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Abstract: The ability to regulate the recruitment of immune cells makes chemokines and their recep-
tors attractive drug targets in many inflammatory diseases. Based on its preferential expression on
T helper type 2 (Th2) cells, C-C chemokine receptor type 4 (CCR4) has been widely studied in the
context of allergic diseases, but recent evidence on the expression of CCR4 in other cell types has con-
siderably expanded the potential applications of CCR4 antagonism. However, the current number of
approved indications, as well as the portfolio of CCR4-targeting drugs, are still limited. In the present
study, we have assessed the potential therapeutic efficacy of a CCR4 small molecule antagonist,
SP50, discovered via an in silico-based approach, against a variety of pre-clinical settings of infection
with the fungus Aspergillus fumigatus. We show that SP50 efficiently worked as prophylactic vaccine
adjuvant in immunocompetent mice, protected against invasive aspergillosis in immunosuppressed
mice. Further, the CCR4 antagonist prevented allergic bronchopulmonary aspergillosis in susceptible
mice, and in a murine model of cystic fibrosis, a genetic disorder characterized by chronic pulmonary
inflammation and recurrent infections. In conclusion, our results extend the potential applications
of CCR4 antagonism and prompt for the development of novel compounds with the potential to
progress to clinical trials.

Keywords: CCR4; Aspergillus fumigatus; vaccine; cystic fibrosis; invasive aspergillosis; allergic
bronchopulmonary aspergillosis

1. Introduction

Chemokines are cytokines endowed with chemotactic activity and play critical roles
in the positioning and migration of immune cells in homeostasis and during immune
responses [1]. Approximately 50 chemokines and 20 chemokine receptors, along with
5 atypical receptors, have been described so far [2]. Although a receptor–ligand promiscuity
exists, the individual chemokine receptor profile and the context-dependent production
of chemokines, among other mechanisms, may coordinate the selective recruitment of
populations of immune cells [3]. Since chemokines are dysregulated in many inflammatory
diseases, pharmacological inhibition of the relevant chemokine receptors represents an
active area of research. However, the knowledge of the chemokine/chemokine receptor
system is a fundamental prerequisite for successful pharmacological targeting [4].

Among chemokine receptors, CCR4 has attracted considerable interest as a potential
target in a variety of pathological conditions [5,6]. CCR4 is the chemokine receptor prefer-
entially expressed on Th2 cells. However, other T cell subsets can express CCR4, including
cutaneous lymphocyte antigen (CLA)-positive skin-homing T cells, regulatory T cells (Treg
cells), Th17, and Th22 cells [7]. In addition, CCR4 was found to be expressed by natural
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killer (NK) cells, NKT cells, eosinophils, platelets, and basophils [7]. CCR4 has two known
ligands, CCL17 and CCL22, also known as thymus- and activation-regulated chemokine
(TARC) and macrophage-derived chemokine (MDC), respectively, that differ in receptor
binding properties, expression profile, and modulatory activity of immune functions [8].
The predominant expression of CCR4 in Th2 cells, as well as the upregulation of CCL17 and
CCL22 in allergic diseases, have captured attention for their potential therapeutic targeting
of CCR4 in the treatment of allergies [5]. Similarly, the expression of CCR4 in skin-homing
CLA+ T cells has attracted interest for use in atopic dermatitis therapy [5]. Another area of
research is represented by cancer immunotherapy. Indeed, CCR4 is expressed by Treg cells
whose accumulation in the tumor microenvironment is a cause of resistance to immune
therapy. CCR4 antagonism may therefore prevent Treg tumor infiltration and increase
the antitumoral response [9]. Therefore, CCR4 is increasingly being identified in different
pathologies, thus making the development of effective CCR4-targeting drugs a potential
therapeutic strategy with wide-ranging applications.

Several classes of drugs targeting CCR4 have been developed, including small molecule
antagonists and biologicals. The former include class I and class II molecules that bind the
extracellular or the intracellular portion of the receptor, respectively, and include lipophilic
heteroarenes and aryl sulphonamides [10], with only one compound progressing to clinical
trials so far. The latter include mogamulizumab, a fully humanized monoclonal anti-
body [6], approved by the U. S. Food and Drug Administration (FDA) for the treatment
of two rare types of non-Hodgkin lymphoma. Therefore, the current portfolio of CCR4-
targeting drugs as well as the number of approved indications is limited, thus making the
exploration of novel clinical scenarios and drug candidates an open field of investigation.

Aspergillus fumigatus is one of the highly abundant airborne fungal species. Aspergillus
species cause significant morbidity and mortality in the population by eliciting a wide
spectrum of diseases that depend not only on the degree of exposure, but also on the
characteristics of the immune response [11]. Clinically, the symptomatology could range
from severe and life-threatening forms of invasive aspergillosis in immunocompromised
individuals to allergic asthma in immunocompetent population [12]. A. fumigatus is respon-
sible for an extreme form of allergic bronchopulmonary aspergillosis (ABPA), characterized
by an exaggerated hypersensitivity reaction [13]. Allergic asthma is typically driven by Th2
cells that predominantly express CCR4. Significantly enhanced Aspergillus-specific IgE
and eosinophilia are the characteristic features of ABPA. Moreover, A. fumigatus is by far the
most common fungal species isolated in the sputum of cystic fibrosis (CF) patients [14,15].
CF is a rare genetic disorder caused by mutations in the gene encoding for the ion channel
Cystic Fibrosis Trans-membrane conductance Regulator (CFTR), involved in the regulation
of the ionic content of luminal fluid [16]. A deterioration of the respiratory functions by a
chronic inflammatory state and recurrent infections are the main causes of morbidity and
mortality in CF patients [17]. Pulmonary exacerbations are caused by bacteria, such as
Pseudomonas aeruginosa and Staphylococcus aureus, but also A. fumigatus.

Though the survival rate with invasive aspergillosis has been improved recently due to
the effective use of antifungal agents, incidence of drug resistance is growing. Also, the use
of steroids in allergic diseases is associated with steroid resistance and immunosuppression.
In view of these facts, the current research on the therapy of A. fumigatus-associated
pathologies is focused on immunomodulation and vaccines. Therefore, in the present
manuscript, we have extended the potential clinical application of CCR4 antagonism
in different pre-clinical models of Aspergillus infection and allergy. Our results indicate
that CCR4 antagonists can protect from aspergillosis and allergic bronchopulmonary
aspergillosis (ABPA) in susceptible mice and in a murine model of cystic fibrosis (CF), thus
extending the clinical indications for therapeutic development of CCR4 targeting drugs.
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2. Materials and Methods
2.1. Mice

Murine experiments were performed according to the Italian Approved Animal
Welfare Authorizations 360/2015-PR (date of approval 15 May 2015) lasting for five years
(2015–2020) and Legislative decree 26/2014 regarding the animal license, obtained by the
Italian Ministry of Health. Four- to six-week-old C57BL/6 mice were purchased from
Charles River (Calco, Italy). Breeding pairs of CF mice homozygous for the F508del-CFTR
that had been backcrossed for 12 generations to the C57BL/6 strain, or in the FVB/129
outbred background (Cftrtm1EUR, F508del, abbreviated CftrF508del mice), were obtained from
Bob Scholte, Erasmus Medical Center Rotterdam, The Netherlands [18] and maintained
in our animal facility. Mice were treated as described below and monitored for fungal
growth, expressed as log10 CFU per organ, mean ± SD. Bronchoalveolar lavage (BAL) was
performed by cannulating the trachea and washing the airways with 3 × 0.5 mL of PBS to
collect the BAL fluid. Total and differential cell counts were done by staining BAL smears
from allergic mice with May-Grünwald Giemsa reagents (Sigma-Aldrich, St. Louis, MO,
USA) before analysis.

2.2. Vaccination Model

The vaccination model consisted in administering mice with the Aspergillus Cat1p
antigen along with the immunoadjuvant murine CpG oligodeoxynucleotide 1862 (CpG/Ag
model), as described [19]. Briefly, mice were injected intranasally (i.n.) with 2 × 107 As-
pergillus conidia/20 µL of saline (see below) 14 days after treatment with 5 µg of Cat1p +
CpG 10 nM/20 µL of saline, with and without 5 µg/20µL/i.n. SP50 (AF-399/42016530;
C26H17N3O4S3; 4-(1-benzofuran-2-ylcarbonyl)-1-[5-(benzylsulfanyl)-1,3,4-thiadiazol-2-yl]-
3-hydroxy-5-(2-thienyl)-1,5-dihydro-2H-pyrrol-2-one) [20,21], administered 14, 7, and
3 days before. Mice were immunosuppressed with 150 mg/kg cyclophosphamide by
intraperitoneal injection (i.p.) a day before infection.

2.3. Aspergillus Infection and Allergy

Viable conidia (95%) of A. fumigatus (Af293) were obtained by growth on Sabouraud
dextrose agar (Sigma-Aldrich) supplemented with chloramphenicol for 5 days at room
temperature. The fungus was collected with a cell scraper after addition of PBS/0.05%
Tween 80, transferred in a tube, pelleted and resuspended in PBS. After counting, the
resuspension was further diluted in PBS to reach the desired final concentration. For
in vivo experiments, mice were anesthetized by intraperitoneal injection of 2.5% avertin
(Sigma Chemical Co, St. Louis, MO, USA) before intranasal instillation of a suspension of
2 × 107 resting conidia /20 µL saline. For allergy, mice received an i.p. and a subcutaneous
injection of 100 µg of A. fumigatus culture filtrate extract (CCFA) dissolved in Freund’s
incomplete adjuvant (Sigma-Aldrich) followed by two consecutive i.n. injections (1 wk
apart) of 20 µg of CCFA [22]. Mice were treated with SP50 (5 µg/20µL/i.n.) daily 2 h
after the Aspergillus infection (infection model) or twice, in concomitance with the first and
second administration of CCFA (allergy model). Control mice received the same volume of
vehicle PBS. Lungs were removed and immediately fixed in 10% neutral buffered formalin
(Bio-Optica Milano Spa, Milan, Italy) for 24 h, embedded in paraffin, sectioned into 3–4 µm
and stained with Periodic Acid-Schiff reagent. Histology images were acquired using a
microscope (BX51) with a 40× objective equipped with a high-resolution DP71 camera
(Olympus, Tokyo, Japan).

2.4. Immunofluorescence

The tissues were removed and fixed in 10% phosphate-buffered formalin (Bio-Optica
Milano Spa, Milan, Italy), embedded in paraffin and sectioned at 3 µm. Sections were
rehydrated and, after antigen retrieval in citrate buffer (10 mM, pH6), were fixed in 2%
formaldehyde for 40 min at room temperature and permeabilized in a blocking buffer
containing 5% FBS, 3% BSA, and 0.5% Triton X-100 in PBS. The slides were then incubated
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at 4 ◦C with primary antibody anti-IL-4 (eBioscience, San Diego, CA, USA), anti-IL-10 (eBio-
science) or anti-forkhead box protein P3 (FOXP3; Abcam, Cambridge, UK). After extensive
washing with PBS, the slides were then incubated at room temperature for 60 min with sec-
ondary antibody goat anti-Rabbit TRITC (Bethyl Laboratories, Inc., Montgomery, TX, USA).
Nuclei were counterstained with 4′,6-diamidino-2-phenylindole (DAPI). Images were
acquired using a microscope BX51 and analySIS image processing software (Olympus).

2.5. ELISA

Murine IL-4, IL-5, IL-10, IL-13, IFN-γ, IL-17A levels were determined in organ ho-
mogenates by using specific ELISA according to manufacturers’ instructions (R&D Systems,
Minneapolis, MN, USA).

2.6. RT-PCR

Real-time PCR was performed using the CFX96 Touch Real-Time PCR detection
system and iTaq™ Universal SYBR® Green Supermix (BioRad, Hercules, CA, USA). Or-
gans were lysed and total RNA was extracted using TRizol™ Reagent (Thermo Fisher
Scientific, Waltham, MA, USA) and reverse transcribed with PrimeScript RT Reagent
Kit with gDNA Eraser (Takara Bio, Otsu, Japan), according to the manufacturer’s direc-
tions. Amplification efficiencies were validated and normalized against β-actin. The
thermal profile for SYBR Green real-time PCR was at 95 ◦C for 3 min, followed by 40 cy-
cles of denaturation for 30 s at 95 ◦C and an annealing/extension step of 30 s. Each
data point was examined for integrity by analysis of the amplification plot. The mRNA-
normalized data were expressed as relative mRNA levels with respect to control. The
following murine primers were used: β-actin: forward AGCCATGTACGTAGCCATCC,
reverse CTCTCAGCTGTGGTGGTGAA; Ifng: forward ACTGGCAAAAGGATGGTGAC,
reverse TGAGCTCATTGAATGCTTGG; Il10: forward GAGAAGCATGGCCCAGAAAT-
CAAG, reverse ATCACTCTTCACCTGCTCCACTGC; Il17a: forward GACTACCTCAAC-
CGTTCCAC, reverse CCTCCGCATTGACACAGC; Il17f : forward CCCTGGAGGATAA-
CACTGTGAGAG, reverse TTCCTGACCCTGGGCATTGATG; Il22: forward CTGCCT-
GCTTCTCATTGCCCTGTG, reverse GATGTACGGCTGCTGGAAGTTGG; Il4: forward CG-
GCATTTTGAACGAGGTCACAGG, reverse AGCACCTTGGAAGCCCTACAGACG; Muc1:
forward TGAGCCAGGACTTCTGGTAG, reverse CCTTCTGAGAGCCACCACTA; Muc5ac:
forward CTGGACCTGGAGGTTGTATG, reverse CAGTAGTGAGGGTTGGATGG; Muc13:
forward ACATGGTGAAGGGTCAAGAA, reverse AGATGAACTACCCACGGTCA.

2.7. Statistical Analysis

GraphPad Prism software 6.01 (GraphPad, San Diego, CA, USA) was used for the
analysis. Data are expressed as mean ± SD. Statistical significance was calculated by
one-way ANOVA (Tukey’s or Bonferroni’s post hoc test) for multiple comparisons and
by a two-tailed Student’s t-test for single comparison. We considered all p values < 0.05
significant. The in vivo groups consisted of 3–5 mice/group.

3. Results
3.1. The CCR4 Antagonist SP50 Promotes Vaccine-Induced Resistance

By using a combination of in silico and in vitro screening-driven approaches, Bayry et al.
described the development of small molecule CCR4 antagonists that were able to target Treg
cells and work as vaccine adjuvant by boosting immune responses when used in combination
with either Modified Vaccinia Ankara expressing Ag85A from Mycobacterium tuberculosis or
recombinant hepatitis B virus surface antigen vaccines [20]. We have previously evaluated the
ability of A. fumigatus proteins, glycolipids, and polysaccharides to induce vaccine-dependent
protection in mice [19]. Among the different antigens, the mycelia catalase 1 (Cat1p) was unable
to confer protection [19]. Therefore, by resorting to the CpG/Ag model, we asked whether
the vaccination potential of Cat1p against pulmonary aspergillosis could be improved by the
CCR4 antagonist [19]. In agreement with previous findings, vaccination with A. fumigatus
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conidia protected mice from subsequent infection with conidia while mice rapidly succumbed
when Cat1p was used (Figure 1). However, concomitant treatment with the CCR4 antagonist
SP50 [20,21] significantly reduced fungal burden and conferred full protection against infection
(Figure 1), thus confirming the vaccine adjuvant properties of CCR4 antagonists.
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Figure 1. Vaccinating potential of SP50 against invasive pulmonary aspergillosis. C57BL/6 mice were injected intranasally
with 2 × 107 Aspergillus conidia 14 days before (Conidia) or with Ag (Cat1p), with and without SP50, and CpG (10 nM)
14, 7, and 3 days before the intranasal infection with 2 × 107 live, resting conidia. Mice were immunosuppressed i.p. with
150 mg/kg cyclophosphamide a day before infection. Mice were assessed for (A) survival, and for (B) fungal growth
(Log10 CFU) in the lungs 3 days post-infection. Data are pooled from three independent experiments. None, infected mice.
* p < 0.05, SP50-Cat1p-treated vs Cat1p-treated mice.

3.2. The CCR4 Antagonist SP50 Protects Immunosuppressed Mice from Invasive Aspergillosis

We then analyzed the effects of the CCR4 antagonist in other models of aspergillosis.
Invasive aspergillosis is an important cause of morbidity and mortality in immunocom-
promised patients [23]. Hence, we first resorted to cyclophosphamide immunosuppressed
mice and evaluated whether the CCR4 antagonist SP50 could protect mice from lethal i.n.
A. fumigatus infection. As shown in Figure 2, while cyclophosphamide-treated mice rapidly
succumbed to infection, the concomitant administration of SP50 completely protected
mice from death. The increased survival was associated with a reduced fungal burden
(Figure 2B), improved histopathology (Figure 2C), and reduced levels of IL-17A and IL-4
mRNA and protein, while IFN-γ and IL-10 levels were significantly increased (Figure 2D,E).
Interestingly, the same changes in fungal burden, histopathology and cytokine profile were
also observed in untreated mice (Figure 2A–E), indicating that the CCR4 antagonist is
effective against the immune response elicited by Aspergillus infection.
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mice (150 mg/kg a day before infection) received intranasally 2 × 107 A. fumigatus conidia. Mice were treated with SP50
(5 µg/mouse/i.n.) in concomitance with Aspergillus infection. Mice were assessed for survival, and for fungal growth (Log10
CFU) in the lungs at 3 days post-infection. In (C) lung histology (periodic acid-Schiff staining) of A. fumigatus-infected
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in the BAL fluid. (D) Gene expression analysis for Ifng, Il17a, Il4, and Il10 in lungs was done by RT-PCR 3 days after the
infection. (E) Cytokines were determined in lung homogenates 3 days after the infection by ELISA. Data are pooled from
three independent experiments. *, p < 0.05, **, p < 0.01, ***, p < 0.001, SP50-treated vs SP50-untreated (None) mice.

3.3. The CCR4 Antagonist SP50 Protects Mice from ABPA

Another important cause of morbidity by A. fumigatus is represented by allergic
asthma. As mentioned above, the pathogenesis of allergic asthma is driven by CCR4-
expressing Th2 cells. Based on this premises, we resorted to a murine model of ABPA
(Figure 3A) in the presence or absence of the CCR4 antagonist SP50. As shown in Figure 3,
while the administration of SP50 did not significantly decrease fungal burden (Figure 3B),
the lung histopathology was dramatically improved (Figure 3C). In line with these findings,
SP50 significantly reduced the recruitment of eosinophils (Figure 3D) and serum IgE levels
(Figure 3E). Moreover, the levels of the mucin MUC5AC, known to be upregulated in
allergic inflammatory responses [24], were reduced by SP50 while the MUC1 and MUC13
were increased (Figure 3F). Finally, consistent with an inhibitory activity of the CCR4
antagonists against Th2 cells, the levels of IL-4, IL-5, and IL-13 were all reduced by SP50
(Figure 3H,I). Interestingly, also the levels of Th17 cytokines IL-17A, IL-17F, and IL-22 were
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reduced by SP50, indicating an inhibition of Th17 cells (Figure 3G). By contrast, the levels
of IL-10 were increased (Figure 3H,I).
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Figure 3. SP50 protects mice from allergic bronchopulmonary aspergillosis. (A) Representation of the murine experimental
model of allergy. C57BL/6 mice was sensitized by the concomitant intraperitoneal (100 µg) and subcutaneous (100 µg)
administration of A. fumigatus culture filtrate extract followed 1 week later by the intranasal instillation of 20 µg of the
extract. After an additional 7 days, bronchial colonization of A. fumigatus was induced by resting conidia administered
i.n. (2 × 107), and the animals were evaluated 1 week later for parameters of allergic airway inflammation. Treatments
included SP50 administered at 5 µg/mouse/i.n. twice, in concomitance with the first and second CCFA administrations.
(B) Mice were assessed for fungal growth (Log10 CFU) in the lungs at 1 week post-infection. (C) Paraffin-embedded lung
sections were stained with periodic acid-Schiff to visualize mucin, goblet cells, and inflammatory cells. (D) The abundance
of eosinophils (Eos), monocytes (MNC), polymorphonucleates (PMN), and lymphocytes (Lym) was assessed in BAL fluid.
(E) IgE antibodies were determined in sera. (F,G) Gene expression analysis in lungs was done by RT-PCR a week after the
infection. (H) Cytokines were determined in lung homogenates 7 days after the infection by ELISA. (I) Immunofluorescence
staining with anti-IL-4, anti-IL-10, and anti-Foxp3 antibody of lungs at 7 dpi. Cell nuclei were stained blue with DAPI.
Representative images were acquired with a high-resolution Microscopy Olympus DP71 with a × 20 objective. Data
are pooled from three independent experiments. Control, naïve C57BL/6 mice. *, p < 0.05, **, p < 0.01, ***, p < 0.001,
****, p < 0.0001, SP50-treated vs SP50-untreated (None) mice.
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In addition, FoxP3+ cells were also enhanced in SP50 treated mice (Figure 3I).
Collectively, these results reinforce the potential application of CCR4 antagonists

against allergic asthma. In this report, we extended our investigation to allergy model
induced by A. fumigatus and showed that CCR4 antagonists render protection by targeting
Th2 cells.

3.4. The CCR4 Antagonist SP50 Protects a Murine Model of Cystic Fibrosis from Aspergillosis

Based on previous results, we resorted to a murine model of CF challenged with A.
fumigatus and first evaluated the expression of CCR4 and its ligands CCL17 and CCL22
during infection. Both wild-type and CF mice were characterized by an increase in the
levels of CCR4 (Figure 4A) while CCR4 ligands displayed a strain-selective behaviour,
with CCL17 and CCL22 increasing in CF and wild-type mice, respectively (Figure 4B).
This finding is particularly interesting because CCL17 and CCL22 differ in their ligand
binding properties. Indeed, as opposed to CCL17, CCL22 potently and rapidly induce
CCR4 internalization [25]. This would suggest that in CF lungs the chemokine/chemokine
receptor system is kept functional for prolonged times with potential pathogenic effects.
This is in agreement with CCL17 and CCR4 likely playing a critical role in ABPA in
CF [26]. We then evaluated the effect of SP50 in A. fumigatus-induced pathology. As shown
in Figure 4, SP50 reduced fungal burden (Figure 4C), ameliorated lung histopathology
(Figure 4D), and reduced neutrophil infiltration (in the insets of Figure 4D). The levels of
the Th2 cytokines IL-4 and IL-5 were reduced by SP50 (Figure 4E).
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Figure 4. SP50 protects from aspergillosis in a murine model of cystic fibrosis. C57BL/6 and CftrF508del mice were infected
intranasally (in) with A. fumigatus and treated with SP50 administered (5µg/mouse/in) in concomitance with Aspergillus
inoculation. (A) Expression of CCR4 and (B) its ligands CCL17 and CCL22 during infection. (C) CftrF508del mice were
assessed for fungal growth (Log10 CFU) in the lungs at 7 days post-infection (Dpi). In (D) lung histology (periodic acid-Schiff
staining) of A. fumigatus-infected and SP50-treated mice (% of neutrophils in the bronchoalveolar lavage are shown in the
insets). (E) Cytokines were determined in lung homogenates 7 days after the infection by ELISA. Data are pooled from
three independent experiments. Naïve, uninfected and untreated mice. *, p < 0.05, **, p < 0.01, ***, p < 0.001, ****, p < 0.0001,
SP50-treated treated vs untreated (None) mice and Dpi 3 and 10 vs 0.
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These data indicate that CCR4 antagonists may represent a valuable strategy to treat
A. fumigatus infection in CF patients by reducing the allergic inflammatory response that
occurs in the lungs of these patients.

4. Discussion

The results presented in this manuscript expand the potential application of small
molecule CCR4 antagonists to include Aspergillus infection in various clinical scenarios,
ranging from invasive aspergillosis in susceptible host to allergic disorders upon sensi-
tization. In addition, CCR4 antagonists may be used to increase the protective immune
response to vaccination with fungal antigens and to confer protection against subsequent
infection. The ability of CCR4 antagonists to protect against Aspergillus-induced allergic
diseases did not come without expectation. Indeed, based on its predominant expres-
sion in Th2 lymphocytes, CCR4 has long been considered as candidate target for drug
development against allergy and asthma. Indeed, Schuh et al. have demonstrated that
CCR4-deficient mice display a lower airway hyperresponsiveness to A. fumigatus in sensi-
tized mice at later times after conidia challenge, with more efficient clearance of conidia;
reduction in eosinophils; and reduced levels of IL-4, IL-5, and IL-13 [27]. We could confirm
the reduction of eosinophil infiltration and IgE serum level in the presence of a CCR4
antagonist. However, while the study of Schuh et al. did not detect any changes in airway
remodeling in the presence or absence of CCR4, with similar peribronchial fibrosis and
goblet cell hyperplasia [27], we found a reduction in the levels of the mucin MUC5AC,
likely corresponding to an effect towards the resolution of the allergic response. In line
with this result, we could also unravel an effect of the CCR4 antagonist on Th17 cells,
which contribute to airway remodeling in chronic allergic airway inflammation [28]. IL-17
is balanced by IL-10 that works to promote the resolution of inflammation induced by
continuous antigen stimulation. Consistently, our data indicate that reduction of IL-17 by
CCR4 antagonists is paralleled by an increase in IL-10 levels, thus indicating that inhibition
of CCR4 not only prevents Th2 recruitment, but also shift the balance towards a tolerogenic
state. Similar results were obtained in a murine model of CF that we have previously
demonstrated to be more susceptible to Aspergillus infection and allergy, likely because of a
dysregulated Th17/Treg balance, in turn linked to a defective indoleamine-2,3-dioxygenase
activity [29]. In the present study, we demonstrate that the CCR4 antagonist promotes
tolerance in CF mice, by increasing the levels of IL-10 while reducing IL-4, IL-5, and IL-17.
We believe that IL-10 could be contributed from locally differentiated Treg and/or Tr1
cells. As Th17 response and cytokines are reduced in CCR4 antagonists-treated mice, and
that Th17 and Treg responses are reciprocally regulated, it might tilt the balance towards
induced Tregs. In fact, immunofluorescence staining has shown increased Foxp3+ cells in
the lungs of ABPA mice treated with CCR4 antagonist. The identification of source of IL-10
is a subject of future investigation.

The ability of CCR4 antagonists to protect against invasive aspergillosis was less
expected. A previous study in neutrophil-depleted mice demonstrated that the relative
absence of CCR4 protected mice against invasive aspergillosis likely by preventing the
immunosuppressive activities of CCL17 [30]. We used a different model of immunosup-
pression based on the chemotherapeutic drug cyclophosphamide and confirmed that CCR4
inhibition protected mice from invasive aspergillosis. Similar to the allergy model, CCR4
inhibition resulted in a reduction of Th2/Th17-associated cytokines, while the levels of
IL-10 were increased. In addition, we also found an increase in the levels of the Th1 cy-
tokine IFN-γ. This is in line with the previous study in which neutrophil-depleted mice
had increased levels of IL-12 when deficient in CCR4 [30], which may be correlated with
the increased levels of IFN-γ that we observe. Currently, the source of IFN-γ in CCR4
antagonist-treated mice either in Aspergillus infection or allergy models is not known. We
have previously shown that vaccination with CCR4 antagonists also enhances CD8+ cyto-
toxic T cell (CTL) responses to the tumor antigens [31]. Whether vaccination with CCR4
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antagonists in Aspergillus infection or allergy models also induces CTL responses remain to
be determined.

Besides identifying the clinical indications for the application of CCR4 antagonists, it
is important to develop drugs that can progress to clinical trials and be used in patients. In
this manuscript, we have used the compound SP50 [20]. The key findings were confirmed
with novel peptide-based CCR4 antagonists synthesized by a fluorenylmethoxycarbonyl
protecting group (Fmoc)/tert-butyl (tBu) solid-phase peptide strategy, purified and char-
acterized by LC-MS (data not shown). In particular, five sequences have been generated,
with two of them sharing a common chemical motif, proving effective in CCR4 antago-
nism and protection against Aspergillus, and now progressed to sequence optimization
(data not shown).

In conclusion, the present manuscript demonstrates that CCR4 antagonists may be
successfully used to prevent or treat aspergillosis in a variety of clinical settings and
emphasizes the need for alternative drug development strategies for clinical translation.
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