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The 3D structure of the genome plays a key role in regulatory con-
trol of the cell. Experimental methods such as high-throughput
chromosome conformation capture (Hi-C) have been developed
to probe the 3D structure of the genome. However, it remains
a challenge to deduce from these data chromosome regions
that are colocalized and coregulated. Here, we present an inte-
grative approach that leverages 1D functional genomic features
(e.g., epigenetic marks) with 3D interactions from Hi-C data to
identify functional interchromosomal interactions. We construct
a weighted network with 250-kb genomic regions as nodes and
Hi-C interactions as edges, where the edge weights are given by
the correlation between 1D genomic features. Individual interact-
ing clusters are determined using weighted correlation clustering
on the network. We show that intermingling regions generally
fall into either active or inactive clusters based on the enrich-
ment for RNA polymerase II (RNAPII) and H3K9me3, respectively.
We show that active clusters are hotspots for transcription fac-
tor binding sites. We also validate our predictions experimentally
by 3D fluorescence in situ hybridization (FISH) experiments and
show that active RNAPII is enriched in predicted active clusters.
Our method provides a general quantitative framework that cou-
ples 1D genomic features with 3D interactions from Hi-C to probe
the guiding principles that link the spatial organization of the
genome with regulatory control.

chromosome intermingling | Hi-C | network and clustering analysis |
epigenetics | 3D FISH

The 3D structure of the genome plays a key role in regu-
latory control of the cell. Historically, the spatial organiza-

tion of the genetic material has been probed with fluorescence
in situ hybridization (FISH), and it was shown that chromo-
some organization is nonrandom. Each chromosome occupies
its own territory with gene-dense chromosomes more likely to
be in the nuclear interior (1). As an addition to FISH, chromo-
some conformation capture methods (3C, 4C, 5C, and Hi-C) have
been designed to probe the 3D organization of the genome by
measuring the genome-wide contact frequencies over a popula-
tion of cells (2–5). Computational and experimental efforts have
largely focused on investigating intrachromosomal contacts. Stud-
ies where these interactions have been analyzed together with epi-
genetic modifications as measured by chromatin immunoprecip-
itation sequencing (ChIP-seq) showed that epigenetic marks are
tightly linked to shaping the architecture of the genome (6, 7).

Few studies have considered interchromosomal interactions. It
was shown that regions on neighboring chromosome territories
may loop out and intermingle with each other in a transcription-
dependent manner (8, 9). In addition, a recent study has revealed
that intermingling regions are enriched in both active and repres-
sive epigenetic marks, as well as the active form of RNA poly-
merase II (RNAPII) and transcription factors (10). Further-
more, it was identified that genes are spatially colocalized and
coregulated by sharing common transcription factors (11, 12)
and epigenetic machinery like the polycomb proteins (13). For
example, TNFα-responsive genes (on the same and different
chromosomes) have been shown to colocalize upon their stim-
ulation. Their spatial clustering was found to be correlated with
their temporal expression patterns (12). The clustering of genes,

transcriptional machinery, and regulatory factors to coordinate
expression, also known as transcription factories, has been pro-
posed as a model for gene regulation (14–16). Collectively,
these studies suggest that interchromosomal regions could har-
bor coregulated gene clusters. However, missing in this picture is
a systematic analysis linking 1D epigenetic marks and 3D inter-
mingling regions and their roles in transcription control.

Various methods have been developed to infer the spatial con-
nectivity of the whole genome from Hi-C data. Restraint-based
approaches transform Hi-C contact matrices into distances to
deduce one consensus structure (17–21). However, it remains a
challenge to map contact frequencies to spatial distances due to
biases in Hi-C matrices (22). A different approach is to produce
an ensemble of structures that could explain the experimental
data (23, 24). Computational methods have largely focused on
inferring the 3D genome structure based on Hi-C data alone
without leveraging functional genomic data for studying its archi-
tecture. A recent study has explored this idea by superimposing
ChIP-seq data of three transcription factors (TFs) on the 3D
genome architecture inferred from Hi-C and determined func-
tional hotspots in Saccharomyces cerevisiae (25). Another study
used 1D epigenomic tracks to predict 3D interactions (26). But
there remains a lack of a general quantitative framework that
integrates 1D functional genomic features with 3D intermingling
regions to determine a regulatory code for interchromosomal
interactions.

In this paper, we take a unique approach by integrating
Hi-C and functional genomic data to predict regions that are
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colocalized and coregulated in 3D. The model of gene regula-
tion that is captured by our analysis is the spatial clustering of
genomic regions for their coregulation (27). This mode of gene
regulation may enable the cell to coordinate gene expression and
activate or repress pathways that are important for cell function
in a coordinated manner. We focus on interchromosomal inter-
actions to study chromosome intermingling regions. Using a net-
work analysis approach, we construct a network of chromosomal
interactions weighted by correlations in their genomic features
at a 250-kb resolution. We find that intermingling regions can
be divided into active and inactive clusters, where active clusters
are hotspots for TF binding. We validate our predictions using
FISH by comparing a predicted active cluster vs. a predicted neg-
ative control and also confirm that active RNAPII is significantly
enriched in the predicted active cluster.

Results
Identification of Intermingling Domains. To identify interchromo-
somal regions that are both spatially colocalized and coregu-
lated, we leveraged spatial information from Hi-C experiments
and regulatory information, namely, epigenetic marks, TF ChIP-
seq, DNase I hypersensitivity (DNase-seq), and RNA-seq. Our
aim was to identify clusters of chromosome regions at the whole-
genome scale that interact spatially due to similarities in their
regulatory features and thus might be coregulated by shared reg-
ulatory factors and epigenetic marks. Our method consists of
four steps outlined in Fig. 1: (i) identification of highly interact-
ing domains by determining large average submatrices in inter-

A
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Fig. 1. Overview of the proposed quantitative framework for detecting intermingling regions. (A) Example of an observed interchromosomal Hi-C contact
matrix at 250-kb resolution after preprocessing and transformation (standardized by mean and SD after log(1 + x) transformation) for chromosomes 19
and 20 (SI Appendix). Rectangular boxes represent interacting domains for this pair of chromosomes as detected by the LAS algorithm, which finds subma-
trices with high average. (B) Matrix containing the number of interacting 250-kb regions identified by the LAS algorithm for each pair of chromosomes.
(C) Subnetwork of the chromosome interaction network corresponding to two distinct clusters. Nodes are colored by chromosome number. Each node
in the network corresponds to a 250-kb region. Edges link nodes that are found together in a submatrix (box) as determined by the LAS algorithm. The
edge weights are given by the strength of correlation between the genomic features (histone modifications, TF ChIP-seq, DNase-seq, and RNA-seq as listed
in SI Appendix, Table S2) of adjacent 250-kb nodes. (D and E) Activity (normalized number of peaks in a 250-kb region) of the genomic features for the
two clusters obtained by weighted correlation clustering on the subnetwork in C. Each ring corresponds to one genomic feature, listed from outer ring to
inner ring in SI Appendix, Table S2. Features are grouped into active (outer rings—RNA-seq, RNAPII, H3K4me1, H3K4me2, H3K4me3, H3K36me3, H3K9ac),
repressive (middle rings—H3K27me3 and H3K9me3), and other (inner rings) categories. (F) Fold enrichment of each genomic feature in the intermingling
regions (SI Appendix).

chromosomal Hi-C maps, (ii) superimposing regulatory marks
on the interacting domains, (iii) construction of a network of
interacting regions with edges weighted by the correlation of the
superimposed marks as a measure of coregulation, and (iv) net-
work clustering to obtain spatially colocalized and coregulated
domains.

We analyzed Hi-C data from human lung fibroblast (IMR-
90) cells at 250-kb resolution, obtained from ref. 28. After bias
correction, filtering, and transforming the data (SI Appendix),
we identified a stringent set of highly interacting interchromo-
somal regions by solving the following submatrix finding prob-
lem in Hi-C maps. We sought a contiguous submatrix U (k × l)
that has a high average τ , within the real-valued data matrix
X (m ×n), where each entry is an interchromosomal contact fre-
quency between two 250-kb regions. We used the iterative large
average submatrix (LAS) algorithm (29) that balances matrix
size and average value, as outlined in SI Appendix to discover
highly interacting domains. Fig. 1A shows the identified domains
in the Hi-C contact map for chromosomes 19 and 20. As shown
in Fig. 1A, the LAS algorithm captures the regions with high
intensity in the interchromosomal matrix. Applying this pro-
cedure to all pairwise interchromosomal maps yields Fig. 1B,
where each entry in the matrix corresponds to the number of
250-kb regions identified for the particular chromosome pair
[false discovery rate (FDR)< 4.16× 10−8, SI Appendix]. The
total size of highly interacting domains across all chromosomes
spanned 903.25 Mb (SI Appendix, Table S1). Consistent with
previous observations (2, 30), Fig. 1B shows that gene-dense
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chromosomes such as 15–17 and 19–22 had a high number of
intermingling 250-kb regions. In addition, as previously noted
(31), we found a striking difference between chromosomes 18 and
19—although these two chromosomes are approximately equal
in size, the gene-poor chromosome 18 has a low level of inter-
mingling across most chromosomes, while the gene-rich chromo-
some 19 tends to intermingle more with other chromosomes.

Integration of Functional Genomic Data and Network Analysis. We
obtained functional genomic data: TF ChIP-seq, histone modi-
fications, DNase-seq, and RNA-seq data from ENCODE (32),
Roadmap Epigenomics (33), and GEO databases (SI Appendix,
Table S2). We used these experimental data as a regulatory
profile for all 250-kb regions that lay within the intermingling
domains.

Considering each selected 250-kb region as a node, a whole-
genome network of chromosomal interactions was constructed
as follows. Between chromosomes, the edges in the network
were placed between pairs of 250-kb regions that lay within the
same submatrix as identified by the LAS algorithm. Within chro-
mosomes, edges were placed between loci that fall within the
same intrachromosomal domain, as determined in ref. 28. After
establishing the skeleton of the network, the edge weights were
calculated as follows. Since our goal was to determine spa-
tially coregulated regions, we weighted the edges by Spearman’s
correlation between the genomic profiles of adjacent 250-kb
regions. This combined approach can mitigate some of the noise
associated with using Hi-C contact frequencies alone. In addition,
it allows us to identify chromosome intermingling regions with
coordinated activity, which might be controlled by the same set
of TFs or epigenetic marks, as opposed to domains that interact
in 3D by chance. A subnetwork containing six 250-kb regions from
three distinct chromosomes is shown in Fig. 1C. The edge weights
in this subnetwork suggest the presence of two separate clusters.

To retrieve intermingling regions that are coregulated, the
weighted network of 250-kb regions was partitioned into clus-
ters, using weighted correlation clustering (34) (see SI Appendix).
This approach can for example identify regions that are brought
together for transcription, since these would have high RNAPII
and low repressive epigenetic marks. This approach indeed
found two clusters in the subnetwork shown in Fig. 1C. The reg-
ulatory profiles of the six regions, separated into two clusters,
are illustrated in Fig. 1 D and E. As a consequence of using
weighted correlation clustering, the genomic features within a
cluster are more similar than across clusters. Interestingly, the
particular cluster in Fig. 1D is enhanced for active genomic fea-
tures (we analyzed H3K9ac, H3K36me3, H3K4me3, H3K4me2,
H3K4me1, RNAPII, and RNA-seq) and depleted for repressive
features (we analyzed H3K27me3 and H3K9me3), while the clus-
ter in Fig. 1E is depleted for active features. Using this method,
446 clusters (totaling 459.5 Mb; SI Appendix, Table S1) were
identified (P value < 2.2× 10−16 under a χ2 test) that consist of
at least two nodes and span multiple chromosomes (SI Appendix,
Table S3 and Dataset S1). On average, 2.5 chromosomes interact
within one cluster (SI Appendix, Fig. S1).

We analyzed the enrichment of regulatory marks in intermin-
gling regions and found that these regions were most enriched
for RNAPII, namely by a factor of 2.23 (Fig. 1F). We also found
the active and repressive marks (e.g., H3K9ac, H3K4me3, and
H3K9me3) to be enriched in intermingling clusters, which is con-
sistent with a previous study (10).

Regulatory Features are Predictive of Intermingling. To character-
ize intermingling regions as a whole and evaluate whether they
are distinct from nonintermingling regions on a regulatory level,
we built a classifier and determined the features that contribute
the most to distinguishing between these two classes. These fea-
tures may represent a mechanism to spatially cluster genes for
their coregulation. We annotated 250-kb regions as intermin-
gling or nonintermingling based on the results from our net-
work analysis and clustering. We then performed classification

based on the associated regulatory profiles (SI Appendix, Table
S2). We used eXtreme gradient boosting trees with 10-fold cross-
validation to train our classifier. Using all features, the classi-
fier achieves an accuracy of 85% ± 5% and the corresponding
receiver operating characteristic (ROC) curve in Fig. 2A has an
area under the curve (AUC) of 0.77.

To quantify the importance of each feature by itself and in con-
junction with all other features, we computed its univariate and
multivariate rank based on its depth in the decision trees of the
ensemble (Fig. 2B and SI Appendix, Fig. S2). The most impor-
tant features determined by this analysis are lamin B1 (LMNB1),
H3K9me3, H3K56ac, and H2A.Z. The importance of both
repressive (H3K9me3, LMNB1) and active (H3K56ac, H2A.Z)
marks ties with the observation that intermingling regions con-
tain both active and repressed regions (35). Furthermore, pre-
vious mapping of LMNB1 in the genome revealed the pres-
ence of lamina-associated domains (LADs) that interact with
the lamina on the nuclear envelope, spatially organize chromo-
somes by anchoring them to the lamina, and display coordi-
nated gene repression (36–38). H3K9me3 is enriched in LADs
and may facilitate gene silencing in LADs (37, 39). The context-
dependent importance of this feature is in line with its low
univariate, but high multivariate rank (SI Appendix, Fig. S2).
H3K56ac is a known mark of transcriptionally active chromatin
regions (40, 41). Finally, H2A.Z is enriched at transcription start
sites (42), indicating its involvement in transcription initiation,
and it appears to be a defining feature of intermingling on its
own (SI Appendix, Fig. S2).

Performing stepwise feature elimination shows that ∼13 fea-
tures are sufficient for achieving high AUC (Fig. 2C) and the
corresponding features are annotated by asterisks in Fig. 2B.

Intermingling Clusters Are Divided into Active and Inactive Clusters.
While it is interesting to evaluate intermingling regions alto-
gether, studying these on a cluster-by-cluster level may give

A

B

C

Fig. 2. Performance and feature importance for classifying intermingling
regions. (A) ROC curve for eXtreme gradient boosting trees classifier that
was trained on genomic features of intermingling vs. nonintermingling
regions. This results in AUC of 0.77. (B) Features ranked in order of impor-
tance (relative depth of feature in the decision tree) for distinguishing inter-
mingling domains. (C) AUC when recursively eliminating one feature at a
time based on 10-fold cross-validation. Near-optimal performance is reached
with 13 features, which are indicated by asterisks in B.
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Fig. 3. Classification of intermingling regions into active and inactive
clusters. (A) Five-way Venn diagram representing the number of clusters
enriched for each active epigenetic mark and RNAPII. Interestingly, many
clusters (186 of 446) are enriched for all five active marks. (B) Venn dia-
gram of the active clusters (the 186 clusters in the intersection of the five-
way diagram in A) and clusters enriched for the silencing mark H3K9me3.
Note that only 18 of 446 clusters are both active and silenced, show-
ing that the clusters separate into two categories of active and inactive
clusters.

insights into the links between regulatory processes and spa-
tial colocalization. Based on previous evidence (43) we hypoth-
esized that active regions are clustered with other active regions
and inactive regions with other inactive regions. To analyze the
types of clusters we obtained, we computed the fold enrich-
ment of each cluster for several regulatory features (SI Appendix,
Table S3 and Dataset S1). We found that a high proportion
of the clusters—41.7% (186 clusters)—was enriched for all
active marks—RNAPII, H3K9ac, H3K36me3, H3K4me3, and
H3K4me1 as shown in Fig. 3A (P value = 1.398 × 10−5 under
a χ2 test, SI Appendix). Notably, the majority of clusters were
either enriched for all five active marks or not enriched for any
active mark.

The percentage of clusters enriched for the repressive/
inactivating mark H3K9me3 was 38.3% (171 clusters). Inter-
estingly, we observed a clear separation of the intermingling
clusters into active and inactive, with only 4% of clusters (18
clusters) that were in both categories as shown in Fig. 3B
(P value = 4.699× 10−4 under a χ2 test, SI Appendix). Active
clusters were defined as those clusters enriched for RNAPII
(fold enrichment >1) but not for H3K9me3. Inactive clusters
were defined as enriched for H3K9me3 but not for RNAPII.
Active clusters also had significantly higher gene expression (P
value = 0.004 under a t test) in comparison with inactive clus-
ters (SI Appendix, Fig. S3). In addition, high-occupancy target
(HOT) regions, i.e., regions that are occupied by many TFs (44),
were overrepresented in active clusters in comparison with low-
occupancy target (LOT) regions, by a HOT:LOT ratio of 2.94
(SI Appendix, Table S4). These findings suggest that active clus-
ters may be hotspots for TF binding.

Active Clusters Are Hotspots for TF Binding. We probed the active
clusters for shared TFs that may be involved in colocalizing and
coregulating regions in a cluster by analyzing TF binding sites
(TFBS). We used the JASPAR 2016 database to obtain the
TFBS. These data were overlaid and then filtered using ChIP-
seq peaks from all human cell lines available from ENCODE
(32) (SI Appendix). This resulted in TFBS for 52 TF motifs. We
performed an additional analysis to also consider a larger set of
TF motifs (386) by overlaying and filtering the JASPAR 2016
database with a robust set of CAGE peaks from ref. 45, col-
lected across 353 human tissue samples as part of the FANTOM5
project (SI Appendix). This filtering step provided us with a list of
potential transcription start sites that contain motifs for the TFs
under consideration.

We compared the distributions of TFBS counts per 250-kb
region for active clusters vs. the whole genome. Several factors,
such as EGR1, YY1, CTCF, and the E2F family of proteins,
showed a significant increase in TFBS counts under a Mann–
Whitney U test (Fig. 4A).

The majority of active clusters contained binding sites for
TFs that are shared across regions spanning multiple chromo-
somes (SI Appendix, Fig. S4). For example, the cluster studied in
Fig. 1D involving chromosomes 12 and 17 contains binding sites
for the TFs USF1 and NRF1 on regions of both chromosomes
(Fig. 4B). This cluster is formed by the colocalization between
two adjacent 250-kb regions on chromosome 12 and one region
on chromosome 17. Gene ontology (GO) term analysis of the
expressed genes (SI Appendix, Fig. S5) in this cluster revealed
an enrichment for biological processes related to fibroblasts such
as “cytoskeleton-dependent intracellular transport” (Fig. 4C).
On the other hand, we found that inactive clusters contained
a low number of TFBS (SI Appendix, Fig. S6 and Table S5),
reaffirming the existence of two distinct types of cluster cate-
gories for intermingling regions.

Experimental Validation. We ranked the active clusters according
to the presence of binding sites for TFs that were shared across
multiple chromosomes, using a permutation test (SI Appendix).
The top 15 active clusters are shown in SI Appendix, Table
S6. Chromosomes 12 and 17 were consistently found together
among the top highly ranked clusters and were thus chosen
for experimental validation (SI Appendix, Fig. S7). We com-
pared the amount of overlap between chromosomes 12 and 17
to a negative control that we obtained by analyzing the network
of least-interacting chromosomes (SI Appendix, Fig. S8). The

A

C

B

Fig. 4. TFBS and GO terms across active clusters. (A) Top 10 TFs with sig-
nificantly overrepresented TFBS in active clusters compared with the whole-
genome distribution (under a Mann–Whitney U test). (B) Matrix correspond-
ing to a representative active cluster with the number of TFBS for each
250-kb region in the cluster. Only TFs containing at least one nonzero col-
umn entry are shown. A TF shared among multiple regions in the cluster may
indicate its role in colocalization and coregulation of the clustered regions.
(C) Significantly enriched GO terms computed from the genes that are
expressed and colocalized in the intermingling cluster shown in B [ranked
by P value using DAVID, SI Appendix].

Belyaeva et al. PNAS | December 26, 2017 | vol. 114 | no. 52 | 13717

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sd01.csv
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf


chromosome territories were identified in human fibroblast (BJ)
cells using DNA FISH and visualized using a laser scanning con-
focal microscope (Fig. 5 A–F). To obtain a representative sample
of the population, we imaged at least 200 cells for each chromo-
some pair. We confirmed that chromosomes 12 and 17 consis-
tently intermingle in a population of cells (Fig. 5C; SI Appendix,
Fig. S9; and Movie S1), while the negative control chromosome
pair does not (Fig. 5F; SI Appendix, Fig. S10; and Movie S2). To
quantify our results, the intermingling degree, i.e., the amount
of overlap between the two pairs of chromosome territories, was
calculated as explained in SI Appendix. We found that the chro-
mosome pair 12 and 17, which was predicted to interact, had a
significantly higher intermingling degree than the negative con-
trol pair 3 and 20 (Fig. 5G, P value = 0.005 under a Welch two-
sample t test). The percentage of nuclei that were intermingling
(intermingling degree >0) was higher in the predicted pair of
interacting chromosomes, 12 and 17, than in the negative con-
trol, 3 and 20 (SI Appendix, Fig. S11). In addition, we also cal-
culated the enrichment of active RNAPII in the intermingling
regions for the aforementioned pairs (SI Appendix). We found
that the predicted chromosome pair, 12 and 17, which belongs to
an active cluster, had significantly higher enrichment for active
RNAPII in the intermingling regions compared with the nega-
tive control pair, 3 and 20 (Fig. 5H, P value = 7.125e-05 under a

A

B

D

E F

H

C

G

Fig. 5. Experimental validation. (A) Representative images of the
maximum-intensity Z projections of the nucleus, active RNAPII, and chro-
mosomes 17 and 12, from Left to Right, respectively. (B) Raw image result-
ing from merging the nuclear (blue) and the two chromosome chan-
nels depicting the overlap between chromosomes 17 (purple) and 12
(cyan). (C) Image in B after segmentation with nucleus (white), chromo-
some 17 (red), and chromosome 12 (green). Yellow regions are the over-
lapping or intermingling regions. (C, Right) Enlargement of the region
in the dotted white boxes in C, Left. (D) Representative images of the
maximum-intensity Z projections of the nucleus, active RNAPII, and chro-
mosomes 20 and 3, from Left to Right, respectively. (E) Raw image result-
ing from merging the nuclear (blue) and the two chromosome channels
depicting the overlap between chromosomes 20 (purple) and 3 (cyan).
(F) Image in E after segmentation with nucleus (white), chromosome 20
(red), and chromosome 3 (green). (F, Right) Enlargement of the region in the
dotted white boxes in F, Left. (G) Boxplot depicting intermingling degree
between chromosomes 12 and 17 and chromosomes 3 and 20 (P value =
0.005 under a Welch two-sample t test). (H) Boxplot depicting the enrich-
ment of active RNAPII between chromosomes 12 and 17 and chromosomes
3 and 20 (P value = 7.125e-05 under a Welch two-sample t test). (All scale
bars, 5 µm.)

Welch two-sample t test), showing that the chromosome pair 12
and 17 indeed contains an active mark at the site of intermingling.

Discussion
Understanding the spatial organization of the chromosomes
within the cell nucleus has been a major question in cell biology.
A number of studies have suggested that the packing of DNA
plays a critical role in regulating genomic programs (3). Earlier
experiments took advantage of chromosome painting methods
and revealed that chromosomes are organized nonrandomly and
in a cell–type-specific manner (1, 8, 9). Analysis of gene position-
ing using FISH showed that coregulated genes were coclustered
(11, 12). Such clusters of genes were also found to be colocalized
with transcription-related machinery such as active RNAPII and
TFs (11, 12). Recent developments in chromosome capture tech-
nologies further revealed that genome-wide chromosome con-
tact maps are correlated with epigenetic marks (6, 7). The major-
ity of studies using chromosome conformation capture focused
on linking chromatin contacts with epigenetic modifications at
the resolution of genes in intrachromosomal regions (6, 7). How-
ever, the coupling between the global organization of chromo-
somes with genome-wide epigenetic marks and the intermingling
regions as an additional layer of transcriptional regulation has
not been well studied.

In this paper, we developed a network analysis approach to
reveal the principles of transcription-dependent chromosome
intermingling by taking advantage of 3D contact maps obtained
using Hi-C and 1D epigenetic marks, TF ChIP-seq, DNA acces-
sibility, and RNA-seq. Our computational approach focuses on
interchromosomal domains, since their organizational princi-
ples have been largely unknown. The proposed quantitative
framework enables the prediction of chromosome intermingling
regions at a genome-wide scale, thereby complementing exper-
imental methods such as FISH that can be used to study spe-
cific clusters of interchromosomal interactions. The novelty of
our method lies in leveraging 1D genomic features in combina-
tion with 3D interactions from Hi-C data. This allows us to study
functionally colocalized regions: Since interactions can occur by
chance in 3D, some intermingling regions may not be of bio-
logical relevance. By leveraging epigenetic marks and data from
TF binding and DNA accessibility, as well as gene expression,
we can determine interchromosomal regions that are colocalized
and coregulated.

Our predictions reveal intriguing patterns of chromosome
organization and have been validated by FISH experiments. Our
findings recapitulate known principles of chromosome interac-
tions, such as the tendency of gene-dense chromosomes to inter-
mingle more frequently (2, 30) and the enrichment of RNAPII
in intermingling regions (10), suggesting that RNAPII may play a
crucial role in establishing and maintaining chromosome interac-
tions. We observe that the clusters of interchromosomal regions
fall broadly into two categories, active and inactive, where active
clusters are enriched for active epigenetic marks and RNAPII
and inactive clusters are enriched for H3K9me3. Interestingly,
we found that active clusters are hotspots for TF binding sites,
with several TFs being shared among multiple chromosomes
within a cluster. These clusters contain genes with biologically
relevant GO terms. We established the predictive power of
our model through experimental validation. Using FISH experi-
ments we showed that the predicted intermingling chromosomes
interact consistently across a population of cells and that such
intermingling regions are enriched for active RNAPII. Our quan-
titative analysis provides evidence that TF hotspots in active clus-
ters are colocalized with active epigenetic modifications and with
RNAPII and have a significantly higher gene expression than
inactive clusters, suggesting that the relative positioning of the
chromosomes in the cell nucleus is optimized to facilitate the
clustering of coregulated genes, TFs, epigenetic modifications,
and transcriptional machinery.

Collectively, these findings suggest that the spatial organiza-
tion of the genomic material in the cell nucleus is optimized for
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transcription programs. The framework we present here is gen-
eral and can be applied to analyze any cell type. We showed by
experimentally validating the predictions from our model using
single-cell imaging methods that population-level genome-wide
contact and epigenetic data carry enough information to iden-
tify highly interacting regions. However, we anticipate that the
power of our method will be increased as more robust single-cell
genomic data become available. We believe that our quantita-
tive approach will provide a useful framework to gain insights
into the interplay between chromosome reorganization and reg-
ulation during processes such as cell differentiation, reprogram-
ming, or the maintenance of homeostasis.

Materials and Methods
Details about the methods used for processing the raw Hi-C matrices, the
LAS algorithm for identifying highly interacting regions, weighted cor-
relation clustering, classification into intermingling and nonintermingling

domains, the computation of fold enrichment of genomic features, the cell
culture and chromosome FISH protocols, and the methods and settings used
for confocal imaging and image analysis are provided in SI Appendix.

The code for interchromosomal network construction via LAS and for
the identification and analysis of clusters is available at https://github.com/
anastasiyabel/functional chromosome interactions. The code for performing
the image analysis is available at https://github.com/SaradhaVenkatachalapathy/
Chromsome-intermingling-region-indentifcation-and-characterisation-of-
protein-levels.

ACKNOWLEDGMENTS. A.B. was partially supported by NIH Predoctoral
Training Grant T32GM87232 and the National Science Foundation (NSF)
Graduate Research Fellowship under Grant 1122374. S.V., M.N., and G.V.S.
thank the Mechanobiology Institute, National University of Singapore, and
the Ministry of Education Tier-3 Grant Program for funding. C.U. was par-
tially supported by the NSF (1651995), the Defense Advanced Research
Projects Agency (W911NF-16-1-0551), and the Office of Naval Research
(N00014-17-1-2147).

1. Bolzer A, et al. (2005) Three-dimensional maps of all chromosomes in human male
fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157.

2. Lieberman-aiden E, et al. (2009) Comprehensive mapping of long-range interactions
reveals folding principles of the human genome. Science 326:289–293.

3. Bickmore WA, Van Steensel B (2013) Genome architecture: Domain organization of
interphase chromosomes. Cell 152:1270–1284.

4. Schmitt AD, Hu M, Ren B (2016) Genome-wide mapping and analysis of chromosome
architecture. Nat Rev Mol Cell Biol 17:743–755.

5. Dekker J, Mirny L (2016) The 3D genome as moderator of chromosomal communica-
tion. Cell 164:1110–1121.

6. Dixon JR, et al. (2012) Topological domains in mammalian genomes identified by
analysis of chromatin interactions. Nature 485:376–380.

7. Lan X, et al. (2012) Integration of Hi-C and ChIP-seq data reveals distinct types of
chromatin linkages. Nucleic Acids Res 40:7690–7704.

8. Iyer KV, et al. (2012) Modeling and experimental methods to probe the link between
global transcription and spatial organization of chromosomes. PLoS One 7:e46628.

9. Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase
suggests role in translocations and transcription-dependent associations. PLoS Biol
4:e138.

10. Maharana S, et al. (2016) Chromosome intermingling-the physical basis of chromo-
some organization in differentiated cells. Nucleic Acids Res 44:5148–5160.

11. Schoenfelder S, et al. (2010) Preferential associations between co-regulated genes
reveal a transcriptional interactome in erythroid cells. Nat Genet 42:53–61.

12. Papantonis A, et al. (2012) TNFα signals through specialized factories where respon-
sive coding and miRNA genes are transcribed. EMBO J 31:4404–4414.

13. Bantignies F, et al. (2011) Polycomb-dependent regulatory contacts between distant
hox loci in drosophila. Cell 144:214–226.

14. Papantonis A, Cook PR (2013) Transcription factories: Genome organization and gene
regulation. Chem Rev 113:8683–8705.

15. Chen H, et al. (2015) Functional organization of the human 4D nucleome. Proc Natl
Acad Sci USA 112:8002–8007.

16. Uhler C, Shivashankar GV (2017) Chromosome intermingling: Mechanical hotspots for
genome regulation. Trends Cell Biol 27:810–819.

17. Zhang Z, Li G, Toh KC, Sung WK (2013) 3D chromosome modeling with semi-definite
programming and Hi-C data. J Comput Biol 20:831–846.

18. Lesne A, Riposo J, Roger P, Cournac A, Mozziconacci J (2014) 3D genome reconstruc-
tion from chromosomal contacts. Nat Methods 11:1141–1143.

19. Varoquaux N, Ay F, Noble WS, Vert JP (2014) A statistical approach for inferring the
3D structure of the genome. Bioinformatics 30:i26–i33.

20. Segal MR, Bengtsson HL (2015) Reconstruction of 3D genome architecture via a two-
stage algorithm. BMC Bioinformatics 16:373.

21. Serra F, et al. (2015) Restraint-based three-dimensional modeling of genomes and
genomic domains. FEBS Lett 589:2987–2995.

22. Imakaev MV, Fudenberg G, Mirny LA (2015) Modeling chromosomes: Beyond pretty
pictures. FEBS Lett 589:3031–3036.

23. Wang S, Xu J, Zeng J (2015) Inferential modeling of 3D chromatin structure. Nucleic
Acids Res 43:e54.

24. Tjong H, et al. (2016) Population-based 3D genome structure analysis reveals driving
forces in spatial genome organization. Proc Natl Acad Sci USA 113:E1663–E1672.

25. Capurso D, Bengtsson H, Segal MR (2016) Discovering hotspots in functional genomic
data superposed on 3D chromatin configuration reconstructions. Nucleic Acids Res
44:2028–2035.

26. Zhu Y, et al. (2016) Constructing 3D interaction maps from 1D epigenomes. Nat Com-
mun 7:10812.

27. Dekker J, Misteli T (2015) Long-range chromatin interactions. Cold Spring Harb Per-
spect Biol 7:a019356.

28. Rao SSP, et al. (2014) A 3D map of the human genome at kilobase resolution reveals
principles of chromatin looping. Cell 159:1665–1680.

29. Shabalin AA, Weigman VJ, Perou CM, Nobel AB (2009) Finding large average subma-
trices in high dimensional data. Ann Appl Stat 3:985–1012.

30. Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L (2012) Genome architectures
revealed by tethered chromosome conformation capture and population-based mod-
eling. Nat Biotechnol 30:90–98.

31. Croft JA, et al. (1999) Differences in the localization and morphology of chromosomes
in the human nucleus. J Cell Biol 145:1119–1131.

32. ENCODE Consortium (2012) An integrated encyclopedia of DNA elements in the
human genome. Nature 489:57–74.

33. Roadmap Epigenomics Consortium, et al. (2015) Integrative analysis of 111 reference
human epigenomes. Nature 518:317–330.

34. Elsner M, Schudy W (2009) Bounding and comparing methods for correlation cluster-
ing beyond ILP. Proceedings of the NAACL HLT Workshop on Integer Linear Program-
ming and Natural Language Processing (Association for Computational Linguistics,
Stroudsburg, PA). Available at https://dl.acm.org/citation.cfm?id=1611638.1611641.
Accessed December 4, 2017.

35. Pombo A, Dillon N (2015) Three-dimensional genome architecture: Players and mech-
anisms. Nat Rev Mol Cell Biol 16:245–257.

36. Camps J, Erdos MR, Ried T (2015) The role of lamin B1 for the maintenance of nuclear
structure and function. Nucleus 6:8–14.

37. Guelen L, et al. (2008) Domain organization of human chromosomes revealed by
mapping nuclear lamina interactions. Nature 453:948–951.

38. Finlan LE, et al. (2008) Recruitment to the nuclear periphery can alter expression of
genes in human cells. PLoS Genet 4:e1000039.

39. Shachar S, Voss TC, Pegoraro G, Sciascia N, Misteli T (2015) Identification of
gene positioning factors using high-throughput imaging mapping. Cell 162:911–
923.

40. Stejskal S, et al. (2015) Cell cycle-dependent changes in H3K56ac in human cells. Cell
Cycle 14:3851–3863.

41. Das C, Lucia MS, Hansen KC, Tyler JK (2009) CBP/p300-mediated acetylation of histone
H3 on lysine 56. Nature 459:113–117.

42. Barski A, et al. (2007) High-resolution profiling of histone methylations in the human
genome. Cell 129:823–837.

43. Simonis M, et al. (2006) Nuclear organization of active and inactive chromatin
domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet
38:1348–1354.

44. Li H, Liu F, Ren C, Bo X, Shu W (2016) Genome-wide identification and characterisation
of HOT regions in the human genome. BMC Genomics 17:733.

45. The FANTOM Consortium and the RIKEN PMI and CLST (DGT) (2014) A promoter-level
mammalian expression atlas. Nature 507:462–470.

46. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: Paths
toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res
37:1–13.

47. Huang DW, Lempicki Ra, Sherman BT (2009) Systematic and integrative analy-
sis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–
57.

Belyaeva et al. PNAS | December 26, 2017 | vol. 114 | no. 52 | 13719

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1708028115/-/DCSupplemental/pnas.1708028115.sapp.pdf
https://github.com/anastasiyabel/functional_chromosome_interactions
https://github.com/anastasiyabel/functional_chromosome_interactions
https://github.com/SaradhaVenkatachalapathy/Chromsome-intermingling-region-indentifcation-and-characterisation-of-protein-levels
https://github.com/SaradhaVenkatachalapathy/Chromsome-intermingling-region-indentifcation-and-characterisation-of-protein-levels
https://github.com/SaradhaVenkatachalapathy/Chromsome-intermingling-region-indentifcation-and-characterisation-of-protein-levels
https://dl.acm.org/citation.cfm?id=1611638.1611641

