effects can be estimated within each cluster. While for
simplicity, we focus on the SW-CRT, models that follow will be generalizable to other cluster trials in which treatment is
crossed with cluster. We outline various different models along with the corresponding correlations and give more details
on relationships between the various parameterizations in Appendix B.

2.2.1 Basic model: single random effect
We extend the basic model (1) for parallel CRTs to the SW-CRT, by incorporating fixed effects for each period9:

yijs = 𝜇 + xijs𝜃 + 𝛼j + 𝜋s + eijs 𝛼j ∼ N[0, 𝜏2] eijs ∼ N[0, 𝜎2
w], (9)

where s = 1, … , S denotes the period and 𝜋s is a fixed effect for each period, and m now represents the size of each cluster
at each period, yijs the outcome for individual i in cluster j at time s, and xijs the corresponding treatment indicator.

2.2.2 Model extension 1: two separate random effects
The first model we consider allows for different between-cluster variability in treatment and control clusters and follows
from model extension 1 above for CRTs. Here, we incorporate two separate random effects, one for treatment and one for
control. In contrast to when the clustering is nested within treatment arm, when the clustering is crossed with treatment,
the model with a non-zero covariance between these two random effects becomes identifiable:

yijs = 𝜇 + xijs𝜃 + 𝜋s + xijs𝛼(T)j + (1 − xijs)𝛼(C)j + eijs eijs ∼ N[0, 𝜎2
w], (10)
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again 𝛼(T) and 𝛼(C) represent random cluster effects for the treatment and control conditions, where(
𝛼(T)j
𝛼(C)j

)
∼ N

((
0
0

)
,

(
𝜏2

C 𝜎CT
𝜎CT 𝜏2

T

))
and where 𝜎CT is the possibly non-zero covariance between these two random effects.

2.2.3 Model extension 1a: two separate independent random effects
In model extension 1a, we make the assumption that the correlation between these two separate random effects is zero
(ie, 𝜎CT = 0). This induces differing ICCs in control and treated conditions. The correlation between two observations in
the same cluster, both exposed to the control condition, will be

𝜌CC =
𝜏2

C

𝜏2
C + 𝜎2

w
, (11)

and the correlation between two observations in the same cluster, both exposed to the treatment condition, will be

𝜌TT =
𝜏2

T

𝜏2
T + 𝜎2

w
. (12)

Using this parameterization, there is no restriction on whether 𝜌CC is bigger or smaller than 𝜌TT. However, an additional
correlation also exists: the correlation between two observations within the same cluster, but one in the control condi-
tion and one in the treatment condition, which we call 𝜌CT. Under this model parameterization, this correlation, 𝜌CT, is
assumed to be zero (clearly undesirable).

2.2.4 Model extension 1b: two separate nonindependent random effects
In model extension 1b, the correlation between these two separate random effects is allowed to be non-zero. This induces
differing ICCs in control and treatment clusters, and importantly a non-zero correlation between observations within the
same cluster but different treatment exposure. These correlations are

𝜌CC =
𝜏2

C

𝜏2
C + 𝜎2

w
, (13)

𝜌TT =
𝜏2

T

𝜏2
T + 𝜎2

w
, (14)

𝜌CT = 𝜎CT√
𝜏2

T + 𝜎2
w

√
𝜏2

C + 𝜎2
w

. (15)

As in model 1a above, there are no restrictions on the relative magnitude of 𝜌TT and 𝜌CC, but in contrast to model 1a,
this model no longer includes the restriction that 𝜌CT = 0.

2.2.5 Model extension 2: a random interaction
We now consider extensions that clearly include an interaction between treatment and cluster. Again, because the clus-
tering is crossed with treatment, the model with a non-zero covariance between these two random effects becomes
identifiable:

yijs = 𝜇 + xijs𝜃 + 𝜋s + 𝛼(M)j + xijs𝛼(I)j + eijs eijs ∼ N[0, 𝜎2
w], (16)

where the two random effects 𝛼(M) and 𝛼(I) (where M represents the main effect term, and I the interaction term) have
the following distribution: (

𝛼(M)j
𝛼(I)j

)
∼ N

((
0
0

)
,

(
𝜏2

M 𝜎MI
𝜎MI 𝜏2

I

))
.
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2.2.6 Model extension 2a: an independent random interaction
When the covariance term 𝜎MI between the two random effects is assumed to be zero, the respective correlations are

𝜌CC =
𝜏2

M

𝜏2
M + 𝜎2

w
, (17)

𝜌TT =
𝜏2

M + 𝜏2
I

𝜏2
I + 𝜏2

M + 𝜎2
w
, (18)

𝜌CT =
𝜏2

M√
𝜏2

I + 𝜏2
M + 𝜎2

w

√
𝜏2

M + 𝜎2
w

. (19)

Using this parameterization, we see that there is again the restriction that 𝜌TT is greater than or equal to 𝜌CC, as was the
case when this model was used to allow for differential clustering between arms; furthermore, there is also the restriction
that 𝜌CT is greater than or equal to 𝜌CC.

2.2.7 Model extension 2b: a nonindependent random interaction
Allowing the covariance term to be non-zero, the correlations become

𝜌CC =
𝜏2

M

𝜏2
M + 𝜎2

w
, (20)

𝜌TT =
𝜏2

M + 𝜏2
I + 2𝜎MI

𝜏2
I + 𝜏2

M + 𝜎2
w + 2𝜎MI

, (21)

𝜌CT =
𝜏2

M + 𝜎MI√
𝜏2

I + 𝜏2
M + 2𝜎MI + 𝜎2

w

√
𝜏2

M + 𝜎2
w

. (22)

Inclusion of the non-zero covariance term means that the model does not induce assumptions on the variance in the
treated periods being greater than the variance in the control periods, nor that 𝜌CT is greater than or equal to 𝜌CC.

2.2.8 Model extension 3: an alternative random interaction
An alternative parameterization to allow for an interaction with treatment and cluster is one in which the random
variation for the cluster effects is partitioned into a common part and an exposure specific part:

yijs = 𝜇 + xijs𝜃 + 𝜋s + 𝛾j + xijs𝛾(T)j + (1 − xijs)𝛾(C)j + eijs eijs ∼ N[0, 𝜎2
w] (23)

and that (
𝛾j

𝛾(C)j
𝛾(T)j

)
∼ N

⎛⎜⎜⎝
( 0

0
0

)
,

⎛⎜⎜⎝
𝜏2
𝛾 0 0

0 𝜏2
𝛾T 0

0 0 𝜏2
𝛾C

⎞⎟⎟⎠
⎞⎟⎟⎠ .

Note that we have used a change of notation from 𝛼 to 𝛾 for the random effects to avoid confusion with models 1 and 2.

2.2.9 Model extension 3a: an alternative random interaction with constrained total
variance
When it is assumed that 𝜏2

𝛾T = 𝜏2
𝛾C(= 𝜏2

𝛾TC), the correlations between two observations in the same cluster and both
exposed to the same treatment (whether that be treatment or control) will be

𝜌CC = 𝜌TT =
𝜏2
𝛾 + 𝜏2

𝛾TC

𝜏2
𝛾 + 𝜏2

𝛾TC + 𝜎2
w
, (24)

and the correlations between two observations in the same cluster and both exposed to different treatments will be
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𝜌CT =
𝜏2
𝛾

𝜏2
𝛾 + 𝜏2

𝛾TC + 𝜎2
w
. (25)

This model assumes that the total variance under exposure to treatment is equivalent to the total variance under expo-
sure to control. This parameterization therefore imposes a restriction on the correlations within clusters being identical
for two observations that are both treated and two observations that are both not treated. Furthermore, this model also
makes the assumption that 𝜌CT is less than or equal to 𝜌TT (=𝜌CC).

2.2.10 Model extension 3b: an alternative random interaction without constrained total
variance
An alternative parameterization, to model 3a, which relaxes the assumption that the total variance in the treatment arm
is equivalent to the total variance in the treatment arm, is one in which the parameters 𝜏2

𝛾T and 𝜏2
𝛾C are not constrained to

be the same. The correlations then become

𝜌CC =
𝜏2
𝛾 + 𝜏2

𝛾C

𝜏2
𝛾 + 𝜏2

𝛾C + 𝜎2
w
, (26)

𝜌TT =
𝜏2
𝛾 + 𝜏2

𝛾T

𝜏2
𝛾 + 𝜏2

𝛾T + 𝜎2
w
, (27)

𝜌CT =
𝜏2
𝛾√

𝜏2
𝛾 + 𝜏2

𝛾T + 𝜎2
w

√
𝜏2
𝛾 + 𝜏2

𝛾C + 𝜎2
w

, (28)

While this model does not make the assumption that one of the ICCs is larger than the other, and neither makes the
assumption that the correlation between two observations, one treated and one control, is zero, this model does make
assumptions that the three random effects are uncorrelated. This does induce additional assumptions (Appendix B) that
there is a positive correlation between the treatment and control random effects (in terms of model 1 notation as 𝜏2

C
increases so will 𝜏2

T see Appendix B).

3 MODEL FITTING

We have fitted these models in Stata 14 using the xtmixed function, REML methods, and default settings. Careful model
specification and understanding of the language syntax is required to avoid model misspecification. We have included
sample Stata code (Appendix C).

4 EXAMPLE OF DIFFERENTIAL CLUSTERING IN A PARALLEL CRT

In this example, we illustrate results from fitting models 1 and 2 to a set of data from a parallel CRT. The trial we choose
as an example is a parallel cluster trial conducted in 53 schools (clusters) of a behavioral treatment to prevent obesity in
school-aged children.10 The outcome we consider here is the child's body mass index measured at the end of the trial.
There are a total of 689 observations in the treatment arm and 778 observations in the control arm, with an average cluster
size of 24.

This dataset usefully highlights that one of the parameterizations (model 2) is not a good one. In this CRT, there is little
variability between the treatment clusters, the estimated ICC from a simple analysis of variance on the treatment clusters
only is very close to zero, whereas in the control clusters, it is higher at 0.057 (Table 1). Model 1 is able to capture this
pattern in the data (estimating the ICCs in control and treatment arm as 0.050 and 0.000, respectively), whereas model 2
is unable to, estimating the ICCs in the control and treatment arm as 0.022 and 0.022 (Table 1). The estimated treatment
effects differ slightly between the two approaches, but likelihoods do not indicate any preference for either model.
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5 SIMULATION STUDY OF IMPACT OF MODEL CHOICE FOR TREATMENT
EFFECT HETEROGENEITY IN CLUSTER RANDOMIZED DESIGNS

To investigate the actual consequences on estimation of model parameters when modeling treatment effect heterogeneity
in cluster trials in which treatment is crossed with cluster, we undertook a small simulation study. In this simulation
study, we have compared model performance statistics (ie, bias and coverage) across the 6 models (1a to 3b above) for the
estimates of treatments effects (and standard errors) and the estimates of the variance of the random effects parameters
(ie, the ICCs in both treatment and control arms).

This simulation study is not exhaustive and does not cover the range of possible scenarios but serves to demonstrate
only some of the possible implications of model choice. This simulation study is limited to a simple stepped-wedge study.
We assume a large number of clusters (100) and a large cluster size (1000) to avoid any issue of small sample sizes and
assume a stepped-wedge study with 4 steps (ie, 25 clusters each randomized to one of the 4 sequences). We assume a
treatment effect of 0 and residual variance of 1 (fixed throughout), and no secular trend (ie, each 𝜋s = 0).

Data were generated from a linear mixed model as in model extension 1, adding cluster specific variation derived from
three specified ICCs, one for the control condition, one for the treatment condition, and one for both. From this, we
then derived variance components and a non-zero covariance term. These ICCs (the scenarios) were chosen to repre-
sent a broad range of scenarios, some of which are concordant with the models presented here and some of which were
discordant.

The first scenario (scenario 1) examines what happens when we fit a model that is more complex than warranted by
the data. In the first scenario, there is no differential heterogeneity, and the ICC under both treatment conditions, and
between treatment conditions, is set at a typical value of 0.01. In this scenario, the data are concordant with all model
extensions presented in this paper, except model 1a (which assumes 𝜌CT = 0).

The second scenario (scenario 2) illustrates what happens when we fit these models to data in which there is differ-
ential clustering—but differential clustering that is not too discordant with most models. In the second scenario, there

TABLE 2 Simulation study of impact of model choice for treatment effect heterogeneity in cluster randomized designs

Model 1a Model 1b Model 2a Model 2b Model 3a Model 3b
Scenario 1 (ICC = 0.01 in control clusters; ICC = 0.01 in intervention clusters; ICC = 0.01 in clusters crossed with treatment)
Treatment effects

Absolute bias 0.00 0.00 0.00 0.00 0.00 0.00
Coverage 100.0% 93.7% 95.4% 95.6% 95.6% 95.8%

ICC estimates (percentage bias)
ICC in treatment arm −0.03 0.46 1.51 0.48 0.42 0.28
ICC in control arm 0.08 0.56 −0.77 0.51 0.42 0.44

Scenario 2 (ICC = 0.01 in control clusters; ICC = 0.05 in intervention clusters; ICC = 0.005 in clusters crossed with treatment)
Treatment effects
Absolute bias 0.00 0.00 0.00 0.00 0.00 0.00
Coverage 97.2% 96.1% 95.6% 96.1% 96.2% 96.1%

ICC estimates (percentage bias)
ICC in treatment arm 0.31 0.32 14.31 0.32 −40.4 0.24
ICC in control arm −0.95 −0.95 −4.93 −0.96 210.8 −0.93

Scenario 3 (ICC = 0.05 in control clusters; ICC = 0.01 in intervention clusters; ICC = 0.001 in clusters crossed with treatment)
Treatment effects
Absolute bias 0.00 0.00 0.00 0.00 0.00 0.00
Coverage 96.0% 94.9% 93.0% 94.9% 94.6% 94.8%

ICC estimates (percentage bias)
ICC in treatment arm −0.29 −0.29 907.7 −0.29 208.8 −0.29
ICC in control arm −0.63 −0.63 −8.81 −0.63 −40.7 −0.63

Abbreviation: ICC, intra-cluster correlation.
Model 1: two separate random effects one for cluster and one for treatment condition (a [b]: with a zero [non-zero] covariance term).
Model 2: random interaction between treatment and cluster (a [b]: with a zero [non-zero] covariance term).
Model 3: two separate random effects one for cluster and one for treatment condition, with a partition into a common part (a [b]: with same [different]
variance in treatment and control arms).
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is differential heterogeneity: the ICC in the control condition being 0.01, the ICC in the treatment condition being 0.05,
and the ICC between control and treatment conditions 0.005. In this scenario, the data are discordant with model 2a
(which assumes 𝜌CT > 𝜌CC); model extension 3a (which assumes 𝜌CC = 𝜌TT); and model 1a (which assumes 𝜌CT = 0).

In the third scenario, there is again differential heterogeneity across both arms, but the direction is reversed: the ICC
is 0.05 in the control condition and lower in the treatment condition (0.01), and between conditions 0.001. So in this
situation, there is differential heterogeneity, and this is very discordant with some models. In this scenario, the data are
discordant with model 2a (because 𝜌CT < 𝜌CC and 𝜌CC > 𝜌TT); model extension 3a (because 𝜌CC ≠ 𝜌TT); and model 1a
(because 𝜌CT ≠ 0).

We ran 1000 simulations for each scenario, which meant nominal coverage would be estimated to between 93.6% and
96.4%. We observed most models converged (8∕1000 did not converge under model 1a); treatment effects showed little
evidence of bias (Table 2). For the treatment effects, we observed some small departures from nominal coverage in some
models, and some small differences in coverage between different models. However, these differences were small and
likely to be due to sampling variation (values of coverage outside of the range 93.6 and 96.4 are possibly due to sampling
variation). Model 1a exhibited higher than nominal coverage (100%) under scenario 1, explained by the zero covariance
assumption of this model (Appendix B).

Comparing the implications on the estimates of the ICCs, we observed that models 2a and 3a perform particularly
poorly. Under scenario 2, model 3a shows a large percentage bias for the ICC in both the control and treatment conditions
(as much as 200%); model 2a shows moderate degree of bias (up to 14%). For scenario 3, models 2a and 3a again perform
particularly poorly (up to 900% bias for model 2a).

6 DISCUSSION

We have demonstrated that when heterogeneity in between-cluster variability or treatment effect heterogeneity is
included in models for the analysis of a CRT, the parameterization of the model and the resulting implicit assumptions
are important for estimation of ICCs and in limited scenarios on the standard errors of treatment effects. We have iden-
tified and illustrated that some parameterizations make assumptions that are not only not obvious from the model itself
but also will not always be tenable.

6.1 What is already known
Individually randomized trials
Where individually randomized studies have included random effects to model treatment effect heterogeneity, random
interaction models allowing for a correlation between center main effects and treatment by center interactions have been
used.11-13

Of note, Lee and Thompson discuss treatment effect heterogeneity where there is clustering in individually randomized
trials and allow for non-zero covariance terms (model 2b), and while they clearly express a preference for a model that
makes fewer assumptions, the assumptions implicit in the parameterizations are not clear.13 The model proposed by
Brown makes an assumption of equal variances in both arms (ie, is our model 3a).11 Others have not clearly outlined the
model parameterization choice at all.12 Thus, even these scholarly articles we identified in the individually randomized
literature did not make it apparent what model assumptions were being made.

Parallel CRTs
One situation where between-cluster heterogeneity is likely to be important is in designs with differential clustering
between arms.14,15 However, to date, these models have concentrated on situations in which it is natural to expect that the
correlation between the observations within the treatment clusters is greater than that in the control clusters. Situations
like this arise, for example, when the treatment induces clustering, for example, group therapy.8 Model choice for such
data very naturally fits in line with model 1a, and this has been the model of choice.8

CRTs with treatment crossed with cluster
In the cross-over trial literature, Turner et al have used a parameterization very similar to our model 3b, and so while do not
make assumptions about variances being larger in the treatment arm,6 the model does make other “hidden” assumptions
(Appendix B). Yet others have followed more restrictive forms of parameterizations in the stepped-wedge literature and
have chosen to use model 2a without appreciating the assumptions implicit in this model.4,5
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Individual patient data meta-analysis
In individual patient data meta-analysis models, which also use mixed models and also allow for treatment effect het-
erogeneity (across studies rather than clusters), it has become common practice to include study effects as fixed rather
than random. This means the issue of how to parameterize the additional random study by treatment heterogeneity
is non-problematic. Despite this, where random effects models have been used, model assumptions have been clearly
articulated,16 which means clear guidance does exist for those wishing to model treatment effect heterogeneity using ran-
dom effects. Of some note, it has been observed that the fully flexible model (model 2b here) can sometimes not converge,
and so an alternative contrast parameterization (+1/2, −1/2) has been advocated for the model that has zero covariance
terms that has a different constraint, namely, that the variances are equal between arms.17

Limitations
There are alternative ways to circumvent this issues raised in this paper. For example, an appropriate choice of contrast
coding or selection of the appropriate arm to be coded as the arm under which heterogeneity is assumed to be greater.
However, we do not endorse the choice of models that depend on choice of contrast coding, as this approach offers more
potential for error and model misspecification on behalf of the user.

Our simulation study was small insofar, as it considered only a very limited number of scenarios. However, it illustrates
that even in the case of large studies, where estimates of the ICCs are needed, model choice can have large implications
on bias of these parameters and could induce unnecessarily large standard errors on treatment effects. It is likely that in
other scenarios, where, for example, the cluster sizes are small or the number of clusters are small, the implications on
the ICCs would be greater. We also limited our consideration to mixed models, whereas population average models offer
an alternative approach.

While considering an interaction with cluster and treatment, we did not consider interactions between time and treat-
ment or time and cluster.7,18 Such interactions are likely to be of importance in trials that are longitudinal in nature as a
decay in the strength of the correlations within a cluster will be expected.

Recommendations
In parallel CRTs, clusters are nested within treatment arms, whereas in the SW-CRT and cross-over designs, clusters are
crossed with treatment arms. So in parallel CRTs, it does not make sense to consider clusters crossed with treatment, but
rather clusters nested within treatment arms. This leads directly to model 1 as the natural approach for parallel cluster
trials to model differential clustering between arms. It is also apparent from this that there are only two parameters here,
and only two parameters estimable because each cluster gets only one treatment. Therefore, immediately any model with
three parameters for the random effects structure is over-parameterized.

In a SW-CRT and cross-over trial, however, clusters are now crossed with treatments, so interaction terms as well as
potential for covariance between the two random effects are now estimable. Model 1a no longer becomes a good choice,
as it is unlikely to be a reasonable assumption that the correlation between two observations in the same cluster but of
different treatment status are independent. Model 2a is unlikely to be a good choice, as it assumes the correlation between
two observations, one treated and the other not, is greater than two not treated. Model 3a is equally unlikely to be a good
choice, as it assumes the total variance is equivalent across treatment conditions. Finally, model 3b, while not performing
poorly in our simulation study, does induce additional assumptions. So, in the analysis of stepped-wedge and cross-over
trials, it may be more natural to follow approaches that make minimal assumptions, that is, model 1b or 2b.12 Testing for
simpler models (1a or 2a) will involve a different set of assumptions, which are clearly evident when placing the models
into a common parameterization (Appendix B).
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APPENDIX A

We outline the derivation of the correlations for mode1 2b, one of the more complex models. Correlations from other
models can be derived very similarly (not shown). The ICC is the correlation between two different observations (i is
individual; j is cluster) yij and yi′j. In the SW-CRT, this is irrespective of which period (s) the observation is from. For
simplicity were therefore suppress the s notation from the following derivation.

Firstly, we derive the correlation between two observations both treated:

𝜌TT = corr(yij, yi′j) =
cov(yij, yi′j)√

var(yij) ∗ var(yi′j)
, (A1)

where
cov(yij, yi′j) = cov(𝛼Mi + 𝛼Ii + eij, 𝛼Mi′ + 𝛼Ii′ + ei′j)

= cov(𝛼Mi, 𝛼Mi′ ) + cov(𝛼Mi, 𝛼Ii′ ) + cov(𝛼Mi, ei′j)
+ cov(𝛼Ii, 𝛼Mi′ ) + cov(𝛼Ii, 𝛼Ii′ ) + cov(𝛼Ii, ei′j)
+ cov(eij, 𝛼Mi′ ) + cov(eij, 𝛼Ii′ ) + cov(eij, ei′j)

= var(𝛼M) + var(𝛼I) + 2cov(𝛼M , 𝛼I)

, (A2)

https://doi.org/10.1002/sim.7553
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𝜌TT = corr(yij, yi′j) =
𝜏2

M + 𝜏2
I + 2𝜎MI

𝜏2
M + 𝜏2

I + 𝜎2
w + 2𝜎MI

. (A3)

For the control arm, the ICC is the correlation between two different observations, yij and yi′j, which are again in the
same cluster, but this time now not treated:

𝜌CC = corr(yij, yi′j) =
cov(yij, yi′j)√

var(yij) ∗ var(yi′j)
, (A4)

where
cov(yij, yi′j) = cov(𝛼Mi + eij, 𝛼Mi′ + ei′j)

= cov(𝛼Mi, 𝛼Mi′ ) + cov(𝛼Mi, eji′ )
+ cov(eij, 𝛼Mi′ ) + cov(eij, eji′ )

= var(𝛼M))

(A5)

so that

𝜌CC = corr(yij, yi′j) =
𝜏2

M

𝜏2
M + 𝜎2

w
. (A6)

For the SW-CRT, there is also a correlation between observations in the same cluster, any period, but different treatment
exposures:

𝜌CT = corr(yij(T=1), yi′j(T=0)) =
cov(yij(T=1), yi′j(T=0))√

var(yij(T=1)) ∗ var(yi′j(T=0))
, (A7)

where
cov(yij(T=1), yi′j(T=0)) = cov(𝛼Mi(T=1) + 𝛼Ii(T=1) + eij(T=1), 𝛼Mi′(T=0) + 𝛼Ii′(T=0) + ei′j(T=0))

= cov(𝛼Mi(T=1), 𝛼Mi′(T=0)) + cov(𝛼Mi(T=1), 𝛼Ii′(T=0)) + cov(𝛼Mi(T=1), eji′(T=0))
+ cov(𝛼Ii(T=1), 𝛼Mi′(T=0)) + cov(𝛼Ii(T=1), 𝛼Ii′(T=0)) + cov(𝛼Ii(T=1), eji′(T=0))
+ cov(eij(T=1), 𝛼Mi′(T=0)) + cov(eij(T=1), 𝛼Ii′(T=0)) + cov(eij(T=1), eji′(T=0))

= var(𝛼M) + cov(𝛼M , 𝛼I)

. (A8)

Furthermore,
var(yij(T=1)) = var(𝛼Mi(T=1) + 𝛼Ii(T=1) + eij(T=1))

= 𝜏2
M + 𝜎2

I + 𝜎2
w,

(A9)

and
var(yij(T=0)) = var(𝛼Mi(T=0) + 𝛼Ii(T=0) + eij(T=0))

= 𝜏2
M + 𝜎2

w,
(A10)

𝜌CT = corr(yij(T=1), yi′j(T=0)) =
𝜏2

M + 𝜎IM√
(𝜏2

M + 𝜏2
I + 2𝜎MI + 𝜎2

w)(𝜏2
M + 𝜎2

W )
. (A11)

APPENDIX B

B.1 General formulation of treatment heterogeneity models
Any of the 3 models can be the “general formulation” since can always obtain one from the other. Here, we use model
extension 1, which has a random effect for cluster in treated conditions, and for cluster in control conditions, and allows
a covariance between them.

Notation

j: clusters
s: periods
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i: person
Let xijs be the treatment in the jth cluster and sth period
𝜃 is the average treatment effect
𝜋s is the period effect at period s
yijs is the outcome for the ith person in period s in the jth cluster

B.1.1 Model extension 1

yijs = 𝜇 + 𝜋s + xijs𝜃 + xijs𝛼(T)j +
(
1 − xij

)
𝛼(C)j + 𝜖ijs, (1)

where 𝜋1 = 0 for identifiability.
𝜖ijs ∼ N(0, 𝜎2

w) is individual random errors, and the two random effects have a multivariate normal distribution:
(𝛼(T)j𝛼(C)j) ∼ N((0, 0), (𝜏2

T , 𝜎CT𝜏
2
C, 𝜎CT)).

Interpretation:
𝜇 is the expected average/population response in the control condition in the absence of period effects averaged over all
clusters and individuals.
𝜇 + 𝜃 is the expected average/population response in the treated condition in the absence of period effects, averaged

over all clusters and individuals.
𝛼(C)j is the deviation of the average response of cluster j in the control condition from the population average 𝜇. It can be

thought of as the totality of unmeasured covariates at cluster level at the time of implementation of the control condition.
𝛼(T)j is the deviation of the average response of cluster j in the treated condition from the population average 𝜇 + 𝜃.

It can be thought of as the totality of unmeasured covariates at cluster level at the time of implementation of the treated
condition.

The ICCs for this model are

𝜌CC =
𝜏2

C

𝜏2
C + 𝜎2

w
, 𝜌TT =

𝜏2
T

𝜏2
T + 𝜎2

w
, 𝜌CT = 𝜎CT√

𝜏2
C + 𝜎2

w

√
𝜏2

T + 𝜎2
w

, (2)

And Cov(control random effect, random treatment difference) = Cov (𝛼(C)i, 𝜃 + 𝛼(T)i − 𝛼(C)i) = 𝜎CT − 𝜏2
C. This can be

positive or negative depending on the relative sizes of 𝜎CT and 𝜏2
C.

Model extension 1A
This model has no correlation between 𝛼(C)i and 𝛼(T)i, ie, 𝜎CT = 0.

This also implies Cov(control random effect, random treatment difference) = −𝜏2
C < 0, meaning the larger the control

response is, the smaller (or more negative) the treatment difference is for that cluster.

B.1.2 Model extension 2

yijs = 𝜇 + 𝜋s + xijs𝜃 + 𝛼(M)j + xijs𝛼(I)j + 𝜖ijs

Expressing this in terms of model 1, we have

𝛼(M)j = 𝛼(C)j; 𝛼(I)j = 𝛼 (T)j − 𝛼 (C)j,

Var
(
𝛼(M)j

)
= 𝜏2

M; Var
(
𝛼(I)j

)
= 𝜏2

I ;Cov = 𝜎MI .

Then expressing model 2 parameters in terms of model 1 parameters, 𝜏2
M = 𝜏2

C, 𝜏
2
I = 𝜏2

C + 𝜏2
T − 2𝜎CT , 𝜎MI = 𝜎CT − 𝜏2

C,
and 𝜎CT =Cov( control random effect, treated random effect) = Cov (𝛼(M)i, 𝛼(M)i + 𝛼(I)i) = 𝜏2

M + 2𝜎MI > 0, which may
be positive or negative. Then also, Cov(control random effect, random treatment difference) = Cov (𝛼(M)i, 𝜃 + 𝛼(I)i) =
𝜎MI = 𝜎CT − 𝜏2

C, which may be positive or negative.
And expressing model 1 parameters in terms of model 2,

𝜏2
C = 𝜏2

M ; 𝜎CT = 𝜎MI + 𝜏2
M

𝜏2
T = 𝜏2

I − 𝜏2
C + 2𝜎CT = 𝜏2

I − 𝜏2
M + 2

(
𝜎MI + 𝜏2

M
)
= 𝜏2

I + 𝜏2
C + 2𝜎MI .
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Extension 2A
Model extension 2A has no correlation between 𝛼(M)i and (I)i so that 𝜎MI = 0.

Hence, 𝜏2
T = 𝜏2

I + 𝜏2
C > 𝜏2

C, hence treatment random effect variance is always larger than control. And 𝜎MI = 0 corre-
sponds to assuming 𝜎CT = 𝜏2

M = 𝜏2
C > 0, implying that there is a positive correlation between the random effects under

treatment 𝛼(T)i and control 𝛼(C)i
And also by definition, it means that Cov(control random effect, random treatment difference)= 0 exactly. The size of

the treatment difference in cluster j does not depend on the control mean.
In model 1 notation,

𝜌CC =
𝜏2

C

𝜏2
C + 𝜎2

w
, 𝜌TT =

𝜏2
T

𝜏2
T + 𝜎2

w
, 𝜌CT = 𝜎CT√

𝜏2
C + 𝜎2

w

√
𝜏2

T + 𝜎2
w

=
𝜏2

C√
𝜏2

C + 𝜎2
w

√
𝜏2

T + 𝜎2
w

.

In model 2 notation, 𝜌CC = 𝜏2
M

𝜏2
M+𝜎2

w
, 𝜌TT = 𝜏2

M+𝜏2
I

𝜏2
M+𝜏2

I +𝜎2
w

, 𝜌CT = 𝜏2
M√

𝜏2
M+𝜎2

w

√
𝜏2

M+𝜏2
I +𝜎2

w

, and from this, it is clear that 𝜌TT > 𝜌CC if

𝜏2
I > 0.

Extension 2B
Model extension 2B allows covariance 𝜎MI. So that 𝜎MI = 𝜎CT − 𝜏2

C (and this can be positive or negative). And 𝜏2
T =

𝜏2
I + 𝜏2

C + 2𝜎MI can be greater or less than 𝜏2
C.

Substituting back to model 2 notation,

𝜌CC =
𝜏2

M

𝜏2
M + 𝜎2

w
, 𝜌TT =

𝜏2
M + 𝜏2

I + 2𝜎MI

𝜏2
M + 𝜏2

I + 2𝜎MI + 𝜎2
w
, 𝜌CT =

𝜏2
M + 𝜎MI√

𝜏2
M + 𝜎2

w

√
𝜏2

M + 𝜏2
I + 2𝜎MI + 𝜎2

w

,

where 𝜏2
T = 𝜏2

I + 𝜏2
C + 2𝜎MI .

B.1.3 Model extension 3

Yijs = 𝜇 + 𝜋s + xijs𝜃 + 𝛾j +
(
1 − xij

)
𝛾(C)j + xij𝛾(T)j + 𝜖ijs,

Var (𝛾i) = 𝜏2
𝛾 ; Var (𝛾(C)i) = 𝜏2

𝛾C ; Var (𝛾(T)i) = 𝜏2
𝛾T .

And Cov (𝛾i, 𝛾(C)i) = 0; Cov (𝛾(C)i, 𝛾(T)i) = 0.
Then,

𝛾i + 𝛾(C)i = 𝛼(C)i; 𝛾i + 𝛾(T)i = 𝛼(T)i.

This thus gives that 𝜎CT =Cov( control random effect, treated random effect) = Cov (𝛾i + 𝛾(C)i, 𝛾i + 𝛾(T)i) = 𝜏2
𝛾 > 0.

Hence, there is always a positive correlation between treated and control random effects.
Then, in terms of model 1 parameters, 𝜏2

𝛾 + 𝜏2
𝛾C = 𝜏2

C, 𝜏
2
𝛾 + 𝜏2

𝛾T = 𝜏2
T , 𝜏2

𝛾 = 𝜎CT

𝜏2
𝛾C = 𝜏2

C − 𝜎CT ; 𝜏2
𝛾T = 𝜏2

T − 𝜎CT .

This therefore means that Cov(control random effect, random treatment difference) = Cov(𝛾i + 𝛾(C)i, 𝜃 + 𝛾(T)i − 𝛾(C)i) =
−𝜏2

𝛾C < 0.
And expressing model 1 parameters in terms of model 3,

𝜏2
C = 𝜏2

𝛾 + 𝜏2
𝛾C ; 𝜏2

T = 𝜏2
𝛾 + 𝜏2

𝛾T ; 𝜎CT = 𝜏2
𝛾 .

B.1.4 Extension 3A
Model extension 3A has equal variance for 𝛾(C)i and (T)i , ie, 𝜏2

𝛾C = 𝜏2
𝛾T , hence corresponds to assuming equal variances

of treated and control random effects 𝜏2
C = 𝜏2

T .
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In model 3 notation,

𝜌CC =
𝜏2
𝛾 + 𝜏2

𝛾C

𝜏2
𝛾 + 𝜏2

𝛾C + 𝜎2
w
, 𝜌TT =

𝜏2
𝛾 + 𝜏2

𝛾C

𝜏2
𝛾 + 𝜏2

𝛾C + 𝜎2
w
, 𝜌CT = 𝜎CT√

𝜏2
C + 𝜎2

w

√
𝜏2

T + 𝜎2
w

=
𝜏2
𝛾

𝜏2
𝛾 + 𝜏2

𝛾C + 𝜎2
w
.

Substituting back to model 3 notation, it is therefore clear that 𝜌CC = 𝜌TT = 𝜏2
C

𝜏2
C+𝜎2

w
, 𝜌TC = 𝜎CT

𝜏2
C+𝜎2

w
(or equiv with 𝜏2

T).

B.1.5 Extension 3B
Model extension 3B allows unequal variances for 𝛾(C)i and (T)i , ie, 𝜏2

𝛾C ≠ 𝜏2
𝛾T . Using model 1 notation,

𝜌CC =
𝜏2
𝛾 + 𝜏2

𝛾C

𝜏2
𝛾 + 𝜏2

𝛾C + 𝜎2
w
, 𝜌TT =

𝜏2
𝛾 + 𝜏2

𝛾T

𝜏2
𝛾 + 𝜏2

𝛾T + 𝜎2
w
,

𝜌TC = 𝜎CT√
𝜏2

C + 𝜎2
w

√
𝜏2

T + 𝜎2
w

=
𝜏2
𝛾√

𝜏2
𝛾 + 𝜏2

𝛾C + 𝜎2
w

√
𝜏2
𝛾 + 𝜏2

𝛾T + 𝜎2
w

.

This means that since 𝜎CT =Cov( control random effect, treated random effect)= 𝜏2
𝛾 > 0).And furthermore that the larger

the control response, the smaller the treatment difference is for that cluster, since Cov(control random effect, random
treatment difference) = −𝜏2

𝛾C < 0.

APPENDIX C

C.1 Stata code to fit models 1a to 3b
*y represents the outcome
*trt represents the treatment indicator (1 treated 0 control)
*cluster represents the grouping by cluster
*clustertrt represents a grouping by cluster and treatment
egen clustertrt = group(cluster trt)
*model 1a
xtmixed y trt | | cluster: trt notreat, nocons var reml
*model 1b
xtmixed y trt | | cluster: trt notreat, nocons cov(uns) var reml
*model 2a
xtmixed y trt | | cluster: trt, var reml
*model 2b
xtmixed y trt | | cluster: trt, cov(uns) var reml
*model 3a
xtmixed y trt | | cluster: | | clustertrt: ,variance reml
*model 3b
xtmixed y trt | | cluster: | | clustertrt: trt notreat, nocons variance reml
*Code to extract variance terms
*Model 1a
local M1a_var_r_trt = exp(2*_b[lns1_1_1:_cons])
local M1a_var_r_control = exp(2*_b[lns1_1_2:_cons])
*Model 1b
local M1b_var_r_trt = exp(2*_b[lns1_1_1:_cons])
local M1b_var_r_control = exp(2*_b[lns1_1_2:_cons])
local M1b_corr_r_trt_control = tanh(_b[atr1_1_1_2:_cons])
local M1b_cov_r_trt_control = ‘M2_corr_r_trt_control’*sqrt(‘M2_var_r_trt’*‘M2_var_r_control’)
*Model 2a
local M2a_var_r_control = exp(2*_b[lns1_1_2:_cons])
local M2a_var_r_trt = exp(2*_b[lns1_1_1:_cons])+exp(2*_b[lns1_1_2:_cons])
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*Model 2b
local M2b_var_r_control = exp(2*_b[lns1_1_2:_cons])
local M2b_var_r_trt = exp(2*_b[lns1_1_1:_cons])
local M2b_corr_r_trt_control = tanh(_b[atr1_1_1_2:_cons])
local M2b_cov_r_trt_control = ‘M4_corr_r_trt_control’*sqrt(‘M4_var_r_trt’*‘M4_var_r_control’
local M2b_var_r_trt = ‘M4_var_r_trt’ + ‘M4_var_r_control’ + 2*‘M4_cov_r_trt_control’
*Model 3a
local M3a_var_r_control = exp(2*_b[lns1_1_1:_cons]) + exp(2*_b[lns2_1_1:_cons])
local M3b_var_r_trt = ‘M5_var_r_control’
*Model 3b
local M3b_pvalue=2*(1-abs(normal(‘M6_test_valu’)))
local M3b_var_r_control = exp(2*_b[lns1_1_1:_cons]) + exp(2*_b[lns2_1_2:_cons])
local M3b_var_r_trt = exp(2*_b[lns1_1_1:_cons]) + exp(2*_b[lns2_1_1:_cons])

APPENDIX D: SUMMARY

D.1 Model extension 1:
Model extension 1A has the restriction that there is no correlation between cluster random effects of control and treatment
conditions. This implies that

(a) The larger the control response is, the smaller the treatment difference is for that cluster, since the Cov(control
random effect, random treatment difference) = −𝜏2

C < 0.
(b) The correlation between two observations in the same cluster, one observed under the control and the other under

the treatment condition, is zero (𝜌TT = 0).

Model extension 1B is unrestricted for the variances, correlations, and ICCs.

D.2 Model extension 2:
Model extension 2A has the restriction of no correlation between main random effect and the interaction random effect
This implies that

(a) The treatment random effect variance is always larger than the control random effect variance (𝜏2
T = 𝜏2

I + 𝜏2
C > 𝜏2

C).
(b) The ICC for treatment clusters is always larger than the ICC for control clusters (𝜌TT > 𝜌CC).
(c) There is a positive correlation between the random effects under treatment 𝛼(T)i and control 𝛼(C)i (since 𝜎MI = 0

corresponds to assuming 𝜎CT = 𝜏2
C> 0).

Model extension 2B is unrestricted variances, correlations, and ICCs

D.3 Model extension 3:
Model extension 3A is restricted to equal variances of all cluster-treatment random effects. This implies that

(a) The variances of treated and control random effects are equivalent (𝜏2
C = 𝜏2

T).
(b) The correlation between two observations both treated is equivalent to the correlation between two observations

both observed under the control condition (𝜌TT = 𝜌CC).

Model extension 3B has the restriction that the correlation between the 3 model random effects is zero. This
implies that

(a) There is a positive correlation between treated and control random effects, since 𝜎CT =Cov( control random effect,
treated random effect) = 𝜏2

𝛾 > 0.
(b) The larger the control response, the smaller the treatment difference is for that cluster, since Cov(control random

effect, random treatment difference) = −𝜏2
𝛾C < 0.
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