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Abstract: The aim of this study was to assess the contribution to the sensitivity of the French ante-
mortem surveillance system for bovine tuberculosis in cattle of each of the system’s components
(periodic screening, epidemiological investigations, and screening exchanged animals), on a local
scale defined by administrative areas. These components were individually assessed in previous
studies by scenario tree modeling. We used scenario tree modeling at the herd level and combined
the results to evaluate the overall sensitivity of the ante-mortem surveillance system. The probability
to detect at least one infected herd was consistent with the location of the outbreaks detected in
2016. In areas with a high apparent incidence, the probability of an infected herd to be detected was
satisfactory (for an infected herd there was a 100% probability to be detected over a two-year period).
Periodic screening was the most important component for the overall sensitivity in infected areas. In
other areas, where periodic screening had stopped, tracing-on epidemiological investigation was the
most sensitive component of the system. Screening exchanged animals had a negligible part in the
overall sensitivity of the surveillance system.

Keywords: bovine tuberculosis; scenario tree modeling; surveillance; sensitivity

1. Introduction

Bovine tuberculosis (TB) is an infection caused by Mycobacterium bovis, M. tuberculosis,
or M. caprae. TB is a chronic infection that is mostly asymptomatic in cattle. In developed
countries, with the reduction of TB prevalence in cattle and milk pasteurization, TB is no
longer a public health issue [1–3] but an economical one. Indeed, officially the TB-free
status is important to facilitate livestock exchange between countries within the European
Union. Since 2001, France is officially TB-free, meaning that its incidence is lower than
0.1%. Nevertheless, despite 70 years of TB control measures, TB eradication is still not
achieved and TB incidences are increasing in the South-Western areas, putting the TB-free
status of France in jeopardy. In this context, the evaluation of the French TB surveillance
system in cattle was essential for the identification of improvement leverage.

In France, TB surveillance in cattle relies on many components: the post-mortem
surveillance system (looking for TB-like lesion on every culled animal) and the ante-
mortem surveillance system composed by periodic screening with the intradermal cervical
tuberculin test (ICT), epidemiological investigations (tracing-on and tracing-back inves-
tigations), and screening of exchanged animals with ICT. We studied the ante-mortem
surveillance system.

For periodic screening, three mandatory protocols can be used. They all begin with
the screening of animals older than 24 months in the herd with ICT (single ICT (SICT) or
comparative ICT (ICCT) depending on the area). If at least one of the cattle has a non-
negative result with this ICT, the herd is considered as “suspect” of TB and investigations
follow. In the “strict” protocol, the animals with non-negative results are culled to perform
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laboratory analyses (histology, PCR, and culture); if TB is not detected, the herd will be
screened again six weeks later with ICCT. In the “compliant quick path” protocol, animals
with non-negative results are culled and the results of the laboratory analyses performed
define the status (infected or uninfected) of the herd, without a second screening with
ICCT in the herd. In the “compliant slow path” protocol, non-negative animals are tested
with the interferon gamma test (IFN): if they obtain a positive result, they are culled for
laboratory analyses; if they are not, they are screened a second time with ICCT.

In herds found to be linked with an outbreak by tracing-back investigations (upstream
link), the “strict” protocol of periodic screening is used. Downstream link herds (from
tracing-on investigations) can be investigated with various protocols, depending on the
linked animal (if it is still present in the herd or not). If the linked animal is no longer in
the herd, the strict protocol of periodic screening is used. If the linked animal is still in the
herd, two protocols can be used: the “trace and cull” protocol leading to the systematic
culling of this animal, whereas in the “trace and test” protocol the linked animal is culled
only if it obtained a non-negative result with an ICCT.

The screening of exchanged animals is performed with SICT or ICCT. It is applied
when the time between the departure of the selling herd and the arrival of an animal at the
buyer’s herd exceeds six days, or when the animal comes from a herd classified as “at risk”.

Each component of the TB ante-mortem surveillance system was evaluated separately
in previous studies [4–6]. In this study, the ante-mortem surveillance system, as a whole,
was evaluated at the administrative areas’ level. The objective was to estimate its sensitivity
in each area and to identify the component(s) contributing the most to the surveillance
system’s sensitivity.

2. Materials and Methods

A scenario tree was used with a stochastic modeling approach allowing to account
for the uncertainty and the variability of the parameters. In this method, a scenario tree
describing each possible pathway of the studied surveillance system is developed. Factors
influencing the probability of infection or the probability of detection must be introduced
into the tree as category nodes. From each node, one issues as many branches as there are
categories. The infection node has two branches: infected/uninfected. Detection nodes
are mostly test results. Once the tree is complete, it must be implemented: a probability
of occurrence must be attributed to each branch of the tree. The probability of occurrence
of each pathway is calculated by multiplying the probability of occurrence of each of its
branches. Finally, the global sensitivity of the system can be calculated by adding the
probability of occurrence of all pathways leading to the detection of the infection.

Previously constructed trees for each of the ante-mortem surveillance components
were re-used and combined into an overall tree presented in Figure 1. The scenario tree was
set up from published studies, experts’ opinion (in particular the national coordinator of
TB surveillance), and/or field data. The field data were extracted mainly from the SIGAL
database which centralized the results of TB surveillance and control at the herd level, and
the BDNI database that registers birth and death dates, as well as herds identification and
movements of all bovine living in French herds.
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Figure 1. Scenario tree used to model the French ante-mortem TB surveillance and its various components. * Strict protocol =
protocol to investigate TB suspicions following periodic screening with ICCT [4,6]. ** “trace and cull” protocol = tracing-on
investigation protocol in which linked animals (= bovines bought from the outbreak) are systematically culled [5]. *** The
herd is either not linked to any outbreak or linked by neighboring or by selling animals to the outbreak. In this last case, no
further investigations are led because the herd had already been screened during periodic screening.

2.1. Category Nodes

The category nodes characterizing the type of herd (production type, size, herd
turnover) have been retained because of their impact on the probability of infection and/or
of detection. The production types could be dairy, beef, or mixed (dairy and beef). The herd
size was defined depending on the production type as small or big. The limit defining these
two categories was the mean number of females older than 24 months of the concerned
production type (74 for dairy, 66 for beef, and 124 for mixed herds, according to the BDNI
database). The turnover was defined as the number of animals introduced in the herd
within the year (excluding births) divided by the mean number of animals in the herd
within the year. Two herd turnover categories were defined: low and high turnover, with
a limit at 40% (mandatory limit in France from which herds have additional constraints
regarding TB surveillance).

A category node “surveillance group” was added. This node corresponded to the
classification of the herd by animal health authorities as a former outbreak or as a herd
“at risk”. This classification influences the screening protocol used and the surveillance
components applied in the herd. Indeed, in the event of suspicion following periodic
screening, a former outbreak (up to 10 years ago) or a herd classified as “at risk” is
systematically investigated using the “strict” protocol. In addition, an annual screening is
carried out in herds classified as “at risk” (whereas in other herds the screening could be
spaced out) and the animals sold by this herd type are screened with ICCT.
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2.2. Likelihood for a Herd to Be Classified “at Risk”

Although the animal health authorities at the national level clearly define the situations
in which herds must be classified as “at risk”, it appears field practices differ depending
on the administrative area (personal communications of the national TB coordinator and
animal health director of health authorities’ services). Unfortunately, there is no centralized
exhaustive list of herds classified as “at risk” that would have made it possible to easily
estimate the probability of a herd being classified as “at risk” in each area.

On the field, the following herds are generally classified as “at risk”: former outbreaks
less than three years ago (inclusive) and herds linked with an outbreak by the purchase of
an animal (downstream linked herd), in which the infection was not detected and which
have kept the linked animal (“trace and test” protocol) (personal communication of the
national TB coordinator). The other types of situations in which a herd is considered as
“at risk” are evaluated on a case-by-case basis and were not included in our model. In
some areas, herds with a high turnover rate are classified as “at risk” but are only screened
for introduced animals in order to protect the herd from the possible introduction of TB.
We therefore excluded them from the “at risk” classification. The probability for a herd
of type t (defined by the type of production, the size, and the turnover of the herd) of a
specific area to be classified as “at risk” was estimated by summing the probability for such
a herd to have had a former outbreak (1–3 years) (determined from SIGAL database for the
year 2016) with the product of: (i) the probabilities for the same herd to be a downstream
linked herd (cf. corresponding paragraph); (ii) the probabilities for the same herd to be
investigated by the “trace and test” protocol (probability estimated at 0.05 by experts); and
(iii) the probability that the linked animal is still present in the herd and that it has obtained
a negative result on ICCT test.

2.3. Probability for the Herd to Be a Former Outbreak Older Than 3 Years

For each area and for each type of herd, the probability that a former outbreak in the
herd was more than three years ago was modeled by a fixed probability corresponding to
the proportion existing in 2016 in each area (SIGAL database).

2.4. Adjusted Relative Risks of Infection

For each of the factors identified as affecting the probability of a herd being infected
(herd size and herd turnover, herd surveillance group: “at risk” or previous outbreak older
than three years), an adjusted relative risk of infection was estimated to account for their
higher probability of infection. First, we modeled multiplier coefficients reflecting the
over-risk of infection caused by each of these factors.

Many studies have shown a statistical association between the herd size and the
probability of a herd becoming infected [7–14]. Most of these studies estimated ORs
representing the increased risk for a herd to be infected when increasing the herd size by
one log unit [9–11] or when comparing size classes with very small herds [12], which was
not easily incorporated into our model based on a small/large herd binary distinction.
We therefore used only the results of the study that compared herd in a binary manner
(large vs. small) [13]. We thus modeled the multiplier coefficient reflecting the over-risk
of infection in large herds (Cbig) as an asymmetric normal distribution Nasym (mean = 2;
CI95% min limit = 1.4; CI95% max limit = 3).

Regarding the influence of herd turnover, most studies focused on the purchase of
animals from an infected market or herd [11,14] and obtained ORs of 1.95 [1.05–3.63]95% CI
and 2.6 [1.20–5.63]95% CI, respectively. However, one study looked at the number of animals
purchased regardless of their origin and showed that purchasing more than 27 animals per
year increased the probability of a herd being infected (OR = 1.23 [1.03–1.49]95% CI) [15].
This number of 27 animals purchased per year corresponds to a turnover higher than 40%
for all herds with less than 68 animals. This was fairly close to the average herd size of beef
and dairy herds in our model. We therefore used the results of this publication to model
the multiplier coefficient reflecting the impact of a high turnover on the probability of a
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herd being infected (Chigh turnover), using rounded values to account for the uncertainty
in this coefficient. Thus, Chigh turnover was modeled by an asymmetric normal law Nasym
(mean = 1.2; CI95% min limit = 1; CI95% max limit = 1.5).

Finally, some studies highlighted the TB history of the herd as a risk factor for infection,
notably in England [12] and Belgium [16,17] (coefficient estimated at 2). Similarly, a French
study had previously demonstrated an over-risk of infection (OR of approximately 80) in
former outbreaks cleared from infection by selective culling (compared to those cleared by
total culling) [18]. However, this study had been conducted using old data from selective
culling protocols that were different from those used at the time of our study and were
less effective. Nevertheless, given the capacity of resistance of the mycobacterium in the
environment, it seemed reasonable to assume that former breakdowns in France had an
over-risk of TB infection. From the SIGAL data available for the years 2014 to 2016, we
estimated an over-risk of infection coefficient for former outbreaks (Crisky) by grouping
herds either by areas (average coefficient of 1.8) or by herd type (average coefficient of
3). The coefficients varied each year and the amount of data available did not allow us to
highlight significant differences between herd types or areas. We therefore modeled this
coefficient, regardless of the area and the herd type, using a Pert distribution law with a
minimum value of 1 (absence of over-risk of being infected), a most probable value of 2,
and a maximum value of 10 (maximum coefficient observed in the areas), to represent the
diversity of the possible situations.

As data on herds classified as “at risk” were not available, and as the “at risk” herds
included former outbreaks less than three years old, we assumed that the “at risk” herds had
an over-risk of being infected of the same order as that of former TB outbreaks. We therefore
used the same coefficient (Crisky) to model the influence of the “at risk” classification on
the probability of a herd being infected with TB.

In the model, the relative risk of TB infection (RRi) for each herd category defined by
size, turnover, and surveillance group, was estimated as shown in Table 1.

Table 1. Calculation of the relative risk of TB infection for each herd category (RRi) used in the
scenario tree modeling ante-mortem TB surveillance on a herd.

Size Turnover Surveillance Group RRi

Small

<40%

At risk Crisky

Former outbreak > 3 years Crisky

None 1

≥40%

At risk Chigh turnover × Crisky

Former outbreak > 3 years Chigh turnover × Crisky

None Chigh turnover

Big

<40%

At risk Cbig × Crisky

Former outbreak > 3 years Cbig × Crisky

None Cbig

≥40%

At risk Cbig × Chigh turnover × Crisky

Former outbreak > 3 years Cbig × Chigh turnover × Crisky

None Cbig × Chigh turnover

Cbig: coefficient modeled by an asymmetric normal law Nasym (mean = 2; CI95% min = 1.4; CI95% max = 3).
Chigh turnover: coefficient modeled by an asymmetrical normal distribution Nasym (mean = 1.2; CI95% min = 1;
CI95% max = 1.5). Crisky: coefficient modeled by a Pert distribution law: Pert (min = 1, mean = 2, max = 10).
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Finally, for each herd category, the adjusted relative risk (Ari) was calculated according
to Equation (1) so that the sum of the twelve calculated adjusted relative risks was equal
to one.

Ari =
RRi

∑k
j=1 RRj× PrPi

(1)

where k is the number of branches, PrPi the proportion of herds belonging to the i category,
i being one of the herd categories defined by the size, the turnover, and surveillance group
of the herd.

2.5. Probability of Infection

In a first approach, the areas were classified into three groups according to the number
of outbreaks detected between 2011 and 2016 (0–5 outbreaks, 5–10 outbreaks, and more
than 10 outbreaks). The prevalence in each group was set at 0.01%, 0.02%, and 0.6%,
respectively, which corresponds to the average apparent incidence in 2016 in each group
(SIGAL database). Details by areas are provided in Appendix A, Table A1. Subsequently,
a further evaluation was carried out by setting the prevalence at 0.1% (the European
threshold for maintaining TB-free status) for all areas, in order to compare the effectiveness
of ante-mortem surveillance at equal prevalence.

The residual probability of infection of a herd was determined in each branch of the
model by multiplying the prevalence with the adjusted relative risk corresponding to the
category of the herd.

Intra-herd prevalence was modeled like in the previous studies [4,5] by a Pert distribu-
tion law (Pert (min = 0.008, mode = 0.0094, max = 0.031)) based on knowledge of intra-herd
prevalence in French herds.

2.6. Periodic Screening on Herds
2.6.1. Likelihood of a Herd Being Subject to Periodic Screening

For herds not classified as “at risk”, the probability of being subjected to periodic
screening was modeled, for each area, by a value set according to field data. Indeed, we
used the number of herds actually screened for the 2016–2017 screening campaign (SIGAL
database) and the number of existing herds in the department on 1 January 2016 (extracted
from the BDNI database). For herds classified as “at risk”, which are screened annually,
this probability was set to one.

2.6.2. Periodic Screening Protocol Used

In herds classified as “at risk” and in former outbreaks, the “strict” protocol is system-
atically used. In other herds, the protocol used is conditioned by the results obtained to the
first ICCT screening (ICCT1). Therefore, an additional detection category node, entitled
“ICCT results”, which corresponds to the ICCT1 results of the herd, has been added to
the tree. Three branches are derived from this node: (i) “At least one ICCT1 positive”,
which is continued with the “strict” protocol; (ii) “All results are negative”, which is contin-
ued with no further investigations; and (iii) “At least one doubtful ICCT but no positive
ICCT”, which is continued with either the “compliant quick path” or “compliant slow
path” protocol (Figure 1).

The probability of a herd of size N obtaining only negative results in the periodic
screening was calculated based on the sensitivity and specificity of the ICCT (modeled
as presented in a previous study [6] (respectively, Nasym (mean = 0.74; CI95% min = 0.43;
CI95% max = 0.95) and Nasym (0.99; 0.80; 100), and according to Equations (2) and (3) for
an infected herd (I) and an uninfected herd (NI), respectively:

p (all negative I) = (1 − SeICCT)
N × pr_intra−herd × SpICCT

N × (1 − pr_intra−herd) (2)

p (all negative
∣∣∣ NI) = SpICCT

N (3)
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For a herd of size N, the probability of obtaining at least one positive ICCT at periodic
screening was calculated according to Equations (4) and (5) for an infected herd (I) and an
uninfected herd (NI), respectively:

p (≥ 1 ICCT + |I)
= 1− (1 − Raw SeICCT)

N × pr_intra−herd

× Raw SpICCT
N × (1−pr_intra−herd)

(4)

p (≥ 1 ICCT +
∣∣∣NI) = 1 − Raw SpICCT

N (5)

Raw SeICCT and raw SpICCT are the sensitivity and specificity of the test when doubtful
results are considered negative, whose modeling (raw SeICCT = SeICCT × 0.6 and raw
SpICCT = 1 − [(1 − SpICCT) × 0.15]) has been deduced from French data as detailed in
calculations A1.

The probability of a herd obtaining at least one non-negative ICCT but no positive
ICCT was the complementary to one of the two previous probabilities.

When at least one ICCT is non-negative but none is positive, the protocol applied can
be either the “compliant quick path” or the “compliant slow path” protocol. The choice of
protocol is then made on a case-by-case basis by decision of the health authorities. We thus
estimated, from the SIGAL data on the screening campaign 2015–2016, that in 37 areas, the
“compliant quick path” protocol was systematically used, whereas it was less frequently
applied in areas 13 (11%), 2B (7%), 21 (7%), 66 (0%), and 87 (79%). For the areas in which
we did not have enough data (54 areas), the probability of using the “compliant quick path”
protocol was modeled by a Pert distribution law, with parameters set according to expert
opinion (national TB coordinator): Pert (min = 0.2; mode = 0.4; max = 0.6).

2.6.3. Sensitivity and Specificity of Protocols

In the model, the probabilities of obtaining a positive or negative result for the “strict”
protocol, used in the “former outbreak” and “at risk” categories, were taking into account
the adaptations of ICCT practices by the veterinarian, as described in a previous study [6].

For other herds, these probabilities were estimated conditionally of having at least one
positive result on the ICCT1 for the “strict” protocol and conditionally of having at least
one non-negative result on the ICCT1 but no positive result for the “compliant quick path”
and “compliant slow path” protocols according to the method described in calculations A2.

2.7. Epidemiological Investigations
2.7.1. Likelihood of a Herd Having a Downstream Link to a TB Outbreak

For each area, we randomly sampled 2000 herds of each production type in the BDNI.
For each of these herds, we estimated their size on 1 January 2016 and their turnover rate on
the same date, in order to have a sample of herds for each herd type in each area. For each
herd, the list of animals purchased between 1 January 2010 and 1 January 2016 (i.e., over a
five-year period) and the identification numbers of the herds of origin of these animals as
well as their size, production type, turnover rate, and administrative area were extracted
from the BDNI. Thus, for each herd in the sample, the herds that could potentially cause a
downstream link in 2016 were identified (“seller herds”). The probability for each of these
herds to experience an outbreak in 2016 was estimated by multiplying the prevalence set in
the model for the area to which they belonged (see Section 2.5) by the adjusted relative risk
associated with the type of herd (see Section 2.4). Then, for each of the sampled herds, the
probability that at least one of its seller herds will experience an outbreak in 2016—thus
corresponding to the probability for the sample herd to be a downstream link to a TB
outbreak—(p_downstreamlink) was estimated using Equation (6), where p_outbreakk was
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the probability for the kth vendor herd to experience an outbreak in 2016 and k was the
number of vendor herds:

p_downstreamlink = 1 − ∏
k
(1 − p_outbreakk) (6)

Thus, for each herd type in each area, the minimum, maximum, and average values of
the probability for a herd to be a downstream link in 2016 were estimated (Figure 2) and
were used as parameters for Pert distribution laws to model this probability in the model.
When data were missing in an area for a herd type (because the herd type had little or no
representation in the area), this probability was set to zero.

Figure 2. Mean probability of a herd having a downstream epidemiological link to a TB outbreak
used in the scenario tree.

2.7.2. Investigation Protocol Used for the Downstream Link

The probability of using the “trace and cull” protocol for the investigation of a down-
stream link instead of the “trace and test” protocol was set at 95%, based on expert opinion
(national TB coordinator). The sensitivity and specificity of these protocols were estimated
at each iteration according to the scenario trees presented in a previous study [5].

2.7.3. Likelihood of a Herd Having an Upstream Link to a TB Outbreak

In 2016, 576 epidemiological links were registered in the SIGAL database. From these
data, the probability of a herd of a given area and type being epidemiologically linked
to a TB outbreak was estimated. If the estimated probability was less than or equal to
the probability of the downstream link (Section 2.7.1)—which was the case for 56% of the
areas—then the probability for a herd to be linked with a TB outbreak was supposed to
be equal to the estimated probability of the downstream link (see Section 2.7.1) (implying
the hypothesis of the absence of upstream or neighborhood links). The probability of
being implicated in an upstream or neighborhood link was deduced by subtracting the
probability of being in a downstream link from the probability of being in a link (all types
of links taken together, estimated from the SIGAL database). The investigation of upstream
or neighborhood links was modeled according to the “strict” protocol [4,6].

2.8. Screening of Exchanged Animals

Screening of exchanged animals is applied when the time between the departure
of the selling herd and the arrival of an animal at the buyer’s herd exceeds six days,
as well as in herds classified as “at risk”. Exchanges that exceeded six days were not
taken into account in our model due to their rarity (personal communication from the
national TB coordinator), the lack of data about them, and the very low probability that
they could lead to the detection of infection in a herd. Reliable centralized data were not
available on the proportion of animals sold from “at risk” herds that are actually screened.
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Therefore, we assumed that all animals sold from herds classified as “at risk” (with the
exception of animals for fattening) were screened. For this herds the proportion of animals
sold to another herd was estimated for each herd type of each area thanks to the BDNI
data base using 2016 data. The probability of an animal being sold during the year was
therefore modeled according to the area and type of herd, using an asymmetrical normal
law designed to correspond as closely as possible to the distribution observed in the sample
corresponding to the type of herd and the area concerned.

The probability for each tested animal to be found TB-infected was modeled the
same way than for the compliant quick-path protocol of periodic screening (accounting for
ICCT sensitivity considering veterinarians’ practices and laboratory analyses results of all
animals with non-negative result with the ICCT (histology, PCR, and bacteriology)) [4,6].

2.9. Calculations: Likelihood of Detecting Infection in Areas

For each area, the probability of occurrence of each branch of the scenario tree was
calculated by multiplying the probabilities of occurrence of the sub-branches composing it.
Then, the probability of detecting TB in a herd in the area (p (I ∩ D) herd) was estimated
by summing the probability of occurrence of the branches leading to the detection of
the infection in an infected herd. This probability was thus estimated for each area, for
a prevalence of 0.1% and for a prevalence set according to the group to which the area
belonged (see Section 2.5). Finally, the probability of detecting an infection in each area (i.e.,
the probability of detecting at least one infected herd in the area) was estimated according
to Equation (7), where N is the number of herds in the area:

probability of detection = 1 − (1− p (I ∩ D)herd)
N (7)

In addition, the contribution of each component of the ante-mortem surveillance in
the probability of detecting TB infection was estimated for each area.

3. Results
3.1. Effectiveness of the TB Ante-Mortem Surveillance System

The higher the set prevalence, the greater is the likelihood of detecting a TB infection
in the area (Figure 1). At equal prevalence (Figure 3), area 64 was the area with the highest
probability of detection, followed by area 24. These areas are the ones with the most active
TB surveillance (all components of the surveillance system are applied there). The Western
areas had a good probability of detecting infection for a fixed prevalence of 0.1%, in contrast
to the Central and Southeastern areas.

The mean probability for an infected herd to be detected in a given year was highest
in areas with high surveillance pressure (periodic screening) (Figures A2 and A3).
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Figure 3. Estimation of the probability of detecting, via ante-mortem surveillance, at least one
infected herd in the French administrative areas for a prevalence set at 0.1%. Numbers on the map
are the administrative numbers on the areas. For more clarity, only the number of areas mentioned in
the text or presented in Figures 4 and 5 are given.

3.2. Contribution of Each Component in the Overall Sensitivity of the Ante-Mortem
Surveillance System

In all areas, the contribution of screening exchanged animals to the overall system
sensitivity was negligible (maximum 0.1% of the overall sensitivity).

In the areas, where periodic screening is stopped (50 areas), 100% of the overall
sensitivity was ensured by tracing-on investigations, except for two areas (07 and 15), in
which tracing-back investigations also contributed to the overall sensitivity.

In areas without recent infection, tracing-on investigations provided the majority of
the sensitivity of the ante-mortem surveillance system, as shown in Figure 4, which is
focused on areas where the probability of detecting TB infection was greater than 25%. In
areas where periodic screening was maintained in 2016 (areas 17, 31, 32, 46, 65, 79, and
87), this component contributed to a significant proportion of the overall sensitivity of
the system.

In areas with a high apparent prevalence (0.6%), periodic screening was the component
most likely to detect an infected herd. In those areas, the tracing-on investigations also
contributed to a non-negligible proportion of the overall sensitivity of the system (Figure 5).
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Figure 4. Contribution of each surveillance component in the probability of detecting TB infection, for a prevalence of 0.1%
for areas not recently infected and for which this probability is greater than 25%.

Figure 5. Contribution of each surveillance component in the probability of detecting TB infection
for areas with a prevalence of 0.6%.

4. Discussion
4.1. Material and Method

The probability of a herd being classified as “at risk” was estimated by calculation
using the definition of “at risk” herds most commonly used in the field. However, each area
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seemed to have its own interpretation of the risk classification. It is therefore possible that
the number of herds classified at risk was overestimated for some areas and underestimated
in others, leading, respectively, to an over- and an under-estimation of the overall sensitivity,
in particular of the sensitivity provided by periodic screening.

We assumed that the herds classified as “at risk” had the same over-risk of infection
as the former TB outbreaks. This hypothesis can be discussed for outbreaks classified as
“at risk” following the investigation of a downstream epidemiological link. Indeed, in
these herds, contrary to former outbreaks, TB was never present, and the classification
as “at risk” is therefore based solely on the holding of an animal from an outbreak herd
that obtained a negative result on ICCT and was not culled. Unfortunately, there are no
data to determine the value of the over-risk caused by this epidemiological link compared
to previous outbreaks. However, the proportion of herds classified as “at risk” following
a downstream link without culling of the linked animal (“trace and test” protocol of the
tracing-on investigation) is a priori low because this protocol is rarely chosen (personal
communication of the national TB coordinator). The majority of “at risk” herds are therefore
former TB outbreaks, which justifies our hypothesis. Former outbreaks classified as “at
risk” are more recent (equal or less than three years old) and could therefore have a higher
risk of infection than older former outbreaks (4 to 10 years old). Unfortunately, current data
and studies under French conditions were insufficient to estimate this possible difference.

The prevalence set in each area to estimate the effectiveness of the system according to
the level of infection in the area was based on actual data of the average apparent incidence
observed in 2016 in each group of areas. In France, the prevalence and incidence are not
exactly equal since some herds may remain outbreaks for up to three years (maximum
duration observed for selective slaughter [19]); however, these herds are not concerned by
the surveillance measures because infection has already been detected there, and they are
therefore in the sanitation phase (total or selective culling).

The probability for a herd to be screened was determined based on the data available in
SIGAL and BDNI databases for the 2016–2017 periodic screening campaign. The percentage
of herds tested that was registered under SIGAL was consistent with the official screening
rates. For some areas, it is possible that some herds registered as subject to periodic
screening actually correspond to herds undergoing monitoring (i.e., “at risk” herds), which
would lead to an overestimation of the proportion of herds subject to periodic screening
and, therefore, of the sensitivity provided by this component of the surveillance system.
Furthermore, since this work was carried out, screening rates have changed in some areas,
notably by stopping the screening. Our estimates should therefore be updated each time
the screening rate changes in an area.

For the protocols used for periodic screening, we have simplified the decision-making
scenario. Indeed, the choice of the protocol to be applied is made on a case-by-case basis
according to two main criterions: the surveillance category of the herd and the results
obtained from the ICCT1. They allow a qualitative estimate of the probability that the
suspect herd is actually infected. A strong suspicion (“at risk” or “former outbreak herd
and / or positive result on ICCT1) imply the use of the “strict” protocol. A low suspicion
implies the use of the “compliant quick path” protocol or the “compliant slow path”
protocol). Other criterions (like the presence of infected wildlife in the area) are used for
this qualitative estimate, but we did not account for them in our model to avoid its over-
complexification. Therefore, it is possible that we slightly underestimated the proportion
of strong suspicions and thus the use of the “strict” protocol, which was the most sensitive
protocol [4,6], resulting in an underestimation of the overall sensitivity of the system,
particularly in the South-West areas, where wildlife is particularly infected.

SIGAL data were used to model the probabilities of using the “compliant quick path”
protocol and the “compliant slow path” protocol in cases of low suspicion. We deduced
the protocol used from the test results registered in SIGAL for suspect herds in these areas.
However, these results are sometimes missing and we were therefore only able to identify
the protocols used for 58% of the 1539 suspect herds recorded in SIGAL following the
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2015–2016 screening campaign. Thus, the estimated proportions of use of each protocol
may have been far from the reality in the field. That may have led, in some areas, to a
slight overestimation of sensitivity if the use of the “compliant quick path” protocol was
overestimated or an underestimation in the opposite case.

In France, veterinarians’ ICT practices can change from one area to another [20]. We
took into account the diversity of veterinarians’ practices but we were unable to do it
conditionally to the area [6]. In order to improve the estimation of the overall sensitivity
of the system, it would therefore be necessary to carry out more in-depth sociological
studies in a few areas of interest. That will allow us collecting more data specific to these
areas, which would make it possible to obtain an estimate closer to the field reality and
to reduce the uncertainty of the estimates. Our model therefore allows us to compare the
effectiveness of the system in each area with supposedly equal veterinarians’ practices,
which is not realistic.

We assumed that all animals sold from herds classified as “at risk” (with the exception
of animals for fattening) were screened. This assumption is probably optimistic for some
areas. Indeed, checking whether an animal comes from an “at risk” herd is currently very
tedious via SIGAL (as it requires handling that takes 10 to 15 minutes per animal). In some
areas, such as area 21, a person works full time on this verification but this is an exception.
The probability of detecting infection through the screening of animals sold by “at risk”
herds has therefore been overestimated in most areas.

The probability for a herd to be epidemiologically linked (downstream, upstream,
or neighborhood link) was estimated by the herd type and for each area from SIGAL
database, but data on the origins of the suspicion were not available for about a quarter of
the 1954 suspicions registered under SIGAL during 2016. The number of suspicions due to
investigations of epidemiological links was therefore probably underestimated, causing the
underestimation of the probability for a herd to be upstream linked or neighborhood linked
(as this probability was deduced by subtracting the probability of being downstream linked
from the probability of being epidemiologically linked). However, upstream epidemiologi-
cal links are often investigated during the following year’s periodic screening campaign
and were therefore indirectly taken into account in the “periodic screening component” of
the model. In addition, neighborhood links only exist in areas with domestic or wild TB
outbreaks. In these areas, annual screening is generally in place, at least in the areas around
the outbreaks, and a herd already tested in the same year as part of the periodic screening
will not be screened again in the event of a neighborhood link. It thus seems consistent
that the majority of the epidemiological links investigated are downstream links.

In addition, in some areas, the probability of an epidemiological link (downstream,
upstream, and neighbourhood) inferred from SIGAL was lower than the probability of a
downstream link estimated from BDNI data and the apparent incidence in each area. This
can be explained either by a failure to record in SIGAL database the herds investigated
following an epidemiological link, or by a real failure to investigate links in these areas.

To conclude the discussion of the method, Table 2 summarizes the over- and underes-
timated parameters of the model.

Table 2. Summary of over- and underestimated parameters.

Overestimated Parameters Underestimated Parameters

+ probability for a herd to be “at risk”
+ for some areas, proportion of herds subject to periodic screening
+ probability for animals sold from “at risk” herds to be screened

- proportion of use of the “strict” protocol (particularly
in the South-West)

- probability for a herd to be an upstream or
neighbourhood link
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4.2. Results
4.2.1. Effectiveness of the Ante-Mortem Surveillance System

The probability of detecting at least one infected herd estimated for each area
(Figure 1) is consistent with the location of the outbreaks detected in 2016 (Figure A4).
Indeed, outbreaks were detected in areas for which the probability of detecting TB was
considered high, whereas in areas with a low probability of detection by ante-mortem
surveillance, post-mortem surveillance detected outbreaks (slaughterhouse surveillance).

In the absence of periodic screening, the ante-mortem surveillance system provided
satisfactory efficiency in areas where there was a significant risk of a herd contamination
through a downstream link (Figures 2 and 3). In particular, the areas in the West had a
relatively high probability of detecting infection despite a cessation of periodic screening,
ensured by the tracing-on investigation component (Figure 4). This can be explained by
the fact that, in these areas, there is a large number of herds (Figure A5) and herds had a
rather high average probability to be linked to a TB outbreak (Figure 2). In addition, the
main production type of the herds of these areas (dairy) ensures a slightly better sensitivity
of the tracing-on investigation than for other herd types because of its greater number
of animals over 24 months old. This result underlines the importance of the systematic
implementation of investigations in the herds identified as a downstream link with a TB
outbreak. In other areas without periodic screening, the probability of detecting infection
at the 0.1% prevalence limit by ante-mortem surveillance was low; however, post-mortem
surveillance improves the overall probability of detection. In addition, if these areas are
TB-free (as suggested by the stop of periodic screening) and their herds are unlikely to be
linked to a TB outbreak, then the likelihood for them to become infected with the TB agent
is very low.

In areas with a high apparent incidence, the probability of an infected herd being
detected is satisfactory. In particular, in area 21 the probability of an infected herd being
detected was more than 60% over a one-year study period, even though the sensitivity
of periodic screening in this area was probably underestimated. Thus, over a two-year
period, an infected herd in this area would have a 100% probability of being detected. This
result seems consistent with the success of control and surveillance in this area, where
the number of outbreaks has been greatly reduced [21]. In the Southwestern areas, the
probability of detecting an infected herd was lower but still approached 100% after two to
three consecutive years of surveillance.

In high prevalence areas, health authorities establish zones of at least two kilometers
around outbreaks. Herds in these zones are considered more likely to be infected and are
therefore screened annually. Our study did not take into account this higher probability of
infection because of the lack of specific centralized data about these herds. Therefore, in
areas practicing this zoning, the surveillance system can be expected to be more sensitive.

4.2.2. Contribution of Each Surveillance System’s Component

Despite optimistic assumptions about the screening of exchanged animals, this com-
ponent had no significant part in the detection of TB. Therefore, this area-wide approach
seems to confirm that stopping the screening of exchanged animals would have a negligible
impact on the effectiveness of surveillance. Since this component is quite restrictive for
field actors and of very low effectiveness, its interruption seems logical, especially since
currently screening for animals exchanged from “at risk” herds is a priori very little applied
in the field.

In heavily infected areas, periodic screening was the component that mainly ensured
a high probability of detecting an infected herd (Figure 5), highlighting the importance of
periodic screening in TB control.

In the TB-free areas, the probability of detecting infection at a prevalence of 0.1% was
quite high in areas where herds had a high probability of being linked to an outbreak,
like in the Western areas (Figure 3). In these areas, the good overall sensitivity of the
surveillance system was ensured in the model by tracing-on investigations alone since
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periodic screening was stopped there. Thus, we have shown that it is possible to achieve
effective surveillance through this targeted surveillance component, which underlines
the importance for areas to implement these tracing-on investigations in order to detect
outbreaks before late detection at the slaughterhouse.

Upstream and neighbourhood links were of very little relevance to the effectiveness
of the system, but their presence was probably underestimated and/or taken into account
in the periodic screening (see Section 4.1).

Unfortunately, the effectiveness of zoning-based screening could not be estimated in
this work due to the lack of information on zoning and on the probability of infection of a
herd in a zone compared with the rest of the area. However, given the importance of local
contamination in the maintenance of TB in France [22], this risk-based periodic screening
modality seems to be the best way to further improve the sensitivity of ante-mortem
surveillance in infected areas.

5. Conclusions

The ante-mortem surveillance system was found to have a satisfactory total effective-
ness (when accounting for all its components) in detecting infection in areas with high
prevalence. In addition, in areas that are a priori TB-free but where animal trade is most
at risk of introducing infection (high probability of their herds to have a downstream link
with a TB outbreak), the tracing-on investigations allowed the detection of infection at the
prevalence threshold of 0.1% with a high probability. This underlines the importance of
carrying out these investigations seriously.

On the contrary, the screening of exchanged animals did not significantly improve
the effectiveness of the surveillance, despite the overestimation of the effectiveness of this
component in our model. Thus, stopping these screening seems reasonable. According to
these results and to a favourable notice of the French Agency for Food, Environmental, and
Occupational Health and Safety [23], for the French 2020–2021 TB surveillance campaign,
screening of exchanged animals remains mandatory only for animals from herds classified
“at risk” following a downstream epidemiological link with an outbreak.
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Appendix A

Table A1. Details of the prevalence set in each area for the evaluation of the TB ante-mortem
surveillance system.

Area’s Identification
Number Area’s Name Number of Outbreaks

between 2011 and 2016
Prevalence Used

for Modeling

01 Ain [0–5[ 0.0001

02 Aisne [0–5[ 0.0001

03 Allier [0–5[ 0.0001

04 Alpes-de-Haute-
Provence [0–5[ 0.0001

05 Hautes-Alpes [0–5[ 0.0001

06 Alpes-Maritimes [0–5[ 0.0001

07 Ardèche [0–5[ 0.0001

08 Ardennes 10 et plus 0.006

09 Ariège [5–10[ 0.0002

10 Aube [0–5[ 0.0001

11 Aude [0–5[ 0.0001

12 Aveyron [0–5[ 0.0001

13 Bouches-du-Rhône [0–5[ 0.0001

14 Calvados [0–5[ 0.0001

15 Cantal [0–5[ 0.0001

16 Charente 10 et plus 0.006

17 Charente-Maritime [5–10[ 0.0002

18 Cher [0–5[ 0.0001

19 Corrèze [0–5[ 0.0001

2A Corse-du-Sud [0–5[ 0.0001

2B Haute-Corse 10 et plus 0.006

21 Côte-d’Or 10 et plus 0.006

22 Cotes-d’Armor [0–5[ 0.0001

23 Creuse [0–5[ 0.0001

24 Dordogne 10 et plus 0.006

25 Doubs [0–5[ 0.0001

26 Drome [0–5[ 0.0001

27 Eure [0–5[ 0.0001

28 Eure-et-Loir [0–5[ 0.0001

29 Finistère [0–5[ 0.0001

30 Gard [0–5[ 0.0001

31 Haute-Garonne [0–5[ 0.0001

32 Gers [5–10[ 0.0002

33 Gironde [0–5[ 0.0001

34 Hérault [5–10[ 0.0002
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Table A1. Cont.

Area’s Identification
Number Area’s Name Number of Outbreaks

between 2011 and 2016
Prevalence Used

for Modeling

35 Ille-et-Vilaine [0–5[ 0.0001

36 Indre [0–5[ 0.0001

37 Indre-et-Loire [0–5[ 0.0001

38 Isère [0–5[ 0.0001

39 Jura [0–5[ 0.0001

40 Landes 10 et plus 0.006

41 Loir-et-Cher [0–5[ 0.0001

42 Loire [5–10[ 0.0002

43 Haute-Loire [0–5[ 0.0001

44 Loire-Atlantique [0–5[ 0.0001

45 Loiret [0–5[ 0.0001

46 Lot [0–5[ 0.0001

47 Lot-et-Garonne 10 et plus 0.006

48 Lozère [0–5[ 0.0001

49 Maine-et-Loire [0–5[ 0.0001

50 Manche [5–10[ 0.0002

51 Marne [0–5[ 0.0001

52 Haute-Marne [0–5[ 0.0001

53 Mayenne [5–10[ 0.0002

54 Meurthe-et-Moselle [0–5[ 0.0001

55 Meuse [0–5[ 0.0001

56 Morbihan [0–5[ 0.0001

57 Moselle [0–5[ 0.0001

58 Nièvre [0–5[ 0.0001

59 Nord [0–5[ 0.0001

60 Oise [0–5[ 0.0001

61 Orne [0–5[ 0.0001

62 Pas-de-Calais [0–5[ 0.0001

63 Puy-de-Dôme [0–5[ 0.0001

64 Pyrénées-Atlantiques 10 et plus 0.006

65 Hautes-Pyrénées [0–5[ 0.0001

66 Pyrénées-Orientales [0–5[ 0.0001

67 Bas-Rhin [0–5[ 0.0001

68 Haut-Rhin [0–5[ 0.0001

69 Rhône + métropole
de Lyon [0–5[ 0.0001

70 Haute-Saône [0–5[ 0.0001

71 Saône-et-Loire [0–5[ 0.0001

72 Sarthe [0–5[ 0.0001
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Table A1. Cont.

Area’s Identification
Number Area’s Name Number of Outbreaks

between 2011 and 2016
Prevalence Used

for Modeling

73 Savoie [0–5[ 0.0001

74 Haute-Savoie [0–5[ 0.0001

75 Paris [0–5[ 0.0001

76 Seine-Maritime [5–10[ 0.0002

77 Seine-et-Marne [0–5[ 0.0001

78 Yvelines [0–5[ 0.0001

79 Deux-Sèvres [5–10[ 0.0002

80 Somme [0–5[ 0.0001

81 Tarn [0–5[ 0.0001

82 Tarn-et-Garonne [0–5[ 0.0001

83 Var [0–5[ 0.0001

84 Vaucluse [0–5[ 0.0001

85 Vendée [0–5[ 0.0001

86 Vienne [0–5[ 0.0001

87 Haute-Vienne [5–10[ 0.0002

88 Vosges [0–5[ 0.0001

89 Yonne [0–5[ 0.0001

90 Territoire de Belfort [0–5[ 0.0001

91 Essonne [0–5[ 0.0001

92 Hauts-de-Seine [0–5[ 0.0001

93 Seine-Saint-Denis [0–5[ 0.0001

94 Val-de-Marne [0–5[ 0.0001

95 Val-d’Oise [0–5[ 0.0001

Appendix A.1. Calculations A1. Deduction of a Modeling of the Raw Sensitivity and Specificity of
the ICCT from French Data

No information on the raw sensitivity and specificity of ICCT was available in pub-
lished studies. Indeed, all available estimates of sensitivity and specificity of the ICCT have
been made with a strict interpretation of the test results (i.e., considering doubtful results
as positive) since this is how the test is used in the field. To estimate the raw sensitivity
and specificity of the ICCT, we therefore used a French database containing details of the
screening test results (ICCT1 and, when they had been carried out, IFNγ, ICCT2, and
results of laboratory analyses following diagnostic slaughter) of 14,270 cattle. Among
these animals, 61% came from an area under enhanced surveillance and 37% from the IFN
gamma protocol (protocol set up to evaluate the sensitivity and specificity of the IFNγ

test in the field). These data were collected between 2013 and 2015 (2% of records came
from an outbreak). This database allowed us to estimate the proportion of doubtful results
on ICCT1 among non-negative results (positive or doubtful), depending on the infectious
status of the cattle (confirmed infected or not following diagnostic culling). Among the
confirmed infected animals with a non-negative result on ICCT1, 42% had a doubtful result.
Among the unconfirmed infected (i.e., presumptively free) animals that had non-negative
results on ICCT1, 84% had doubtful results. By rounding these percentages to 40% and 85%,
respectively, we modeled the raw sensitivity of ICCT1 according to Equation (A1) and its
raw specificity according to Equations (A2) and (A3). In these equations, SeICCT and SpICCT
are, respectively, the sensitivity and specificity of the ICCT1 with a strict interpretation as
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described in the published studies and modeled by asymmetric normal distribution laws:
respectively, Nasym (min = 0.43; mean = 0.74; max = 0.95) and Nasym (min = 0.80; mean =
0.99; max = 1), bounded between 0 and 1.

Raw SeICCT = p (ICCT + | in f ected) = SeICCT × (1 − 0.40)
= SeICCT × 0.60

(A1)

P (ICCT+ | unin f ected) = (1 − SpICCT) × (1 − 0.85)
= (1 − SpICCT) × 0.15 ⇔ 1 − Raw SpICCT

(A2)

Raw SpICCT = 1 − [(1 − SpICCT) × 0.15] (A3)

Appendix A.2. Calculations A2. Method for Estimating the Probabilities of Obtaining a Positive or
Negative Final Result in a Herd for Each of the Regulatory Protocols for Periodic Screening,
Conditional on the Results of the ICCT1

• Results of the Investigation Using the “Strict” Protocol Conditional on Obtaining
at Least One Positive ICCT1 in the Herd

At each iteration of the model, the numbers of positive ICCT1 results on infected
(nb_I_ICCT+) and non-infected (nb_NI_ICCT+) animals were calculated for each herd
type from equations including herd size (N), intra-herd prevalence (printra), and raw ICCT
sensitivity and specificity (raw SeICCT and raw SpICCT), as presented below.

According to Bayes’ theorem, the probability that an animal is infected (I) knowing
that it has obtained a positive result on an ICCT (p (I | ICCT+)) verifies the equality in
Equation (A4).

p (I | ICCT +) = (p (ICCT+|I) × p (I)) / (p (ICCT+))

= (Raw SeICCT ∗ pr _intra) / (p (ICCT+ | I) × p (I)
+ p (ICCT + | NI) × p (NI))⇒ p (I | ICCT +)

= (Raw SeICCT× pr _intra)/(Raw SeICCT× pr_intra + (1
− Raw SpICCT) × (1 − pr_intra))

(A4)

In addition, the probability of an animal being non-infected (NI) knowing that it has
obtained a positive result on an ICCT verifies the equality in Equation (A5).

p (NI | ICCT +) = 1 – p (I | ICCT +) (A5)

The numbers of infected and non-infected animals with positive ICCT1 were calcu-
lated at each iteration of the model with Equations (A6) and (A7) for infected herds and
(A8) for TB free herds. In these equations, we forced the detection of at least one animal
with a positive ICCT1 result (underlined parts of the following equations). anxsup24m
is the proportion of animals over 24 months of age in the herd and the ICCT rate is the
proportion of animals intended to be tested for ICCT1 that are actually tested.

Nb_I_ICCT + infected herd
= p (I | ICCT +) × 1 + (N × printra × anxsup24m
× ICCT rate – p (I | ICCT +) × 1) × Raw SeICCT
× anxsup24m × ICCT rate

(A6)

Nb_NI_ICCT + infected herd
= p (NI | ICCT +) × 1 + (N × (1 − printra) × anxsup24m
× ICCT rate – p (NI | ICCT +)× 1) × (1 − Raw SpICCT)

(A7)

Nb_NI_ICCT + uninfected herd
= 1 + (N × anxsup24m × ICCT rate − 1) × (1
− Raw SpICCT

) (A8)
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The sensitivity and specificity of the “strict” protocol conditional on obtaining at
least one positive ICCT was then calculated at each iteration, based on the scenario tree
previously constructed [4,6], in which the number of animals obtaining a positive ICCT
was set according to the values previously calculated (Equations (A6)–(A8)).

• Results of the “compliant slow path” and “compliant quick path” protocols condi-
tional on obtaining at least one non-negative ICCT1 but no positive ICCT1

The sensitivity and specificity of these two protocols conditional on obtaining at
least one non-negative but no positive ICCT1 were calculated, at each iteration, from the
corresponding scenario trees described in previous studies [4,6]. For these calculations, the
sensitivity of the ICCT1 was replaced by the probability of an infected animal obtaining a
doubtful result knowing that it did not obtain a positive result (p(ICCT doubtful | ICCT not
positive)infected animal), calculated according to Equation (A9). The specificity of ICCT1 was
replaced by the probability of an non-infected animal obtaining a negative result knowing
that it has not obtained a positive result (p(ICCT negative | ICCT not positive)uninfected),
calculated according to Equations (A10) and (A11).

p (ICCT doubtful | ICCT not positive)infected animal

=
p(ICCT not positive | ICCT doubtful )×p(ICCT doubtful)

p(ICCT not positive)

p (ICCT doubtful
∣∣∣ ICCT not positive) infected animal =

1 ×(SeICCT×0.4)
1−Raw SeICCT = 1 × SeICCT×0.4

1−SeICCT×0.6

(A9)

p (ICCT doubtful | ICCT not positive)uninfected animal

=
p(ICCT not positive | ICCT doubtful)×p(ICCT doubtful)

p(ICCT not positive)
(A10)

p (ICCT negative | ICCT not positive)uninfected animal = 1 – p (ICCT doubtful | ICCT not positive) (A11)

Figure 1. Estimation of the probability of detecting, via ante-mortem surveillance, at least one
infected herd in the French administrative areas for a prevalence set according to the number of
outbreaks recorded between 2011 and 2016.
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Figure A2. Mean probability for an infected herd to be detected via ante-mortem surveillance for a
prevalence set at 0.1%.

Figure A3. Proportion of herds subject to periodic screening each year as modeled in the scenario tree.
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Figure A4. Outbreaks detected in 2016 and component of the surveillance system that detected them.

Figure A5. Number of cattle herds registered in the BDNI for the 1 January 2016.
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