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Abstract: Signal Transducer and Activator of Transcription 3 (STAT3) activation is frequently found
in non-small cell lung cancer (NSCLC) patient samples/cell lines and STAT3 inhibition in NSCLC cell
lines markedly impairs their survival. STAT3 also plays a pivotal role in driving tumor-promoting
inflammation and evasion of anti-tumor immunity. Consequently, targeting STAT3 either directly
or by inhibition of upstream regulators such as Interleukin-6 (IL-6) or Janus kinase 1/2 (JAK1/2) is
considered as a promising treatment strategy for the management of NSCLC. In contrast, some studies
also report STAT3 being a tumor suppressor in a variety of solid malignancies, including lung cancer.
Here, we provide a concise overview of STAT3‘s versatile roles in NSCLC and discuss the yins and
yangs of STAT3 targeting therapies.

Keywords: signal transducer and activator of transcription (STAT); Janus kinase (JAK); cytokines;
interleukin (IL); non-small cell lung cancer (NSCLC); lung adenocarcinoma (AC); Kirsten rat sarcoma
viral proto-oncogene (K-RAS); epidermal growth factor receptor (EGFR); tumor microenvironment
(TME); tumor-promoting inflammation; anti-tumor immunity; clinical trials

1. Introduction

Lung cancer is the deadliest form of cancer. Based on the figures from the Global Cancer
Incidence, Mortality and Prevalence (GLOBOCAN) database, lung cancer was estimated to account
for approximately 1.8 million deaths in 2018 and 2.1 million cases were newly diagnosed globally.
Thus, lung cancer is responsible for almost every fifth (18.4%) cancer death. [1] The predominant risk
factor for lung cancer is tobacco smoking, accounting for approximately 80% of the cases in countries
where smoking is common [2]. Histologically two major subtypes can be distinguished: small-cell
lung cancer (SCLC) and non-small cell lung cancer (NSCLC), with the latter one being the dominant
subtype [3,4]. NSCLC can be further subdivided into lung adenocarcinoma, lung squamous cell
carcinoma and large-cell lung carcinoma [3,4]. As the most abundant drivers of NSCLC tumorigenesis,
mutations in tumor suppressor genes TP53, KEAP1, STK11, NF1 and in the oncogenes Kirsten
Rat Sarcoma Viral Proto-Oncogene (K-RAS) and Epidermal growth factor receptor (EGFR) were
identified [3,5–7]. In addition, chronic inflammation induced by tobacco smoke or asbestos promotes
NSCLC tumorigenesis and may trigger somatic driver mutations [8,9]. Current treatment strategies
for NSCLC include surgery, radiation, chemotherapy, targeted therapy or immunotherapy alone or
in combination [10]. Selected patients harboring actionable driver mutations (e.g., EGFR mutations)
benefit from targeted therapies based on tyrosine kinase inhibitors (TKIs) or from immune checkpoint
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blockers (ICB). However, approximately 80% of patients suffering from NSCLC progress to stage
IV tumors, and the 5-year relative survival rate is under 20% [3,4,11–13]. Therapies are often
plagued by resistance mechanisms which blunt the initial tumor responses to TKI or ICB therapies.
In addition, to date there is no approved therapy targeting mutated K-RAS (present in 30% of NSCLC
patients) [14–16]. Consequently, researchers focus on finding alternative druggable drivers in NSCLC
to improve existing therapies or provide new ones. In this regard, Signal Transducer and Activator of
Transcription 3 (STAT3) and its upstream activators Interleukin-6 (IL-6) and Janus kinase 1/2 (JAK1/2),
are considered as promising targets because STAT3 is frequently activated in NSCLC and regulates key
cancer hallmarks, such as cell proliferation, tumor-promoting inflammation and evasion of anti-tumor
immunity [12,17–19]. However, STAT3 may also function as a tumor suppressor in NSCLC and other
solid malignancies, depending on the tumor driver and cellular context [12,20]. Within this article, we
will discuss the role of STAT3 in NSCLC regarding its tumor cell-intrinsic and extrinsic mechanisms.

2. Homeostatic STAT3 Signaling

STAT3 was originally described as an acute phase response factor (APRF) and identified as a key
mediator of IL-6-type cytokine signaling [21–27]. As a core component of the JAK-STAT pathway,
which consists of seven STAT family members (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, STAT6)
and four JAKs (JAK1, JAK2, JAK3, Tyrosine kinase 2 or Tyk2), STAT3 operates as a transcription
factor downstream of multiple cytokines, interferons, hormones and growth factors [28,29]. STAT3,
comparable to other family members, comprises six domains: a conserved-amino-terminus, a coiled-coil
domain, a DNA-binding domain, a linker domain, the Src Homology 2 (SH2) domain for receptor
binding and dimerization and the C-terminal transactivation-domain (TAD) for co-factor interactions.
STAT3′s tyrosine residue (Tyr705), which becomes phosphorylated upon activation, is located between
the SH2-domain and the TAD [28,29].

Canonic STAT3 signaling starts with extracellular ligand binding (e.g., IL-6) to the cognate cell
surface receptor (e.g., gp130/IL-6R); leading to receptor dimerization and trans-phosphorylation/

activation of JAKs. Activated JAKs subsequently phosphorylate cytoplasmic receptor-tails, thereby
providing docking sides for STAT(3)s. STAT3 is then activated by JAKs due to single tyrosine-residue
phosphorylation on its C-terminus (Tyr705). Once activated, STAT3 dissociates from the receptor/kinase
complex and forms homodimers (STAT3:STAT3) or heterodimers (STAT3:STAT1) via SH2-domain-
interactions. STAT3-dimers translocate into the nucleus where they regulate gene transcription.
Under physiological conditions, STAT3 activation is rapid and transient due to the tight negative
regulation by Suppressor of Cytokine Signaling (SOCS) proteins, Protein Inhibitor of Activated STAT
(PIAS) proteins and phosphatases [12,18,28,30–33]. For STAT3, SOCS3 has been identified as a primary
transcriptional target, which induces negative feedback regulation by impairing JAK activity [30,34].
Further, PIAS3 prevents STAT3-DNA-target binding and phosphatases like SHP-1, SHP-2, PTP1B
or T-cell PTB inhibit STAT3 activity either at JAK kinase level or directly in the nucleus (Figure 1).
Disruption of negative regulation renders STAT3 constitutively active, which can induce malignant
cellular transformation [30,33,35]. Other post-translational modifications such as an additional serine
phosphorylation (Ser727), acetylation or methylation also influence the transcriptional output of
STAT3 [30].



Cancers 2020, 12, 1107 3 of 16

Cancers 2020, 12, x 3 of 16 

 

 
Figure 1. Mechanisms of STAT3 activation: Cytokine binding (e.g., IL-6) to its cognate receptor (e.g., 
gp130/IL-6Rα) induces receptor dimerization and activation of receptor associated Janus kinases 
(JAKs). Activated JAKs provide STAT3 receptor-docking sites by phosphorylation of cytoplasmic 
receptor tails (not shown). Subsequently STAT3 is activated by JAKs due to single tyrosine 
phosphorylation (Tyr705). Formed STAT3-dimers translocate into the nucleus and drive transcription 
of genes associated with the cancer hallmarks: proliferation, angiogenesis, immune evasion and 
evasion of apoptosis (middle). Receptors with intrinsic kinase activity (RTKs) like EGFR also facilitate 
STAT3 activation via JAK engagement rather than directly (left). STAT3 activation has also been 
reported by non-receptor tyrosine kinases (nRTKs) like SRC or ABL (right). Under physiological 
conditions, STAT3 activation is tightly controlled by phosphatases, SOCS and PIAS proteins. 

3. STAT3 as an Oncogene in Solid Tumors 

Several landmark papers in the mid and late 1990s reported the oncogenic properties of STAT3 
[18]. First, Jove and colleagues showed that STAT3 is constitutively active in SRC oncoprotein 
transformed cells [36]. Next, it was shown that blockage of STAT3 signaling abrogates fibroblast 
transformation by SRC [37,38]. The first direct evidence for STAT3 as an oncogene emerged from a 
study using STAT3-C, a spontaneously dimerizing and constitutively active STAT3 mutant. STAT3-
C expression in fibroblast induced malignant transformation [39]. Since then, various reports 
substantiated STAT3’s engagement in promoting cancer hallmarks, such as tumor cell proliferation, 
evasion of apoptosis and angiogenesis by controlling the expression of pro-tumorigenic genes like 
Cyclin D1/2, c-MYC, MCL1, Survivin, BCL-XL, HGF, HIF-1α and VEGF [12,17–19,40,41]. In solid 
cancers that generally lack STAT3 activating somatic mutations, STAT3 activation is mainly mediated 

Figure 1. Mechanisms of STAT3 activation: Cytokine binding (e.g., IL-6) to its cognate receptor
(e.g., gp130/IL-6Rα) induces receptor dimerization and activation of receptor associated Janus kinases
(JAKs). Activated JAKs provide STAT3 receptor-docking sites by phosphorylation of cytoplasmic
receptor tails (not shown). Subsequently STAT3 is activated by JAKs due to single tyrosine
phosphorylation (Tyr705). Formed STAT3-dimers translocate into the nucleus and drive transcription of
genes associated with the cancer hallmarks: proliferation, angiogenesis, immune evasion and evasion
of apoptosis (middle). Receptors with intrinsic kinase activity (RTKs) like EGFR also facilitate STAT3
activation via JAK engagement rather than directly (left). STAT3 activation has also been reported by
non-receptor tyrosine kinases (nRTKs) like SRC or ABL (right). Under physiological conditions, STAT3
activation is tightly controlled by phosphatases, SOCS and PIAS proteins.

3. STAT3 as an Oncogene in Solid Tumors

Several landmark papers in the mid and late 1990s reported the oncogenic properties of STAT3 [18].
First, Jove and colleagues showed that STAT3 is constitutively active in SRC oncoprotein transformed
cells [36]. Next, it was shown that blockage of STAT3 signaling abrogates fibroblast transformation by
SRC [37,38]. The first direct evidence for STAT3 as an oncogene emerged from a study using STAT3-C,
a spontaneously dimerizing and constitutively active STAT3 mutant. STAT3-C expression in fibroblast
induced malignant transformation [39]. Since then, various reports substantiated STAT3′s engagement
in promoting cancer hallmarks, such as tumor cell proliferation, evasion of apoptosis and angiogenesis
by controlling the expression of pro-tumorigenic genes like Cyclin D1/2, c-MYC, MCL1, Survivin,
BCL-XL, HGF, HIF-1α and VEGF [12,17–19,40,41]. In solid cancers that generally lack STAT3 activating
somatic mutations, STAT3 activation is mainly mediated by dysregulated cytokine and growth factor
receptor signaling via engagement of receptor-associated JAKs. In addition, constitutively active
non-receptor tyrosine kinases (nRTKs) like SRC or ABL facilitate STAT3 activation in cancer [40,42].
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4. STAT3 as an Oncogene in NSCLC

The majority of NSCLC patient samples and cell lines harbor persistent STAT3 activation and
high intra-tumoral pSTAT3 levels correlate with advanced disease stage, smoking and EGFR-mutation
status [43–47]. Enhanced pSTAT3 expression is also associated with induction of angiogenesis in patient
tumor samples and serves as a negative predictor for patient survival [44,48]. First direct evidence
for STAT3 as an oncogene in NSCLC came from loss of function studies: STAT3 inhibition with an
antisense STAT3 oligonucleotide markedly reduces the survival of a NSCLC cell line [47]. Additional
studies investigating STAT3 in EGFR driven lung tumorigenesis confirmed its oncogenic role in NSCLC.
Expression of mutant-EGFR variants (e.g., L858R substitution and exon 20 insertion) in NIH3T3 cells led
to increased STAT3 activation compared to NIH3T3 cells expressing wild-type EGFR [49]. Expression
of a dominant negative STAT3 form in NIH3T3 cells hindered malignant transformation induced
by EGFR mutation [50]. Intriguingly, STAT3 activation by mutant-EGFR was initially believed to be
direct. Nevertheless, in vitro treatment of EGFR-mutated NSCLC cell lines with the first generation
EGFR-TKIs erlotinib or gefitinib failed to impair pSTAT3 levels in the majority of tested cell lines,
indicating that STAT3 is activated by mechanisms independent of mutant-EGFR in this context [45,51].
In fact, treatment of EGFR mutated NSCLC cell lines with erlotinib increased pSTAT3 levels, thereby
promoting drug resistance. Conversely, knockdown of STAT3 by RNA interference enhanced sensitivity
to erlotinib [52]. Importantly, these findings could be extended to K-RAS-driven NSCLC tumorigenesis.
Treatment of K-RAS-mutated NSCLC cell lines with a MEK inhibitor elevated pSTAT3 levels and
induced drug resistance [52]. Another mechanism underlying STAT3 activation in NSCLC involves
gp130/JAK signaling. NSCLC cell lines with EGFR and K-RAS mutations secrete cytokines such as IL-6.
This leads to autocrine JAK-dependent STAT3 activation via gp130 engagement, thereby promoting
tumor cell survival [53,54]. In this context, genetic knockdown of IL-6 or JAK1/2 decreased tumor
cell growth in vivo and/or in vitro [53,55,56]. Further, single nucleotide polymorphisms (SNPs) in
cytokine receptors may be critical for STAT3 activation in NSCLC. Indeed, expression of a growth
hormone receptor SNP variant (GHRP495T) in normal human lung epithelial cells led upon growth
hormone stimulation to increased STAT3 activation and cell proliferation compared to cells expressing
the wild-type receptor [57].

Collectively, these studies provided evidence that increased STAT3 activation within tumor cells
promotes tumor development while increased STAT3 activation within normal lung epithelial cells
induces cellular transformation. However, these studies did not address the role of STAT3 in shaping
the tumor microenvironment (TME).

5. Inflammation and Anti-Tumor Immunity: A Central Role for STAT3 in NSCLC

The TME in the lung, comparable to the TME of other solid cancers, consists of cellular and soluble
factors (e.g., cytokines or growth factors), some of them exhibiting either pro- or anti-tumorigenic
properties [58–60]. M2-polarized tumor-associated macrophages (TAMs), myeloid derived suppressor
(MDSC), regulatory T (Treg), type 17 CD4+ (Th17), type 2 CD4+ (Th2), B cells or cytokines such as
IL-6, IL-10, IL-17, IL-23, are generally reported to be pro-tumorigenic. By contrast, M1-polarized
macrophages, cytotoxic CD8+, type 1 CD4+ (Th1), dendritic (DC), natural killer (NK) cells or
pro-inflammatory cytokines such as IL-12 are considered to be anti-tumorigenic. Skewing the balance
to more pro-tumorigenic factors leads to tumor outgrowth through tumor-promoting inflammation
and impaired anti-tumor immunity. STAT3 signaling within tumor and immune cells shapes the TME;
the vast majority of lung cancer studies report that STAT3 drives tumor-promoting inflammation
while impairing anti-tumor immunity [18,19,58–66]. An initial study by Li et al. showed that
STAT3-C overexpression in alveolar type II cells leads to severe pulmonary inflammation, ultimately
resulting in lung adenocarcinoma formation in mice. A main characteristic of the lung TME within
their model was the high abundance of TAMs, B-cells and CD3+ lymphocytes [67]. Further, lung
epithelium-specific deletion of STAT3 increased NK cell immunity, thereby impairing tumor growth in a
carcinogen-induced lung cancer mouse model. In vitro studies corroborated these data for human lung
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tumorigenesis: STAT3 knockdown in human NSCLC cell lines reduced their MHC class I expression,
thereby increasing their susceptibility to NK cell-mediated cytotoxicity [68]. Tumor cell-intrinsic STAT3
also modulates cytotoxic T-cell response by regulating expression of immune checkpoint molecules
such as Programmed cell death 1 ligand 1 (PD-L1). Interferon gamma (IFNγ) stimulation of NSCLC
cells induced PD-L1 expression, whereas blockage of STAT3 activity abrogated it, thereby rendering
cells more susceptible to cytotoxic T-cell mediated killing [69–71]. In addition, STAT3 gene silencing
restored NSCLC cell susceptibility to cytotoxic T-cell mediated killing under hypoxic conditions, which
frequently occur in the TME and impair cytotoxic T-cell function [72]. Notably, tumor cell-intrinsic
STAT3 drives the expression of pro-tumorigenic cytokines (e.g., IL-6) and growth factors (e.g., VEGF),
thus enhancing the recruitment of tumor-promoting myeloid cells such as TAMs or MDSCs to the TME.
These cells secrete pro-tumorigenic cytokines and growth factors to amplify STAT3 activation within
the tumor cells, resulting in tumor growth [44,73–83]. The role of STAT3 signaling in immune cells
and its effects on tumor-promoting inflammation and anti-tumor immunity was also addressed in
lung cancer. For instance, Zhou et al. showed that lysozyme M-Cre mediated myeloid STAT3 deletion
abrogates urethane-induced lung carcinogenesis in mice by decreasing levels of pro-tumorigenic
M2 macrophages, MDSCs, and Tregs, while increasing levels of anti-tumorigenic M1 macrophages,
cytotoxic CD8+ and CD4+ Th1 cells in the mouse lungs [84]. Studies using pharmacological approaches,
siRNA technology, Mx1-Cre, CD4-Cre or Ncr1-iCreTg mice to abrogate STAT3 signaling in immune
cells further confirmed that STAT3 impairs anti-tumor immunity. More precisely, STAT3 activation
within NK and CD8+ T cells hampers their cytotoxic activity, while STAT3 activation in DC cells impairs
their maturation and ability to present antigens. Accumulation and differentiation of Tregs within
the TME is also STAT3 dependent (Figure 2) [85–90]. Altogether, data from these studies indicate that
STAT3‘s function extends far beyond the tumor cell and that blockade of STAT3 signaling might be a
promising option to treat NSCLC patients.
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Figure 2. A central role for STAT3 in anti-tumor immunity and inflammation: Tumor cell-intrinsic
STAT3 drives the expression of oncogenic factors (e.g., IL-6, IL-10 or VEGF), which can activate
STAT3 in immune cells and enhance their recruitment to the TME (middle). STAT3 activity in NK
and CD8+ T cells impairs their cytotoxic activity, while STAT3 activity in dendritic cells hampers
their maturation and capability to present antigens. Tumor cell-intrinsic STAT3 drives MHC class I
expression, that impairs cytotoxic activity of NK cells, or drives PD-L1 expression, thereby diminishing
cytotoxic activity of CD8+ T cells (left). In tumor-infiltrating MDSCs and macrophages, STAT3 drives
the expression of oncogenic factors (e.g., VEGF), which amplifies STAT3 activity in tumor cells and
leads to tumor growth. Also, survival of MDSCs, M2-macrophage polarization, Treg differentiation
and accumulation in the TME are STAT3 dependent (right). STAT3 signaling within tumor cells and
immune cells impairs anti-tumor immunity and drives tumor-promoting inflammation.
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6. Targeting STAT3 Signaling in NSCLC: Past and Future

Although direct targeting of STAT3 is notoriously difficult, promising new targeting approaches
continuously emerge. For instance, Bai et al. recently showed that SD-36, a highly selective
small-molecule degrader of STAT3, potently inhibits growth of a leukemia and lymphoma cell
line(s) in vitro and induces durable tumor regression in vivo. Hence, further investigations, specifically
in NSCLC, are highly warranted [91–93]. Apart from SD-36, AZD9150, a next generation antisense
oligonucleotide inhibitor of STAT3, may hold great promise for the treatment of NSCLC. Notably,
AZD9150 potently blocked growth of a xenografted NSCLC cell line, and clinical trials in NSCLC
patients have already been launched [94]. Nevertheless, a large part of past research efforts relied on
strategies to inhibit upstream components of STAT3 signaling, such as IL-6 or JAKs to treat NSCLC.
However, results derived from these studies remain modest [65,93]. Siltuximab (an anti-IL-6 antibody)
inhibited growth of xenografted NSCLC cells, but failed to show clinical activity in NSCLC and
other solid cancers [95,96]. Also ALD518 (another anti-IL-6 antibody) showed no clinical benefits for
NSCLC patients, except for reduction of cancer-associated anemia and cachexia [97–100]. Although
JAK-TKIs performed favorably in preclinical NSCLC models, their enormous success in the treatment
of myeloproliferative disorders could not be recapitulated for lung cancer so far [101]. AZD1480
(a JAK1/2-TKI) impaired tumor growth in an EGFR-driven lung cancer mouse model and blocked
growth of xenografted solid tumor cells [102,103]. Nonetheless, AZD1480 lacked overall clinical activity
in NSCLC and other solid cancers [104]. Similarly, ruxolitinib (another JAK1/2-TKI) had a promising
preclinical profile by potently blocking tumor growth in EGFR- and K-RAS-driven lung cancer models
and restoring cisplatin-sensitivity to resistant NSCLC cell lines [51,105,106]. However, the combined
administration of ruxolitinib and pemetrexed/cisplatin was ineffective for treating NSCLC patients
with advanced or recurrent NSCLC. Likewise, ruxolitinib in combination with the first-generation
EGFR-TKI erlotinib or the second-generation EGFR-TKI afatinib was overall ineffective in the treatment
of TKI resistant EGFR-mutated-NSCLCs in clinics. [107,108]. Momelotinib (a JAK1/2 and TBK1-TKI)
exhibited similar results. Although momelotinib synergized with a MEK inhibitor and potently induced
regression of aggressive K-RAS-p53 mutated murine lung tumors, the combination was ineffective in
patients suffering from refractory, metastatic, K-RAS-mutated NSCLC [54,109]. In addition, inhibition
of STAT3 signaling in NSCLC is often accompanied by numerous adverse events (AEs). AEs, likely
caused as a direct consequence of an anti-IL-6 treatment, include rectal hemorrhage, thrombocyto-
and neutropenia, abnormal liver function and infections [96,99,100]. AEs caused by JAK inhibition
are relatively similar and include thrombocyto- and neutropenia, abnormal liver function, infections,
neurological disorders (e.g., ataxia) and anemia [104,107–109]. A potential explanation for occurrence
of infections upon JAK1/2-TKI administration and the overall lack of clinical activity of JAK1/2-TKIs
might be that JAK1/2 inhibition reduces abundance and function of NK cells, thereby impairing defense
against pathogens and anti-tumor immunity [110–112]. Given that selective targeting of JAK1 has less
detrimental effects on NK cells [113], such agents (AZD4205, itacitinib) might display a more favorable
clinical profile. Notably, the combination of osimertinib with AZD4205 or itacitinib is currently under
investigation in EGFR-mutated NSCLC patients with acquired EGFR-TKI resistance. Both JAK1-TKIs
enhanced osimertinib’s potency in EGFR-driven NSCLC xenograft models, including therapy resistant
EGFR T790M positive ones [114,115]. Clinical trials investigating the combination of STAT3 axis
targeting and ICB therapy in NSCLC patients are currently ongoing. A solid preclinical rationale for
these clinical trials has been provided by the following outcomes [71,116]: (i) STAT3 regulates PD-L1
expression; and (ii) STAT3 axis targeting improves ICB therapy efficacy in vivo. An overview of the
discussed clinical trials is provided in Table 1.
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Table 1. Completed and ongoing clinical trials assessing STAT3 pathway inhibition in NSCLC; Source:
ClinicalTrials.gov.

Compound (s) NCT Identifier Patient Characteristics Phase Status/Result

Siltuximab a NCT00841191
Advanced solid cancers

including anti-EGFR therapy
resistant NSCLC

Phase 1/2 Completed, no
clinical benefit

ALD518 a NCT00866970 Advanced NSCLC Phase 2
Completed,
reduction of

anemia/cachexia

AZD1480 b NCT01112397 Advanced solid cancers
including EGFR or ROS-mutant NSCLC Phase 1 Completed, no

clinical benefit

Ruxolitinib b +
Pemetrexed/
Cisplatin d

NCT02119650 Advanced or recurrent NSCLC without
targetable driver mutations Phase 2 Completed, no

clinical benefit

Ruxolitinib b +
Erlotinib d NCT02155465 Advanced EGFR-mutant + EGFR-TKI

resistant (including EGFR T790M) NSCLC Phase 1/2 Completed, no
clinical benefit

Ruxolitinib b +
Afatinib d NCT02145637 Advanced EGFR-mutant + EGFR-TKI

resistant (including EGFR T790M) NSCLC Phase 1 Completed, no
clinical benefit

Momelotinib b +
Trametinib d NCT02258607

Advanced K-RAS-mutated NSCLC with
prior failure to

platinum-based chemotherapy
Phase 1 Completed, no

clinical benefit

AZD4205 b +
Osimertinib d NCT03450330 Advanced EGFR-mutant + EGFR-TKI

resistant NSCLC Phase 1/2 Ongoing, NA

Itacitinib b +
Osimertinib d NCT02917993 Advanced EGFR-mutant+ EGFR-TKI

(including EGFR T790M) resistant NSCLC Phase 1/2 Ongoing, NA

Itacitinib b +
Pembrolizumab d NCT03425006 Advanced PD-L1 expressing NSCLC

(first-line treatment) Phase 2 Ongoing, NA

AZD9150 c+
Durvalumab d NCT02983578 Advanced solid cancers including

treatment-refractory NSCLC Phase 2 Recruiting, NA

AZD9150 c +
Durvalumab d NCT03334617 Advanced NSCLC progressed on an

anti-PD-1/PD-L1 therapy Phase 2 Recruiting, NA

AZD9150 c +
Durvalumab d,* NCT03421353 Advanced solid cancers

including treatment refractory NSCLC Phase 1/2 Ongoing, NA

a Anti-IL-6 antibody: Siltuximab, ALD518; b JAK-TKIs: AZD1480 (JAK1/2), ruxolitinib (JAK1/2), AZD4205
(JAK1), itacitinib (JAK1), momelotinib (JAK1/2, TBK1); c AZD9150 (STAT3 antisense oligonucleotide); d others:
pemetrexed/cisplatin (cytostatic), erlotinib (1st generation EGFR-TKI), afatinib (2nd generation EGFR-TKI);
osimertinib (3rd generation EGFR-TKI), trametinib (MEK1/2 inhibitor), pembrolizumab (anti-PD-1 monoclonal
antibody), durvalumab (anti-PD-L1 monoclonal antibody);* + chemotherapy, NA: not available.

7. STAT3 as a Tumor Suppressor in NSCLC

Although the majority of studies described STAT3 as an oncogene, STAT3 also possesses tumor
suppressive activity in a variety of solid cancers, such as brain, colorectal, pancreatic, thyroid, prostate
and lung cancer, thereby complicating efforts to successfully implement STAT3 axis targeting into
clinics [20,29,117–125]. Zhou et al. initially described STAT3 as a tumor suppressor in lung cancer,
but also reported opposing roles for STAT3 in tumor initiation and growth in a context-dependent
manner [123]. Lung epithelial-specific deletion of STAT3 before urethane-induced cancer formation
increased K-RAS mutation rates and tumor numbers, while STAT3 deletion after urethane-treatment
reduced tumor cell proliferation and tumor growth [123]. Similar effects were observed in a genetically
engineered lung cancer mouse model within this study: simultaneous deletion of STAT3 and activation
of oncogenic K-RAS in the lung epithelium resulted in increased tumor numbers, but ultimately
reduced tumor growth/burden [123]. Altogether, this study elegantly demonstrates the dual role
of STAT3 in tumor formation. Under oncogenic stress STAT3 exerts its tumor suppressive function
by preventing disease initiation, while in the absence of oncogenic stress it acts as an oncogene
and facilitates tumor cell proliferation and tumor growth/burden [123]. Subsequent investigations

ClinicalTrials.gov
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further confirmed a tumor suppressive role for STAT3 in K-RAS-driven lung tumorigenesis. Grabner
et al. showed that lung-tissue specific deletion of STAT3 increases K-RAS-driven tumor initiation
and progression in mice [124]. Here, STAT3 regulates NF-κB-dependent expression of tumor cell
derived Chemokine (C-X-C motif) ligand 1 (the mouse orthologue to human IL-8) by sequestering
NF-κB in the cytoplasm, thereby impairing pro-tumorigenic myeloid tumor infiltration and tumor
vascularization [124]. However, prominent sex-associated discrepancies have been unraveled by
Caetano et al. [125]: lung-epithelial specific deletion of STAT3 diminished K-RAS-mutant tumor load
in female mice, but increased the tumor burden in male mice. The reason for this is that STAT3 deletion
in male mice altered NF-κB activation and Cxcl1 expression. This led to reprogramming of TME
towards a pro-tumorigenic phenotype, ultimately resulting in enhanced tumor formation. Thus, both
studies not only illustrate the importance of STAT3-NF-κB-CXCL1 signaling for K-RAS-driven lung
tumorigenesis, but also demonstrate that tumor intrinsic STAT3 activation can inhibit the formation of a
pro-tumorigenic TME [125]. D’Amico et al. further corroborated a tumor suppressive role for STAT3 in
NSCLC and defined STAT3 as an important modulator of epithelial cell identity and differentiation [20].
Subcutaneously transplanted KRASG12D/p53-/- lung epithelial cells without STAT3 showed a faster
disease initiation and established tumors that lacked epithelial differentiation, compared to STAT3
proficient cell lines. Thus, STAT3 loss within this model resulted in the formation of a mesenchymal-like
tumor phenotype, known to be associated with drug resistance and metastasis. Maintenance of
epithelial identity by STAT3 depended on TP63, a gene previously described to be critical for epithelial
development in mice and human [20]. Further support for a tumor suppressing function for STAT3
came from analysis of patient cohorts with breast, colorectal and lung cancers: high levels of STAT3
are associated with a good prognosis [124,126,127]. Next to analysis of patient cohorts, experimental
studies in other cancers corroborated STAT3‘s role as a tumor suppressor. These studies also indicated
that genetic drivers can dictate whether STAT3 acts as a tumor suppressor or oncogene. For instance,
subcutaneously injected PTEN-deficient astrocytes without STAT3 formed bigger tumors than STAT3
proficient cells. Conversely, subcutaneously injected EGFR-mutant expressing astrocytes without
STAT3 formed no tumors compared to STAT3 proficient cells [117]. Further, Schneller et al. showed that
constitutive active STAT3 reduces tumor formation of Ras-transformed, p19ARF-deficient hepatocytes,
while increasing the tumor formation of Ras-transformed, p19ARF-proficient hepatocytes [122].

Collectively, these studies substantiate the previously suggested notion that STAT3 exerts two
opposing roles in tumorigenesis depending on the cellular context and/or on the tumor genetic
driver [128].

8. Conclusions

STAT3 is a critical lynchpin for cytokine, interferon, hormone and growth factor signaling. Under
physiological conditions STAT3 is paramount for maintaining the structure and function of the alveolar
epithelium [129]. STAT3 activation is frequently found in solid cancers, including NSCLC. In NSCLC
patient samples, high pSTAT3 levels correlate with advanced disease stage, smoking and EGFR status
and serve as a negative predictor for patient survival. Experimental studies on tumor-cell intrinsic
STAT3 signaling mechanisms (particularly in the context of EGFR-driven NSCLC) further consolidated
the notion of STAT3 as an oncogene in this disease. In addition, STAT3 was identified to be critically
involved in shaping the lung cancer TME by driving tumor promoting inflammation and evasion of
anti-tumor immunity. These results have postulated STAT3 signaling as a therapeutic option in solid
tumors, including NSCLC. However, blockade of STAT3 signaling may result in an impairment of
tumor immune surveillance and STAT3 may act as a tumor suppressor, particularly in the context of
K-RAS-driven lung tumorigenesis. These dual STAT3 functions in tumorigenesis need to be taken into
account in future clinical trials targeting the STAT3 axis.
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APRF Acute phase response factor
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DCs Dendritic cells
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nRTK Non-receptor tyrosine kinase
NSCLC Non-small cell lung cancer
PD-L1 Programmed cell death 1 ligand 1
PIAS Protein Inhibitor of Activated Stat
RTK Receptor tyrosine kinase
SCLC Small-cell lung cancer
SH2 Src Homology 2
SNPs Single nucleotide polymorphisms
SOCS Suppressor of cytokine signaling
STATs Signal Transducer and Activator of Transcription
TAD Transactivation domain
TAMs Tumor-associated macrophages
Th1s Type 1 CD4+ cells
Th2s Type 2 CD4+ cells
Th17s + T helper 17 cells
TKI Tyrosine kinase inhibitor
TME Tumor microenvironment
Tregs regulatory T cells
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