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Influenza is an acute respiratory disease and a major health problem worldwide. Since mucosal immunity
plays a critical role in protection against influenza virus infection, mucosal immunization is considered a
promising vaccination route. However, except for live-attenuated vaccines, there are no effective killed or
recombinant mucosal influenza vaccines to date. Outer membrane vesicles (OMVs) are nano-sized
vesicles produced by gram-negative bacteria, and contain various bacterial components capable of
stimulating the immune system of the host. We generated an OMV with low endotoxicity (fmOMV) by
modifying the structure of the lipid A moiety of lipopolysaccharide and investigated its effect as an intra-
nasal vaccine adjuvant in an influenza vaccine model. In this model, fmOMV exhibited reduced toll-like
receptor 4-stimulating activity and attenuated endotoxicity compared to that of native OMV. Intranasal
injection of the vaccine antigen with fmOMV significantly increased systemic antibody and T cell
responses, mucosal IgA levels, and the frequency of lung-resident influenza-specific T cells. In addition,
the number of antigen-bearing CD103+ dendritic cells in the mediastinal lymph nodes was significantly
increased after fmOMV co-administration. Notably, the mice co-immunized with fmOMV showed a
significantly higher protection rate against challenge with a lethal dose of homologous or heterologous
influenza viruses without adverse effects. These results show the potential of fmOMV as an effective
mucosal adjuvant for intranasal vaccines.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Influenza is an acute respiratory disease caused mainly by influ-
enza A and B viruses and has been a major health problem, world-
wide. Due to the segmented RNA genome structure, the viruses
frequently and constantly alter their antigenic characteristics,
and consequently change their infectivity and pathogenicity. To
cope with these diverse strains or subtypes, influenza vaccines
need to induce cross-reactive immune responses capable of cover-
ing a wide range of subtypes. The use of adjuvants, such as alum
and MF59, improves the potency of the vaccine in terms of breadth
and the magnitude of immune responses to the vaccine antigens
[1,2]. Therefore, efficacious adjuvants could be a breakthrough
for the development of a ‘universal’ influenza vaccine.

Mucosal immunization has been considered a promising route
of the vaccine delivery because it efficiently induces strong muco-
sal immunity, resulting in a more efficient defense against mucosal
infections compared to a systemic immune response [3,4]. Among
diverse mucosal routes, intranasal delivery is particularly advanta-
geous in eliciting the strongest respiratory immune response,
which plays a critical role in the protection against respiratory
infections such as influenza [5]. Two intranasal influenza vaccines,
FluMist and NASOVAC, are currently available and both consist of
attenuated-live viruses. In addition to these licensed vaccines,
many studies have revealed the possibility of protein-based intra-
nasal vaccination against respiratory pathogens such as Streptococ-
cus pneumoniae and respiratory syncytial virus [6,7]. However, no
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approved intranasal adjuvant, capable of enhancing the immuno-
genicity of protein-based or killed-virus vaccine antigens, has been
developed to date.

Outer membrane vesicles (OMVs), which are naturally pro-
duced nano-sized vesicles from Gram-negative bacteria, contain
various bacterial components such as lipopolysaccharide (LPS),
lipoproteins, flagellin monomers, and bacterial DNA fragments
[8]. Due to the nature of these components, OMVs can stimulate
the host immune system through innate immune receptors,
including toll-like receptors (TLRs) and NOD-like receptors (NLRs)
[9]. In recent studies, intramuscular injection of OMV with irrele-
vant antigens enhanced antigen-specific humoral and cellular
immune responses, and increased the protection rate against
tumor and virus challenges [10,11]. However, in order to use OMVs
as vaccine adjuvants or delivery vehicles, the safety of this system
must be addressed because LPS in OMVs may excessively provoke
innate immune responses and lead to endotoxicity.

In this study, we generated a novel OMV with attenuated endo-
toxicity (fmOMV) by modifying the structure of the lipid A moiety
of LPS and investigated the safety and efficacy of fmOMV as a
mucosal vaccine adjuvant using an influenza vaccine model.
fmOMV exhibited attenuated endotoxicity compared with native
OMV (nOMV), and intranasal injection of vaccine antigens with
fmOMV significantly enhanced both systemic and mucosal
immune responses. Furthermore, co-administration of fmOMV
provided protective immunity against homologous and heterolo-
gous virus challenge, suggesting the potential of fmOMV as an
effective mucosal adjuvant for intranasal vaccines.
2. Methods

2.1. Modification and purification of OMVs

fmOMV was purified as described previously with slight modi-
fications [12]. Briefly, the Escherichia coli W3110 DmsbB/DpagP
strain [13] was transformed with pWSK29-LpxF plasmid, which
encodes lipid A 40-phosphatase, and cultured in LB broth at 37 �C.
The culture broth was filtered using a 0.22-lm pore-sized filter
(Merck, NJ) and precipitated in a 390 g/l ammonium sulfate solu-
tion. After resuspending the pellets, the suspension was cen-
trifuged again at 16,000g. The crude fraction was further purified
by performing sucrose-gradient ultracentrifugation. nOMV was
similarly prepared except the transformation procedure.

2.2. Analysis of lipid A

The composition of lipid A on fmOMV was analyzed as
described previously [14]. Briefly, cultured E. coli cells were incu-
bated in the presence of 5 lCi/ml of 32Pi at 37 �C for 3 h. After col-
lecting and washing the cells by centrifugation, the pellet was
dissolved in a chloroform/methanol/water (1:2:0.8, v/v) solution.
The insoluble fraction was collected and hydrolyzed in 12.5 mM
sodium acetate (pH 4.5) containing 1% SDS at 100 �C for 30 min.
A mixture of methanol and chloroform was added to make the
ratio of chloroform/methanol/water 2:2:1.8 (v/v). The lower phase
was dried and then 1000 cpm of the sample was run on a Silica Gel
60 TLC plate. The plate was visualized using an FLA-7000 image
analyzer (Fujifilm, Tokyo, Japan).

2.3. TLR signaling assay

HEK-BlueTM cell lines expressing mouse TLR2, TLR4, or TLR5
(InvivoGen, San Diego, CA, USA) were cultured in RPMI1640 media
(Life Technologies, Carlsbad, CA, USA) supplemented with 10% fetal
bovine serum (FBS; GE Healthcare, Little Chalfont, UK) and 1X
antibiotics (Life Technologies). After resuspending 5 � 104 cells in
HEK-BlueTM Detection media (Life Technologies), each cell line
was treated with nOMV, fmOMV, or control reagents; Pam3Cys-
Ser-(Lys)4 (Pam3; Merck Millipore, Billerica, MA, USA), LPS (Invivo-
Gen), or flagellin (InvivoGen). After 24-h incubation, the activity of
secreted alkaline phosphatase was determined.

2.4. Mice

Six- to eight-week-old C57BL/6 female mice were purchased
from KOATECH (Korea) and kept in a specific pathogen-free, biosaf-
ety level-2 facility at Korea Research Institute of Bioscience and
Biotechnology (KRIBB). All animals were treated in accordance
with the guidelines established by the Institutional Animal Use
and Care Committee of KRIBB.

2.5. Viruses

Influenza A/California/04/2009 (pandemic H1N1, pH1N1), influ-
enza A/Puerto Rico/8/1934 (H1N1, PR8) and influenza A/aquatic
bird/Korea/CN2-MA/2009 (H5N2) viruses were cultivated in the
allantoic cavities of embryonated chicken eggs. Viruses were
titrated by calculating the 50% egg infectious dose (EID50) and
stored at �80 �C until use.

2.6. Immunization and challenge

Mice were immunized intranasally with the trivalent split
influenza vaccine antigen containing A/California/7/2009 (H1N1),
A/Victoria/361/2011 (H3N2), and B/Massachusetts/2/2012 (0.8 lg
of each subtype HA/mouse, Green Cross, Korea) twice at a two-
week interval. Purified fmOMV (1 to 10 lg/head) or cholera toxin
(CT; List Biological Laboratories, CA) was mixed with the vaccine
antigen immediately before injection. The total injection volume
was adjusted to 30 ll/mouse by using PBS. Two weeks after the
second injection, the mice were challenged with a 10 LD50 of
pH1N1, PR8, or H5N2 influenza virus. The body weight and mortal-
ity rates were monitored for two weeks. A humane endpoint of 20%
weight loss was used for this challenge study.

2.7. Antigen uptake and flow cytometry

DQTM Ovalbumin (DQ-OVA) (40 lg/head; ThermoFisher Scien-
tific, MA) was delivered intranasally into the lungs in the presence
or absence of fmOMV (3 lg/head). After 24 h, mediastinal lymph
node (mLN) cells were resuspended in FACS buffer (PBS containing
0.1% bovine serum albumin and 0.01% sodium azide) and incu-
bated with Fc-block (anti-CD16/CD32; eBioscience, CA). After
washing, the cells were stained with fluorescence dye-conjugated
anti-CD11b, CD11c, Gr-1, CD80, and CD103 antibodies (eBio-
science). Samples were acquired on GalliosTM (Beckman Coulter,
CA) and data were analyzed using FlowJo software (Tree Star, OH).

2.8. Enzyme linked-immunosorbent assay (ELISA)

Two and four weeks after the first immunization, serum and
bronchoalveolar lavage fluid (BALF) samples were analyzed for
antigen (Ag)-specific IgG and IgA by enzyme linked-
immunosorbent assay. ELISA plates (ThermoFisher Scientific) were
coated with vaccine antigen (200 ng/well) and then incubated with
the samples. After sequential incubation with peroxidase goat anti-
mouse total IgG and IgA (Cell Signaling Technology, MA), 3,30,5,50-
tetramethylbenzidine substrate (BD Bioscience, CA) was added to
each well. The optical density was measured at a 450 nm wave-
length by using VICTOR3TM (PerkinElmer, MA). To determine the
HA stalk-specific Abs, HA419-473 from PR8 and HA379-473 from
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pH1N1 polypeptides were expressed in E. coli and used as coating
antigens in a subsequent ELISA.

2.9. Hemagglutination inhibition assay

For the hemagglutination inhibition (HI) assay, sera were pre-
treated with receptor-destroying enzyme (RDE; Denka Seiken,
Japan) and diluted with PBS. The pH1N1 virus was diluted with
4-HA unit and then mixed with RDE-treated sera for 30 min in
U-bottom 96-well plates (SPL Life Sciences, South Korea). A chicken
red blood cell suspension (0.5%) was added to each well. The test
endpoint was determined by visual inspection for an agglutination
reaction.

2.10. Enzyme-linked immunospot (ELISPOT) assay

The frequency of influenza-specific IFN-c-producing cells was
determined using a mouse IFN-c ELISPOT set (BD Biosciences).
Briefly, total splenocytes (5 � 105 cells/well) were stimulated with
inactivated pH1N1 virus on ELISPOT plates coated with IFN-c cap-
ture antibody. Forty hours later, the plates were washed and
sequentially incubated with biotinylated IFN-c detection antibody
and HRP-conjugated streptavidin. After adding AEC (3-amino-9-
ethyl-carbazole) substrate, spots were counted using the BioSpot
analyzer (Cellular Technology, OH).

2.11. Virus titration

Viral RNAs were extracted from the lung homogenate mixtures
using the RNeasy Mini Kit (QIAGEN, CA) following the manufac-
turer’s protocol. Real time reverse transcriptase-polymerase chain
reaction (RT-PCR) was performed using the QuantiTect Probe RT-
PCR Kit (QIAGEN) and the Roche Lightcycler 96 system. The matrix
(M) gene-specific primer (forward: 50-GACCRATCCTGTCACCTCT
GAC-30; reverse: 50-AGGGCATTYTGGACAAAKCGTCTA-30) and
specific probe (50-FAM-TGCAGTCCTCGCTCACTGGGCACG-BHQ-1-30)
were used.

2.12. Statistical analysis

Statistical differences among groups were assessed using a two-
tailed Student’s t-test or a log-rank test with Prism software
(GraphPad Software, CA). p < 0.05 was considered to be statistically
significant.

3. Results

3.1. fmOMV presents attenuated TLR4-stimulating activity and lower
endotoxicity compared with nOMV

The endotoxicity of LPS is highly related to the structure of the
lipid A moiety, particularly the degree of acylation [15,16]. Previ-
ously, we generated an E. coliW3110DmsbB/DpagP strain that pro-
duces LPS, on which lipid A is penta-acylated [13]. In order to
further attenuate the endotoxicity of E. coli LPS in this study, we
introduced lpxF, a lipid A 40-phosphatase from Francisella novicida
(Fig. 1A) [17,18]. The size of purified fmOMV was similar to that
of nOMV, ranging from 50 to 150 nm in diameter and its morphol-
ogy was spherical (Table 1 and Fig. 1B). In addition, both OMVs had
similar zeta potential values of approximately �13.5 mV (Table 1).
Interestingly, when fmOMVwas tested for the activation of diverse
TLRs in vitro, it triggered significantly reduced TLR4 signaling com-
pared to that induced by nOMV (p < 0.001–0.005), whereas both
OMVs activated TLR2 and TLR5 to a similar extent (Fig. 1C). In
agreement with this in vitro result, fmOMV showed significantly
lower endotoxicity than nOMV following delivery into mice. While
nOMV resulted in significant weight loss and red consolidation in
the lung tissue 2 or 3 days after intranasal administration, fmOMV
caused milder weight loss and inflammation in the lungs
(Fig. 1D and E). Notably, 1 lg of fmOMV did not cause body weight
loss or pulmonary inflammation. These data indicate that fmOMV
carrying penta-acylated and mono-phosphorylated lipid A species
reduced TLR4-stimulating activity in vitro and significantly atten-
uated endotoxicity in vivo compared with nOMV.

3.2. Co-administration of fmOMV increases systemic antibody and T
cell responses

Previously, it has been shown that co-immunization of OMV
increased the antigen-specific immune response to co-delivered
antigens in intramuscular vaccination models [11,13]. To investi-
gate whether the intranasal delivery of fmOMV effectively induces
strong antigen-specific immune responses, we injected influenza
vaccine antigens with various doses of fmOMV (1.0–10 lg)
intranasally. Two weeks after the second immunization, the
influenza-specific IgG response was significantly higher in all three
groups that were administered with fmOMV compared to that of
the vaccine-alone group (p = 0.0023, 0.0009, and 0.0018, respec-
tively) and was comparable to that of the CT-treated group
(p = 0.674, Fig. 2A). The antibody titers of both IgG1 and IgG2c also
significantly increased in mice co-injected with fmOMV and the
vaccine (p < 0.001–0.05, Fig. 2B). IgG1 and IgG2c titers exhibited
an inverse relationship with escalating fmOMV dose; although
the IgG1 titer decreased (Fig. 2B, left panel), the IgG2c titer
increased (Fig. 2B, right panel). Consistent with the serum IgG
response, HI activity against pH1N1 virus was significantly
higher in fmOMV-co-immunized groups (1.0 and 3.0 lg of
fmOMV) compared to that of the vaccine alone-immunized
group (Fig. 2C). Since cell-mediated adaptive immunity also con-
tributes to protection against influenza infection [2,19], we mea-
sured the frequency of the influenza-specific IFN-c-secreting T
cells. Notably, only 1.0 lg of fmOMV significantly enhanced the
antigen-specific T cell response, whereas the T cell response in
the 3 and 10 lg-fmOMV-injected groups were comparable to that
of vaccine-alone injected group (Fig. 2D). Collectively, intranasal
administration of fmOMV was shown to enhance systemic
humoral and cellular responses to an influenza vaccine.

3.3. Co-administration of fmOMV activates respiratory CD103+ DCs
and increases local antibody and T cell responses in the lungs

To verify that co-administration of fmOMV modulates immune
responses in the respiratory mucosa, the level of influenza-specific
antibodies in the BALF samples was determined. The dose of
fmOMV was fixed to 1 lg because this amount of fmOMV was suf-
ficient to increase the levels of antibody and T cell responses with-
out resulting in toxicity in vivo (Figs. 1B–D and 2). Consistent with
serum IgG levels (Fig. 2A), fmOMV significantly increased antigen-
specific IgG levels in the BALF (p = 0.0105, vs. vaccine alone, Fig. 3A,
left panel). In addition, secretory IgA in the BALF, which plays an
important role in the protection against mucosal infection [20],
dramatically increased in the fmOMV-injected group compared
with that of the vaccine-alone immunized group (Fig. 3A, right
panel). fmOMV co-administration also significantly enhanced
influenza-specific T cell responses in the lungs (p = 0.0015, Fig. 3B).
Since fmOMVs contain diverse TLR ligands such as LPS and lipopro-
teins, which can stimulate antigen-presenting cells (APCs) [8], we
examined the change in DCs in mLNs after treatment with fmOMV
and DQ-OVA model antigen. The DC population in the mLNs dra-
matically increased after intranasal administration of DQ-OVA
+ fmOMV as compared to that of DQ-OVA treatment alone (3.21
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vs. 0.72%, Fig. 3C, left panel). This indicates active migration of DCs
from the tissue to the draining LNs by fmOMV administration. In
addition to the increase in number, the DCs in the mLNs exhibited
high levels of DQ-OVA signal or antigen uptake and up-regulation
of CD80 (Fig. 3C, left panel). CD103+ DCs are critical for the induc-
tion of immune responses in the respiratory tract [21,22]. The



Table 1
Analysis of OMVs.

Vesicle size (mean diameter; nm) Zeta potential (mV)

nOMV 108 ± 70 �15.8
fmOMV 119 ± 65 �11.4
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CD103+ population in CD11blo/intCD11chi lung cells increased more
than 2-fold through fmOMV administration (53% and 22% in
fmOMV-co-injected and DQ-OVA alone-injected groups, respec-
tively, Fig. 3C, left panel). The activated phenotype of DCs was
not observed in the non-draining subiliac LNs (Fig. 3C, right panel),
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indicating that fmOMV affected DCs at the local delivery site. These
data show that intranasal vaccination with fmOMV activates
CD103+ DCs in the lungs and enhances both antibody and T cell
responses in the respiratory mucosa.

3.4. Co-administration of fmOMV provides strong protective immunity
against homologous and heterologous influenza virus challenge

Given that fmOMV efficiently elicit both mucosal and systemic
antigen-specific immune responses, we next examined the
protective efficacy of vaccination with fmOMV by challenging mice
with a lethal dose of influenza virus. When a 10LD50 dose of pH1N1
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virus was intranasally administered, the fmOMV-co-immunized
mice did not lose body weight and demonstrated a 90–100% sur-
vival rate for all three groups (p = 0.0001 and 0.0008, Fig. 4A). Lung
virus titer was also significantly reduced by vaccination with
fmOMV (p = 0.07084 and 0.00037 on DPI 4 and 7, respectively,
Fig. 4B). To verify that fmOMV-co-immunization conferred cross-
protective immunity, a requirement for influenza vaccines, we
challenged the mice with PR8 and H5N2 viruses and monitored
the body weight loss and survival rate. Although the body weight
decreased by about 15% up to day 7 after the challenge with PR8
virus, the mice showed a gradual recovery in body weight and
exhibited a 87.5% survival rate (p = 0.0055, Fig. 4C). Similarly, when
the mice were challenged with H5N2 virus, the fmOMV-co-
immunized group exhibited a significant increase in the survival
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rate (87.5%, p = 0.0008, Fig. 4D). Even though fmOMV significantly
enhanced influenza-specific adaptive immune responses and pro-
tective immunity against viral infection, it is possible that fmOMV
contributed to the protective efficacy of the vaccine by inducing
innate immune responses in the respiratory tract [23–26]. To verify
if innate immunity contributed to the observed protective efficacy,
mice were injected with different doses of fmOMV alone (ranging
from 1 to 10 lg) in the absence of an influenza vaccine antigen and
challenged 2 weeks later with 10 LD50 of pH1N1 virus. From day 3
post infection, all mice began to lose body weight irrespective of
the fmOMV dose, which resulted in most of them dying between
day 7 and 8 post infection (Fig. 4E). Survivors were only detected
in the group given 10 lg of fmOMV for which a 50% survival rate
was observed. However, the survival rate of this group was not sta-
tistically significant when compared with that of the PBS group
(p = 0.2363), indicating that innate immunity is not involved in
the protective efficacy observed after co-administration of fmOMV
as an adjuvant. Therefore, these data, together with the previous
results showing enhanced adaptive immune responses (Figs. 2
and 3), demonstrate that vaccination with fmOMV provided broad
protective efficacy against homologous and heterologous influenza
viruses based on adaptive immune responses.

3.5. Co-administration of fmOMV provides both immediate and long-
lasting protective immunity

Since influenza viruses constantly change their antigenic char-
acteristics, some mutants or new variants may be highly infectious
and transmissible as exemplified by pH1N1 in 2009 [27,28]. For the
control of these highly infectious variants or prevention of mass
infection, influenza vaccines need to provide immediate protective
immunity and long-term memory immune responses. To check
whether the fmOMV-adjuvanted vaccine meets these require-
ments, we first vaccinated the mice once, and challenged them
with a lethal dose of pH1N1 virus 2 weeks later. Vaccination with
fmOMV significantly increased the survival rate, whereas vaccine
alone failed to protect the mice (p = 0.0004, Fig. 5A). In terms of
long-term efficacy, the mice were challenged with a lethal dose
of influenza virus (10LD50), 20 weeks after the booster immuniza-
tion. The fmOMV-co-immunized group exhibited a similar survival
rate compared to that of the CT-co-immunized group (Fig. 5B);
indicating that co-administration of fmOMV conferred prolonged
protective immunity. These data show that intranasal vaccination
with fmOMV induces both immediate and prolonged protective
immunity, suggesting that fmOMV could be a useful vaccine adju-
vant in a pandemic situation.
4. Discussion

With the constant emergence of fatal respiratory viral diseases,
such as the highly pathogenic influenza and Middle East respira-
tory syndrome, the requirement for efficacious vaccines is increas-
ing. Owing to its efficacy and feasibility, intranasal administration
is an attractive method to deliver vaccines against respiratory
viruses as exemplified by influenza vaccine. [5,29,30]. Therefore,
it is a promising approach to develop a novel mucosal adjuvant
that can potentiate the vaccine-induced immunity in the
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respiratory tract. In this study, we demonstrated the effect of
fmOMV as an intranasal vaccine adjuvant using the influenza vac-
cine system.

OMVs show potential as vaccine adjuvants because of their
immunostimulatory activity. In terms of safety, however, native
OMVs cannot be applied for vaccination because they contain fully
endotoxic LPS, which induces excessive immune activation and
inflammation [31]. The endotoxicity of LPS is closely related to
the degree of acylation of the lipid A moiety [15,16,32]. Therefore,
in this study, we generated an msbB- and pagP-deletion strain
(Fig. 1A) lacking the acyltransferase and palmitoyltransferase
required for the maximum acylation of lipid A. In addition, we
introduced the lpxF gene, which encodes lipid A 40-phosphatase,
to further attenuate the endotoxicity of LPS by generating mono-
phosphoryl lipid A (Fig. 1A) [17]. As expected, fmOMV produced
from the genetically engineered E. coli showed much greater atten-
uation than nOMV in terms of TLR4-stimulating activity in vitro
and toxicity in vivo (Fig. 1C–E). This approach agrees well with
the development of the mono-phosphoryl lipid A adjuvant for wide
range of human vaccines [33].

Lung-residential DCs, in particular CD103+ DCs, play a pivotal
role in the induction of mucosal and systemic immune responses
against an influenza infection [21,34,35]. These DCs take up viral
antigens and migrate to draining LNs where they initiate adaptive
immune responses. In this study, we observed a substantial
increase in the CD11bloCD11chiCD103+ population in the mLNs
after 24 h of fmOMV treatment (Fig. 3C). The DCs from fmOMV-
injected mice also showed an increased level of activation markers
and antigen uptake signals, suggesting that fmOMV stimulated
CD103+ DCs in the lungs, leading to an enhanced adaptive immune
response and consequently an increase in vaccine efficacy. The
mechanism by which fmOMV modulates the function of APCs
in vitro and in vivo is currently under investigation.

In this study, we observed increased protective immunity
against heterologous influenza viral infection in the fmOMV-
injected group compared to that in the group immunized with
vaccine alone (Fig. 4C and D). Many adjuvants or vaccines targeting
T cell responses have been shown to induce cross-reactive T cell
responses and provide protective immunity to heterologous influ-
enza infection [36–39]. In addition to T cell responses, broad-
specific neutralizing antibodies are known to be cross-protective
[40,41]. Serum samples from fmOMV-co-immunized mice weakly
bound to HA-stalk antigens in ELISA, suggesting that fmOMV did
not efficiently induce an HA stalk-specific antibody response (data
not shown). Because the IFN-c response was significantly increased
in the fmOMV-infected group (Figs. 2D and 3B), it appears that the
enhanced T cell response mainly contributed to the increased sur-
vival rate in the fmOMV-co-immunized group. Even though the
differences in survival rates between the groups challenged with
heterologous viruses (PR8 and H5N2) and the one challenged with
homologous virus (pH1N1) were not statistically significant (87.5%
vs. 100%, respectively; p = 0.3173), body weight in the groups
receiving a heterologous virus challenge tended to decline more
during the early phase of infection when compared with the group
receiving a homologous virus challenge (Fig. 4C and D, upper pan-
els vs. Fig. 4A, left panel). These observations suggest that a cross-
reactive T cell response, rather than a cross-reactive neutralizing
antibody response, contributed to the clearance of virus presum-
ably by removing infected cells during the late phase of infection.

The CT-injected group clearly showed a reverse correlation
between IgG1 and IgG2c titers (Fig. 2B), and this observation
agrees well with the fact that CT is a potent Th2-biased adjuvant
[42–44]. fmOMV simultaneously increased IgG2c and decreased
IgG1 titers, indicating that fmOMV promotes Th1-dominant
immune responses (Fig. 2B). This observation can be further sup-
ported by the fact that fmOMV has strong Th1-stimulating compo-
nents such as LPS, flagellin, and bacterial DNA fragments
containing CpG motifs [8,9]. Nevertheless, it was unexpected that
increasing the dose of fmOMV down-regulated the antigen-
specific IFN-c response (Fig. 2D). One possible explanation for this
is that over-activation of APCs, especially DCs, may negatively reg-
ulate antigen-specific T cell responses by secreting IFN-c and, in
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turn, induce the expression of indoleamine-2,3-dioxygenase (IDO).
Although IDO is well known to suppress T cell responses by deplet-
ing tryptophan [45,46], B cell responses appear not to be as sensi-
tive to this mechanism as T cell responses. Rather, IDO has shown
an activating role during Th2-mediated inflammatory responses
[47], which correlates well with our observation that T cell
responses decreased with increasing fmOMV doses whereas anti-
body responses remained high (Fig. 2A and D). Further study is
required to assess the underlying mechanism of this dose-
dependent inverse correlation between fmOMV dose and T cell
response.

To summarize, we generated a novel OMV harboring modified
lipid A (fmOMV) by manipulating genes related to the acylation
and phosphorylation of lipid A in E. coli and evaluated its safety
and efficacy as an intranasal vaccine adjuvant in a murine influ-
enza model. Co-administration of fmOMV provided broad protec-
tion against heterologous virus challenge, and conferred both
immediate and prolonged immunity. These results show the
potential of fmOMV as an intranasal vaccine adjuvant for the pre-
paredness against an influenza pandemic.
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