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ABSTRACT
With the hope of achieving real cardiovascular repair, cell-based therapy raised as a 
promising strategy for the treatment of cardiovascular disease (CVD) in the past two decades. 
Various types of cells have been studied for their reparative potential for CVD in the ensuing 
years. Despite the exciting results from animal experiments, the outcome of clinical trials is 
unsatisfactory and the development of cell-based therapy for CVD has hit a plateau nowadays. 
Thus, it is important to summarize the obstacles we are facing in this field in order to explore 
possible solutions for optimizing cell-based therapy and achieving real clinical application.
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INTRODUCTION

Cardiovascular disease (CVD), including 
heart diseases and stroke, is a leading cause 
of  death worldwide, account for one-third 
of  deaths throughout the world.[1,2] Although 
conventional treatments have made a great 
progress in attenuating disease progression 
and improving quality of  life, the prognosis 
of  CVD remains poor. Over the last 
two decades, stem/progenitor cell-based 
therapeutic strategies have emerged as a 
promising option that may ameliorate the 
prognosis of  CVD by repairing and replacing 
the damaged vascular and cardiac tissues, 
thereby repairing the damaged cardiac 
function.[3–5] Although numerous preclinical 
studies showed that stem/progenitor 
cell treatment can markedly improve the 
recovery of  myocardial infarction and 
vascular damage, the clinical efficacy of  
stem/progenitor cell therapy has been 
rather modest due to the impairment of  
the recruitment, survival, and regenerative 
capability of  stem/progenitor cells in CVD 
patients.[6–8] Thus, enhancement of  stem/

progenitor cell function has become the 
focus of  stem/progenitor cell research.

Numerous studies have examined a 
variety of  stem/progenitor cells with 
the goal of  searching for an optimized 
candidate for cell-based therapy to promote 
cardiovascular repair and regeneration for 
CVD. Skeletal myoblasts, bone marrow-
derived cells and mesenchymal stem cells 
were used as the cell candidates for cell-
based therapies for CVD.[9–11] Although the 
results from basic research are encouraging, 
the clinical trials revealed mixed outcomes. 
Until now, the application of  cell-based 
therapy is still far from reaching satisfactory 
results due to the limited number of  
transplanted cells that actually differentiate 
into cardiomyocytes or endothelial cells 
and incorporate into damaged vessel or 
hearts. Hence, researchers are focusing on 
trying to improve the reparative abilities of  
transplanted cells. In this review, we will 
summarize the challenges we are facing in 
cell-based therapy and the possible ways to 
improve the efficacy of  cell-based therapy 
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in cardiovascular diseases.

BARRIERS TO EFFECTIVE CELL 
THERAPY FOR CVD 

Cell-based therapy raised as a promising strategy for the 
treatment of  cardiovascular disease (CVD) in the past two 
decades. However, despite ample evidence from the literature 
indicating that the transplanted cells are incorporated into 
the vasculature and secrete angiogenic growth factors 
that support the developing microvasculature, the clinical 
efficacy observed in these trials remains modest.[3,6,12] Thus, 
it is important to summarize the obstacles we are facing 
in this field in order to optimize the efficacy of  cell-based 
therapy in CVD. 

The impaired homing ability of  circulating progenitor cells 
in patients with cardiovascular diseases contributes to the 
poor number of  cell retention in the damaged sites. Mixed 
cell type, inappropriate delivery routes, time and dose, which 
also limit the therapeutic outcomes.[13] Studies from our and 
other groups showed that the CXCR4-CXCR7 expression 
level is lower in patient with hypertension compared with 
the healthy volunteers, which leads to the low efficiency of  
EPC homing and vascular endothelial repair.[14–17] Gallagher 
et al. demonstrated that diabetes impairs EPC homing by 
reducing local release of  SDF-1α and NO in the sites of  
wound.[18] Moreover, EPCs isolated from patients affected 
by T1D and T2D showed an impaired migration in the 
presence of  SDF-1α compared to the healthy control 
subjects.[19] In patients with diabetes, high blood glucose 
causes not only a sharp decrease in the number of  EPCs 
in the peripheral circulation,[20] but also a decline in the 
ability to respond to SDF-1, migration, adhesion, and 
incorporation into angiogenesis sites. High blood glucose 
also impairs EPC proliferation and differentiation, and 
angiogenesis ability.[21,22] In addition, lipid metabolism 
disorders cause endothelial dysfunction by impairing the 
number and function of  EPC. Hypercholesterolemia and 
hypertriglyceridemia inactivate NO through the oxidative 
stress mechanism, which reduces the availability of  NO, 
resulting in a significant reduction in the number of  
circulating EPC and impaired function.[23] Hence, it is 
critical for the optimization of  cell-based therapy to address 
the defect of  stem/progenitor homing in patients with 
cardiovascular diseases.

The ischemic and inflammatory microenvironment in 
the ischemic or damaged site is hostile to the survival of  
implanted stem/progenitor cell. Thus, most of  the injected 
cells cannot survive because of  ischemia, hypoxia, and 
inflammatory response.[24–26] Heart failure patients with 
high circulating levels of  TNF-α, a potent proinflammatory 
cytokine, were associated with significantly lower EPC 

counts as compared with patients treated with TNF-α 
blocker.[27] Human recombinant CRP, at concentrations 
known to predict adverse vascular outcomes, directly 
inhibits EPC differentiation, survival, and function, the 
key components of  angiogenesis and the response to 
chronic ischemia. This occurs in part via an effect of  CRP 
to reduce EPC eNOS expression. The ability of  CRP to 
inhibit EPC differentiation and survival may represent an 
important mechanism that further links inflammation to 
cardiovascular disease.[28]

In addition, very few of  the transplanted (or mobilized 
endogenous) PCs differentiate into vascular cells to achieve 
functional integration and long-term engraftment, and this 
limited potential for differentiation into endothelial-lineage 
cells is believed to be one of  the major barriers to the 
success of  PC therapy.[12,29] In the ischemic myocardium, 
only a small portion of  recruited PC attain EC phenotype 
and incorporate into the vessels, whereas the majority 
of  PC remain quiescent and exert only a mild effect on 
neovascularization through paracrine mechanisms.[30] One 
of  theories is that most stem/progenitor cell, after recruited 
to the sites of  injury, remain in a relatively quiescent and 
inactive state even when their regenerative activities are 
needed. Thus, a better understanding of  how to activate 
stem/progenitor cell to commit to EC lineage is critical 
for developing more effective cell therapy.

STRATEGIES TO OPTIMIZE CELL-
BASED CARDIOVASCULAR REPAIR

Although cell-based therapy in cardiovascular disease 
has been widely studied for two decades, the application 
of  cell-based cardiovascular repair is limited by its low 
therapeutic efficacy and below expectation due to the 
reasons mentioned above. Therefore, researchers, including 
our groups, are exploring solutions to optimize cell-based 
therapy in CVD.  

Enhancing the recruitment and homing of stem/
progenitor cells
Stem/progenitor cell recruitment and homing is a multi-step 
endogenous physiologic process, which involves cell migration 
and is important for stem/progenitor-based cardiovascular 
repair. It is also a therapeutic target for the enhancement 
of  engraftment potential and reparative effect. Evidence 
from clinical studies demonstrated that CXCR4 signaling in 
endothelial progenitor cells from patients with coronary artery 
disease is impaired, which results in reduced neovascularization 
capacity of  EPCs.[17] This deficiency of  EPCs may contribute 
to poor outcome of  coronary artery disease.[31] Accordingly, 
SDF-1/CXCR4 axis has emerged as a novel therapeutic 
target in IHD. Up-regulation of  SDF-1/CXCR4 pathway 
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through various approaches could augment the therapeutic 
effect of  stem/progenitor cells. Studies from our group have 
shown that CXCR4 gene transfer augmented EPC migration, 
adhesion in vitro and enhanced in vivo reendothelialization 
capacity of  EPCs.[32] Physical exercise attenuates age-
associated reduction in endothelium-reparative capacity of  
EPCs by increasing CXCR4/JAK-2 signaling. In addition, 
diminished CXCR7 signal also contributes to the reduced 
in vitro functions and in vivo re-endothelialization capacity 
of  EPCs from hypertensive patients.[33] Upregulation of  
CXCR7 expression induced by gene transfer or lercanidipine 
treatment increased the endothelial repair capacity of  EPC 
in hypertension.[15]

On the other hand, overexpression of  chemokines or 
chemokine-coated scaffold implantation at the damaged 
sites or target tissues to increase the recruitment of  injected 
stem/progenitor cell had also been explored.[34] Researchers 
used ROS-sensitive nanoparticles to target release CXCL12 
in tissues with vascular injuries, which was shown to increase 
marrow stromal cell chemotaxis and homing at the target 
tissues.[35] Others have attempted to modulate the homing 
of  stem/progenitor cells by co-culture with other cells. 
It has been reported that co-culture CD34+ cell with 
porcine umbilical vein endothelial cells ex vivo can augment 
autologous CD34+ cell engraftment and reconstitution in vivo 
in a baboon model.[36, 37] Similar effect was also observed when 
co-culture bone marrow progenitor cell with primary human 
marrow endothelial cells in vitro in specified media conditions. 

Improving the survival and lineage 
differentiation of implanted cells
To improve the survival of  implanted cells in the 
hostile environment in the ischemic or damaged sites, 
pretreatments of  stem/progenitor cells under different 
conditions or with various cytokines and molecules before 
injection were studied. Reports from both basic research 
and clinical trial suggest that hypoxic preconditioning 
of  stem/progenitor cell can enhance cellular survival 
and therapeutic efficacy in ischemic tissues. Zhou et al. 
reported that hypoxic preconditioning-induced autophagy 

enhances the survival of  engrafted endothelial progenitor 
cells in ischemic limb.[38] The results from CHINA-AMI 
randomized controlled trial showed that intracoronary 
administration of  hypoxic preconditioned autologous 
BMCs markedly improved cardiac function and remodeling 
in AMI patients, without increasing the occurrence of  
major adverse cardiovascular events.[39]

Dr. Ali and his colleagues used 2,4-dinitrophenol (DNP) 
pretreatment to induce chemical hypoxia via inhibiting the 
electron transport chain and decreasing intracellular ATP 
production in MSC. They found that DNP treatment can 
activate a series of  survival, angiogenic, and cardiomyogenic 
factors in MSCs. Transplantation of  DNP treated MSCs 
into infarcted rodent hearts led to an increase in cell 
engraftment and cardiovascular differentiation, thereby 
improving cardiac performance and revascularization.[40] 
Zhao et al. reported that pretreated ESCs-derived Nkx2.5+ 

CPCs with irisin, a newly identified hormone and key 
metabolic regulator, for 24 hours before transplantation 
can enhance the reparative effect of  CPCs. Irisin treatment 
of  Nkx2.5+ CPCs enhanced CPC-derived cardiac lineage 
commitment and proliferation following reintroduction 
into the MI heart. Furthermore, irisin also increased 
neovascularization in Nkx.2.5+ CPC-engrafted MI 
myocardium. CPC transplantation in the post-MI heart 
demonstrated an anti-apoptotic effect in MI hearts, which 
was augmented by irisin treatment. CPC transplantation 
displayed an anti-apoptotic effect in MI hearts, which was 
also augmented by irisin treatment.[41] 

Ample evidence suggests that undifferentiated PC rely 
primarily on glycolysis for energy production and in order 
to adapt to the tremendous energy demand for biosynthesis, 
a metabolic alternation from glycolysis to MtOP is essential 
for cell differentiation.[42,43] Our group have identified 
a novel mechanism by which E2F1, a transcription 
factor and classic cell cycle regulator, suppresses BM 
PC oxidative metabolism and endothelial differentiation 
through expression of  the glycolysis enzymes PDK4/2. 
Replacement of  WT BM with E2F1–/– BM in mice 

Table 1: Challenges and strategies of cell-based therapy for cardiovascular disease
Challenges for cell-based therapy Strategies for cell-based therapy References 
The impaired homing ability and poor number 
of cell retention in the injured sites

Enhancing the function of SDF-1/CXCR4 axis [32]
Upregulation of CXCR7 expression [33]
Overexpression of chemokines or chemokine-coated scaffold 
implantation

[34, 35]

Co-culture with other cells [36, 37]
The harmful ischemic and inflammatory 
microenvironment in the damaged area

Hypoxic preconditioning of stem/progenitor cells or administration of 
hypoxic preconditioned autologous

[38, 39]

Pretreatment with different molecules such as DNP and irisin [40, 41]
Difficulty in differentiating into vascular cells 
to function

A metabolic alternation from glycolysis to MtOP [42, 43]
Regulation of the function of various proteins such as E2F1 and SIRT3 [44, 45]
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significantly increases the contribution of  BM PCs to new 
vessel formation, reduces infarct size, and improves cardiac 
function after MI. Thus, E2F1-mediated metabolic control 
impedes adult BM PCs from responding to angiogenic 
cues in the ischemic myocardial tissue.[44] In addition, we 
and others have confirmed that SIRT3 plays a key role in 
the occurrence and development of  vascular endothelial 
injury. We found that inhibition of  mitochondrial 
oxidative damage improves re-endothelialization capacity 
of  endothelial progenitor cells via SIRT3 (Sirtuin3)-
enhanced SOD2 (Superoxide Dismutase 2) deacetylation 
in hypertension.[45]

Cell-based therapy in cardiovascular disease has been 
intensively studied worldwide for over two decades. 
Although significant progress had been made in this field, 
challenges and doubts raised accompanied and limits 
the clinical application of  cell-based therapy. To achieve 
successful cardiovascular repair by cell-based therapy, 
several major obstacles, including insufficient number of  
implanted stem/progenitor cell, low cell survival in the 
damaged tissue, and impaired reparative ability of  stem/
progenitor cell in patients with cardiovascular disease, 
needed to be overcome. Various strategies had been 
employed to optimize cell-base therapy and data from 
our and other groups are promising. However, we are 
still far away from reaching the goal of  developing a safe, 
effective, and applicable cell-base treatment for CVD. More 
efforts are required to further explore and optimize stem/
progenitor cell-base therapy.  
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