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Hydroxynitrile lyases (HNLs) are powerful carbon–carbon bond forming enzymes. The reverse of their natural
reaction – the stereoselective addition of hydrogen cyanide (HCN) to carbonyls – yields chiral cyanohydrins,
versatile building blocks for the pharmaceutical and chemical industry. Recently, bacterial HNLs have been
discovered, which represent a completely new type: HNLs with a cupin fold. Due to various benefits of cupins
(e.g. high yield recombinant expression in Escherichia coli), the class of cupin HNLs provides a new source for
interesting, powerful hydroxynitrile lyases in the ongoing search for HNLs with improved activity,
enantioselectivity, stability and substrate scope. In this study, database mining revealed a novel cupin HNL
from Acidobacterium capsulatum ATCC 51196 (AcHNL), which was able to catalyse the (R)-selective synthesis
of mandelonitrile with significantly better conversion (97%) and enantioselectivity (96.7%) than other
cupin HNLs.
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Hydroxynitrile lyases (HNLs) catalyse the reversible stereoselective
addition of hydrogen cyanide (HCN) to aldehydes and ketones. Both,
(R)- and (S)-selective HNLs are well-established industrial biocatalysts
for the synthesis of chiral cyanohydrins, which are important building
blocks for pharmaceuticals and agrochemicals [1–3]. Hydroxynitrile
lyases represent a diverse group of mainly plant enzymes with
members in several protein folds [4]: FAD-dependent oxidoreductases,
α/β-hydrolase family, serine carboxypeptidases, Zn2+-dependent alco-
hol dehydrogenases, and very recently, bacterial cupins. They descend
from distinct ancestors and differ in their enantioselectivity, co-factor
dependence and substrate scope [5,6]. For industrial application, in
particular, activity and stability at acidic pH and solvent stability are
desired to reduce the unselective non-enzymatic background reaction.
Further demands made on HNLs are high expression levels in an easy
to handle expression host and a broad substrate scope. Although a lot
of effort has already beenmade to improve and tailor HNLs for industrial
requirements by protein, substrate and reaction engineering [5,7–9],
there is still a clear need for further enhancement of HNLs or discovery
of new HNLs exhibiting improved properties. A new door has recently
opened with the discovery of bacterial hydroxynitrile lyases with a
cupin fold, e. g. GtHNL from Granulicella tundricola, by our group [10,
11]. Cupins are small stable beta barrel proteins, which are ubiquitous
in nature and very diverse in function [12]. In most cupins metal ions
are bound to the active site [13]. Cupin HNLs are characterised by high
expression levels in Escherichia coli and an already remarkable stability
under various conditions, however, so far relatively low activity com-
pared to other HNLs [6,10,11]. The goal of the present study was to
expand the class of cupin HNLs by identifying new members with
higher activity and enantioselectivity and broader substrate scope via
database search. Out of ten chosen targets, one enzyme, AcHNL from
Acidobacterium capsulatum ATCC 51196 exhibited improved activity
and was characterised in more detail.

The basic approach comprised a Basic Local Alignment Search Tool
(BLAST, [14]) search with the sequence of GtHNL (Uniprot: E8WYN5,
[10]) focused on protein sequences originating from acidophilic and/
or thermophilic organisms. The search was restricted to protein se-
quences with identical metal-binding amino acids as GtHNL (His53,
His55, Gln59 and His94). Moreover, only sequences containing His96
and His106 located in the active site (numbering according to GtHNL)
were considered, because previous site-directed mutagenesis studies
showed that they were essential for activity [10]. Out of hundreds of
sequences with high similarity to GtHNL, a set of ten mainly hypotheti-
cal proteins was selected (Table S1) originating from acidophilic and/or
thermophilic bacteria or bacteria with high resistance to environmental
hazards. The respective enzymes share between 38% and 84% sequence
identity with GtHNL (Fig. 1).

The genes were codon optimised for E. coli and ordered as syn-
thetic DNA, recloned into the pET26b(+) expression vector and
transformed into E. coli BL21(DE3) Gold (see Supplemental informa-
tion). Preliminary activity screenings were performed on colony
level towards (R/S)-mandelonitrile. As GtHNL was found to be de-
pendent on manganese [10], the activities of the selected enzymes
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Fig. 1.Multi sequence alignment of CH_1:Methylocella silvestris, CH_2: Acidobacterium capsulatumATCC 51196, CH_3: Acidiphilium cryptum JF-5, CH_4: Paenibacillus sp. JDR-2, CH_5: Deinococcus deserti, CH_6: Burkholderia phymatum STM815, CH_7:
SinorhizobiummedicaeWSM419, CH_8: Bradyrhizobium sp.WSM471, CH_9: Alicyclobacillus acidocaldarius subsp. acidocaldarius Tc-4-1, and CH_10: Caldicellulosiruptor saccharolyticusDSM8903withGtHNL. The alignment was generatedwith Clustal
W [15] and visualized with the programme ESPript 3.0 [16].
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Fig. 3. SDS-PA gel of cleared lysates (~10 μg) of CH_2 (pH 7.0, lane 1 as reference) and sol-
uble fractions of CH_2 after incubation of the cleared lysates in 100mM citrate phosphate
buffer for 30 min and subsequent centrifugation, pH 3.0 (lane 2), 3.5 (lane 3), 4.0 (lane 4),
4.5 (lane 5), 5.0 (lane 6), 5.5 (lane 7) and 100 mM MES oxalate buffer pH 5.6 (lane 8).
(CH_2 monomer: 14.1 kDa), St.: PageRuler Prestained Protein Ladder.
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expressed with and without various bivalent ions in the expression
media were compared. As expected, all enzymes were able to cleave
the substrate in the presence of MnCl2 (Fig. 2), however to a different
extent. The addition of other metal ions (Cu2+, Co2+, Zn2+, Ni2+,
Fe2+) to the media did not show any impact on the activity (data
not shown). In comparison to GtHNL especially the enzyme from
A. capsulatum ATCC 51196 (CH_2) developed stronger blue spots
on the HCN-sensitive detection paper after the same period of time.

In accordance with the screening results, all target enzymes except
CH_8 were expressed in high yield as soluble proteins in E. coli (~50%
of total soluble protein) (Figure S1).

As the chemical background reaction is significantly reduced at low
pH, an “ideal” HNL should exhibit high stability and activity at low pH.
Hence, the cyanogenesis activity of E. coli lysate containing the
expressed enzymes was tested at pH 3.5, 4.0, 4.5 and 5.0 in 100mM so-
dium oxalate buffer or citrate phosphate buffer or at pH 5.6 in 100 mM
MES oxalate buffer. All HNLs (except expectedly CH_8) were active at
pH 5.0 or higher to variable degrees and also at pH 4.5 the enzymes ex-
hibited low activity; especially CH_2 showed a promising signal at
pH 4.5. No activity was detected at pH 3.5 (data not shown).

Subsequently, the stability of CH_2 at different pH valueswas exam-
ined by incubation of cleared CH_2 lysate in the respective buffers. In ac-
cordancewith the results from the assay, the SDS-PA gel revealed that at
pH 4.5 most of CH_2 was still found in the soluble fraction (Fig. 3); the
amount, however, decreased significantly at lower pH values.

The enzymes were investigated for their ability to catalyse the syn-
thesis of mandelonitrile from benzaldehyde and HCN (Table 1). Only
CH_6 did not show any conversion of benzaldehyde after 24 h. Three
candidates, CH_1, CH_3 and CH_4 were slightly better than GtHNL and
reached about 97% conversion with enantiomeric excesses (ee) be-
tween 90.2 and 93.1%. Remarkably, CH_2 showed nearly full conversion
(99.5%) after 24 h with a very high ee (R) of 96.7%. Furthermore, a high
conversion of benzaldehyde (94%) and an ee of 96.6% were achieved al-
ready after 8 h reaction time. Importantly, the ee was stable during the
whole course of the reaction.

The structure of GtHNL, which was solved recently [10,18],
indicates that the active site of the enzyme is located in a large
cavity, which should provide enough space to bind bulky sub-
strates. Thus, the new cupin-HNLs were examined in the synthesis
of 3-phenoxybenzaldehyde cyanohydrin. Seven out of nine en-
zymes showed weak or no activity in the synthesis of 3-
phenoxybenzaldehyde cyanohydrin (data not shown). But, very
interestingly, two enzymes exhibited notable activity (Table 2).
Although the conversion was higher with CH_7, excellent
enantioselectivity was only obtained with CH_2 (N99.9% after 1
and 4 h).

As for none of the chosen target proteins, 3D structures are available,
models were build using the SWISS-MODEL protein structure
homology-modelling server [19] and the structure ofGtHNL as template
[10] to be able to identify differences in the active site. Structural align-
ment in Pymol and cavity analysis using parts of the programme VASCo
[20] and a LIGSITE algorithm [21] revealed that there are hardly any
Fig. 2. Influence of MnCl2 addition on the cyanogenesis activity. The assay was performed with
plemental information) using 12 mM (R/S)-mandelonitrile in 100 mM citrate phosphate buff
rows: activity of cupin HNLs expressed in the presence of 100 μM MnCl2. Negative control: pE
significant differences in the size and the shape of the cavities in the dif-
ferent target proteins. This is not unexpected as many of the active site
amino acids (V42, F44, L61, H96, H106 and W120, numbering refers to
GtHNL) are identical (Fig. 1, and S2A). The positions A40 and Q110 are
less conserved. Moreover, CH_2 contains a valine at position 25,
where an isoleucine is found in most other cupin HNLs creating a little
bit more space for bulky substrates. In CH_7 a leucine is found at the re-
spective position (Figure S2B).

Considering the results obtained so far, it was decided to choose
CH_2 from A. capsulatum ATCC 51196 (subsequently renamed AcHNL)
for a more detailed analysis concerning its substrate scope. For this pur-
pose the industrially relevant substrates 2-chlorobenzaldehyde, 3-
phenylpropanal and 3-phenylprop-2-enal were tested. However, only
low conversion (10–20% above the background reaction after 24 h)
and no or very low ee (b20%) were observed (data not shown).

For a more detailed analysis, AcHNL (expressed in the presence or
absence of MnCl2, subsequently named AcHNL+Mn and AcHNL-Mn)
was purified by anion-exchange chromatography and subsequent
size-exclusion chromatography. The elution profile of AcHNL is identical
toGtHNL (Figure S3). Thus,we can assume that AcHNL is a tetramer as it
was observed in theGtHNL structure [10]. Themetal contents of the pu-
rified proteins were determined by inductively coupled plasma/optical
emission spectroscopy. Without addition of MnCl2 to the medium
0 mol% manganese and only traces of iron (6.3 mol%) and zinc
(4.6 mol%), which are generally present in LB medium, were found
per metal-binding site. In contrast, the expression of AcHNL in LBmedi-
um supplemented with 100 μMMnCl2 led to a loading of 70 mol%man-
ganese per metal-binding site. Both enzyme preparations were tested
an adapted version of the colony HNL-assay developed by Krammer et al. [17] (see sup-
er, pH 3.5. Upper two rows: activity of cupin HNLs expressed without MnCl2; lower two
T26b-vector; positive control: GtHNL. The numbering refers to CH_1–10.
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Table 1
Stereoselective conversion of benzaldehyde to (R)-mandelonitrile in the presence of
CH_1–10.

8 h 24 h

Enzymea Conv. [%] ee [%] Conv. [%] ee [%]

CH_1 77.3 93.3 97.6 93.1
CH_2 94.0 96.6 99.5 96.7
CH_3 76.2 92.3 97 92.3
CH_4 77.5 90.8 97 90.2
CH_5 36.9 79.2 75.7 78.5
CH_6 ND ND ND ND
CH_7 53.9 86.7 69.6 81.8
CH_9 75.3 81.7 96.1 81.2
CH_10 5.2 16.7 18.4 11.9
GtHNL 57.3 89.0 91.9 88.9
BpHNL 83.1 95.0 96.6 94.9
pET26b(+) ND ND 10.4 0.1

Reaction conditions: Two-phase system comprising 2 mL MTBE containing 2 M HCN and
0.5 M benzaldehyde and 1 mL concentrated cleared lysates (45 mg/mL, pH 4), 1000 rpm,
5 °C.
ND: not determined due to the low conversion.

a 100 μM MnCl2 added to expression medium.

Fig. 4. Conversion of benzaldehyde by purified AcHNL. Reaction conditions: Two-
phase system comprising 1 mL MTBE containing 2 M HCN and 0.5 M benzaldehyde
and 0.5 mL purified AcHNL expressed ± MnCl2 (11.8 mg/mL, pH 4), 1000 rpm, 5 °C.
Green: AcHNL+Mn, purple: AcHNL-Mn, solid lines: conversion, dashed lines: ee.
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for mandelonitrile synthesis. Purified AcHNL+Mn showed 97.3% conver-
sion and 94.7% ee (R) after 24 h (Fig. 4). This is significantly higher than
values obtained previously for purified GtHNL, for which a large differ-
ence in the activity of lysate and purified enzymewas observed (50% con-
version with 89.3% ee after 24 h using 18 mg/mL of protein in otherwise
identical reaction conditions), which was attributed to the stabilizing ef-
fect of the lysate [10]. The only slightly decreased conversion and enantio-
meric excess obtained with purified AcHNL in comparison to the
concentrated lysate (99.5% conversion and 96.7% ee (R) after 24 h) can
be also explained by the lower amount of enzyme present in the reaction
(~22.5 mg/mL of cupin in cleared lysate, compared to 11.8 mg/mL of pu-
rified enzyme). As expected, AcHNL expressed without manganese addi-
tion, exhibited only 35.3% conversion and a strongly decreased ee (R) of
35.8% after 24 h confirming the manganese-dependence of cupin HNLs.

The activity of purified AcHNL+Mn in the cyanogenesis of (R)-
mandelonitrile was examined spectrophotometrically at pH 4.0,
pH 4.5, pH 5.0 (sodium oxalate buffer) and pH 5.5 (MES oxalate
buffer) by following the formation of the product benzaldehyde
at 280 nm (see Supplemental information and Table S2). The en-
zyme displayed a specific activity of 0.69 ± 0.02 U/mg at pH 5.5.
At pH 5.0, AcHNL exhibited a slightly decreased specific activity
of 0.63 ± 0.06 U/mg, whereas a further drop of the pH to 4.5 led
to a significant decrease of the specific activity with 0.12 ±
0.02 U/mg which can be attributed to a partial denaturation of
the enzyme which was visible as faint cloudiness after the mea-
surement in the wells of the microtitre plate. At pH 4.0 the enzyme
was clearly precipitated during the measurement and thus,
reliable data evaluation was not possible. Kinetic measurements
of purified AcHNL+Mn (0.5 mg/mL) were performed in sodium
oxalate buffer, pH 5.0, in a substrate concentration range between
3 and 30 mM, which revealed a Km of 4.2 ± 0.8 mM and a
Table 2
Conversion of 3-phenoxybenzaldehyde.

Reaction conditions: Two-phase system comprising 1 mL MTBE containing 2 M HCN and
0.5 M 3-phenoxy-benzaldehyde and 0.5 mL concentrated cleared lysates (45 mg/mL,
pH 4), 1000 rpm, 5 °C.
a 100 μM MnCl2 added to expression medium.
turnover number kcat of 9.5 s−1, corresponding to a specific activ-
ity of 0.71 ± 0.035 U/mg at vmax.

In summary, a novel manganese-dependent bacterial HNL from
A. capsulatum ATCC 51196 was discovered by database mining. Com-
pared to other cupin HNLs it shows higher conversion and an excellent
enantioselectivity in the synthesis of (R)-mandelonitrile.

For additional experimental procedures refer to supplemental
information.
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