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Abstract

H1N1 is the earliest emerging subtype of influenza A viruses with available genomic

sequences, has caused several pandemics and seasonal epidemics, resulting in millions of

deaths and enormous economic losses. Timely determination of new antigenic variants is

crucial for the vaccine selection and flu prevention. In this study, we chronologically divided

the H1N1 strains into several periods in terms of the epidemics and pandemics. Computa-

tional models have been constructed to predict antigenic variants based on epidemic and

pandemic periods. By sequence analysis, we demonstrated the diverse mutation patterns

of HA1 protein on different periods and that an individual model built upon each period can

not represent the variations of H1N1 virus. A stacking model was established for the predic-

tion of antigenic variants, combining all the variation patterns across periods, which would

help assess a new influenza strain’s antigenicity. Three different feature extraction methods,

i.e. residue-based, regional band-based and epitope region-based, were applied on the

stacking model to verify its feasibility and robustness. The results showed the capability of

determining antigenic variants prediction with accuracy as high as 0.908 which performed

better than any of the single models. The prediction performance using the stacking model

indicates clear distinctions of mutation patterns and antigenicity between epidemic and pan-

demic strains. It would also facilitate rapid determination of antigenic variants and influenza

surveillance.

Introduction

Influenza is an infectious disease that poses significant threat to public health worldwide,

especially H1N1 of influenza A virus, which caused several pandemics in history, e.g. the 1918

Spanish flu, leading to millions of deaths [1]. Except for the pandemics, epidemics also cause

about 250,00 to 500,000 deaths per year around the world [2]. Hemagglutinin (HA) and neur-

aminidase (NA) are the most important proteins that characterize influenza A viruses [3].
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HA is responsible for binding the virus to host cells with sialic acid on the membranes [4] and

NA functions as a tetramer that cleaves sialic acid from cells and virion glycoproteins to pre-

vent clumping of released viruses [5]. However, the accumulation of antigenic shift or drift

within HA proteins results in new strains of virus which can not be inhibited effectively by

antibodies originally targeted at previous strains and thereby causes new epidemics or pan-

demics. HA protein cleaves into two chains, namely, HA1 and HA2. HA1 mutates much

more frequently than HA2 and is subject to strong selection for novel variations [6]. It is the

main objective of this paper to study and predict the antigenic variants to facilitate vaccine

recommendation.

Hemagglutinin inhibition (HI) assay is the primary method to determine the antigenicity

of influenza viruses and quantitative antibody titers for vaccine selection [7]. However, HI

assay is a labour-intensive and time-consuming method, which prompts the development of

computational techniques for the prediction of antigenic similarity between antisera and anti-

gens to identify the antigenic variants. The phylogenetic trees combined with antigenic cartog-

raphy remains prevailing in antigenic analysis. Smith et al. constructed an antigenic map to

determine the antigenic evolution of influenza A H3N2 virus from 1968 to 2003 [8]. Lorusso

et al. used antigenic cartography to analyze the antigenic properties of 2008 H1 viruses and

demonstrated that the viruses in the different phylogenetic clusters are also antigenically diver-

gent [9]. The antigenic patterns and evolution of human influenza A (H1N1) viruses were

investigated by Liu et al., who inferred the antigenic clusters from a large-scale sequence data

covering the whole epidemic history of H1N1 [10]. Bedford et al. and Du et al. constructed the

maps of the global circulation patterns of seasonal flu strains and antigenic evolution, respec-

tively [11, 12]. These previous works depicted the evolutionary paths of influenza and provided

the foundation for computational models of antigenicity prediction. Sequence-based methods

and imputation-based methods [13] are the most common methods for antigenic prediction.

For example, Ren et al. applied random forest regression and support vector regression to

identify antigenicity-associated sites in the hemagglutinin protein of A/H1N1 seasonal influ-

enza virus [14]. Yin et al. detected the potential critical virulent sites in past pandemic strains

using rule-based methods [15]. Besides, one of the most crucial factors for the success of influ-

enza vaccination is the timely determination of emerging influenza virus antigenic variants.

Sun et al. provided a novel, experimentally validated, computational method for determining

influenza virus antigenicity based on HA sequences [16]. Yao et al. proposed a joint random

forest method for predicting influenza H3N2 antigenicity from hemagglutinin sequence data

[17]. Qiu et al. incorporated the structural context of HA protein to calculate the antigenicity

for influenza virus A/H3N2 with an accuracy of 0.875 [18]. By building a universal model for

all HA subtypes of influenza A viruses based on conserved antigenic structures, Peng et al.

achieved an accuracy of 0.77 for predicting antigenic variants of avian influenza H9N2 viruses

[19]. Furthermore, Richard Neher et al. showed the antigenic differences measured by serolog-

ical data are well described by antigenic changes along the path connecting viruses in phyloge-

netic trees [20]. It allows predicting antigenicity from HA sequences by mapping on the trees.

Luksza and Laessig developed a fitness model for haemagglutinin that predicts the evolution of

the viral population, which maps the adaptive history of influenza A and suggests guidance for

vaccine selection [21].

Despite the availability of these computational methods in identifying antigenicity-associ-

ated sites and predicting antigenic variants for influenza, most of the models were built for

influenza A/H3N2. There is still insufficient knowledge on the influenza H1N1 that caused

numerous epidemics all over the world. Besides, high-performance model for rapid prediction

of H1N1 antigenicity from sequences is needed. In this study, we built a stacking model to

Predicting antigenic variants of H1N1 using stacking model

PLOS ONE | https://doi.org/10.1371/journal.pone.0207777 December 21, 2018 2 / 16

https://doi.org/10.1371/journal.pone.0207777


include all influenza periods of H1N1 based on epidemics and pandemics for the prediction of

antigenic variants. To the best of our knowledge, this is the first attempt to take epidemic and

pandemic events into account for inferring the antigenic relation between H1N1 virus strains.

We categorized influenza strains into two types, pandemic-based and epidemic-based,

denoted as “PDM” and “EPD”. The period of five pandemics in recent centuries was shown in

Table 1 and the rest of the time is regarded as an epidemic period. In this way, we not only clas-

sified the antigenic relation of two influenza strains within a certain period, but also compared

antigenic relation of two strains more broadly. By analyzing sequence data and calculating the

entropy of each residue position of HA1 protein for strains, we demonstrated that influenza

H1N1 went through different variations across the periods. Pearson Correlation Coefficient

(PCC) [22] was performed to further identify the distinct mutation patterns of H1N1 strains in

each period. Individual prediction models of a pair of strains across periods were constructed

for the antigenic variants prediction. Finally, a stacking model was built to predict antigenic

variants combining H1N1 epidemic and pandemic strains from all periods. The accuracy of

the stacking model exceeded those of above-mentioned for H1N1. Three different feature gen-

eration methods applied to the construction of models proved its feasibility and reliability. We

believe this model could help to analyze epidemic and pandemic strains. The highlighted

mutation patterns and constructed models may also help facilitate rough determination of

antigenic variants, the surveillance of influenza and as a reference to the selection of vaccine

strains.

Materials and methods

Data collection

We used two types of data in this study, including antigenic data and sequence data. Antigenic

data was based on hemagglutination inhibition (HI) assay and collected from diverse sources,

such as World Health Organization (WHO), European Centre for Disease Prevention and

Control (ECDC), The Francis Crick Institute (FCI), U.S Food and Drug Administration

(FDA) and relevant literature. In total, 1772 pairs of HI assay data of HA1 viral strains were

obtained for influenza H1N1. As for the sequence dataset of HA1, it was obtained from Influ-

enza Virus Resource (IVR) [23] and Global Initiative on Sharing All Influenza Data (GISAID)

[24] on 31 Dec, 2016. The sequence collection was filtered by minimal length 327 (HA1 length)

and human host. The dataset comprises 9859 sequences in total after removing duplicate

sequences for H1N1. Because hemagglutination inhibition assay was developed in 1940s as the

method for quantifying the relative concentration of viruses, bacteria or antibodies [25], no

antigenic data is available and there are only scarce sequence data for period 1. Thus we only

consider period 2 to 6 in subsequent analysis.

Table 1. The classification of H1N1 periods and data collection based on chronological pandemics (PDM) and epidemics (EPD).

Event Type Year Number of sequences Period

1918Spanish PDM 1918-1920 3 1

SeasonalFlu1 EPD 1921-1976 107 2

1977Russia PDM 1977-1980 28 3

SeasonalFlu2 EPD 1981-2008 2247 4

2009Swine PDM 2009-2011 5099 5

SeasonalFlu3 EPD 2012-2016 2208 6

https://doi.org/10.1371/journal.pone.0207777.t001
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Data cleaning and preprocessing

We adopted Archetti-Horsfall distance [26] to define the antigenic relations between strains as

follows:

Dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hii � Hjj

Hij �Hji

s

ð1Þ

Dij stands for the antigenic distance, Hij is the HI titer of strain i related to antisera raised

against strain j. When the value of Dij is greater than or equal to 4 (a threshold defined by Liao

et al. [27]), the antigenic relation between the two strains is considered to be distinct, otherwise

it is similar. If the HI titer of the same pair was measured in multiple independent institutions,

the median titer value was taken [28]. After removing duplicate pairs, we obtained 937 anti-

genically distinct pairs and 636 antigenically similar pairs in total.

MAFFT [29] was applied to the collected sequences for multiple sequence alignment.

Because of different lengths of HA proteins of H1N1, the aligned sequences showed many

insertions and deletions. Thus we only kept the HA1 residues and deleted others including sig-

nal peptide in each strain. Moverover, the sequences with a gap ratio greater than 10% were

also removed by manual check. The remaining samples comprised 107 strains, 28 strains, 2247

strains, 5099 strains and 2208 strains for periods 2 to 6 respectively shown in Table 1. The anti-

genic and sequence data of each period can be found in S1 and S2 Files after cleaning and

preprocessing.

Feature engineering

According to our analysis, HA proteins of H1N1 in different periods were probably subject to

distinct mechanisms generating antigenic variations at the site level. To build a computational

model for the prediction of antigenic variants, three different feature engineering methods

were applied to the construction of model built on epidemics and pandemics to test its feasibil-

ity and universality, namely, residue-based, ten regional band-based and five epitope region-

based methods. Residue-based method uses all the sites on HA1 protein to generate features.

By extracting features on single sites between strains, 327 different features were obtained for

every pair of strains, where 0 represents the same animo acid between strains on the site and 1

otherwise. The regional bands, defined based on Lees et al. [30], were acquired by the calcula-

tion of distance on the Cα atoms between residues on the top of HA1. Here we adopted ten

regional bands to generate new features based on the sites of each band. The number of amino

acid changes in each regional band between a pair of sequences was extracted as features. Simi-

larly, epitope regions of H1 [31] to which that the human immune system primarily responds

was another way to generate new features in the five epitope regions.

Model construction

As we know that the influenza strains in different periods may lead to various levels of disease

such as epidemics or pandemics. We first investigated the distinct mutation patterns of strains

from different periods regardless of whether they were caused by antigenic drift or antigenic

shift. We took the distinctions as facts, focusing on highlighting the variation patterns across

periods. To validate that the strains in different periods went through distinct antigenic varia-

tions, the mutation patterns of HA1 proteins were analyzed by calculating the moving average

position information entropy of amino acid sites on HA1, which could reflect the variant pat-

terns of influenza virus antigens. Then, Pearson Correlation Coefficient (PCC) analysis was

performed on the information entropy of amino acid positions between periods in terms of
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moving average position information entropy. These analyses suggested that the H1N1 viruses

in different periods have most likely experienced diverse mutation variations. Therefore, we

first built models on each type to predict its antigenicity, described as a single model, illustrat-

ing potential evolutionary patterns from periods 2 to 6 in the following way.

Set H1N1 strains in periods 2 to 6 be designated by letters A, B, C, D, E. We need select two

different strains as a pair. Since the evolution of influenza viruses is in a forward path [32], the

strains could evolve within one period to another period chronologically. For example, influ-

enza strains in period 2 could only evolve directly or indirectly into strains in any period from

2 to 6, but not to period 1. Here we didn’t consider the situation that the subtype H1N1 devel-

oped into other subtypes. In this case, we built the model for the prediction of antigenic vari-

ants based on period 2 by the settings that for a pair of strains, one of the strains was from

period 2 and the other strain was from any of the potential forward periods, which could rep-

resent antigenic relation of a pair of strains from period 2 and another. This situation is stated

as Type II (AA, AB, AC, AD, AE). In this way, Other types of pairs of strains were presented as

Type III (BB, BC, BD, BE), Type IV (CC, CD, CE), Type V (DD, DE) and Type VI (EE). We

finally obtained 99, 180, 843, 369 and 74 samples from Type II to VI for the training and test-

ing of antigenic relationship between pairs of strains. Single models were first applied to the

individual types for the prediction of antigenic variants by several classifiers including logistic

regression (LR), support vector machine (SVM), naïve bayes (NB), neural network (NN) and

k-nearest neighbour (KNN). Due to the imbalanced distribution of antigenic similar and dis-

tinct samples, stratified sampling technique was applied to the training process to construct

the validation model. We divided the samples into minor and major classes for each type and

randomly selected 80% of each class for training and kept the rest for testing. It would make

sure that the samples on each class were selected for training with a ratio of 0.8. This could

overcome the overfitting problem that the minor class was overwhelmed by the major class

with high accuracy. Three feature generation methods were applied to predict the antigenic

relationship between strains for each type. The average accuracy was calculated over 10 runs

by these classifiers above.

Furthermore, our objective is to provide a universal model for the prediction of antigenic

variants of influenza H1N1 that can be applied to all types, so a stacking model was introduced

[33]. The stacking model uses a similar idea as k-fold cross validation to create out-of-sample

predictions that works for small or medium sized datasets. It constructs a predictive model by

combining different models as illustrated in Fig 1. In this work, we randomly selected 80%

samples containing each type from the original dataset Xm×n, which contained m samples and

n features. The rest 20% data was used to test on the stacking model. The parameter n would

change in the training dataset Xm×n according to different feature vectors. At level 1, different

classifiers were applied on Xm×n and tested on the testing data of each type to select the best

algorithms as base classifiers in term of their prediction performance. Correspondingly, logis-

tic regression, naïve bayes and neural network were selected to construct the models at level 2

in terms of the better performance on single models. In addition, random forest and gradient

boosting were added to construct the models at level 2. These models at level 2 can provide

predictions for the outcome of all data, which were then casted into the second level of training

data presented as Xm×M. The parameter M stands for the number of new features of the dataset.

The model at level 3 was constructed by logistic regression classifier, trained and tested on

Xm×M to produce the final outcomes of the predictions of antigenic variants. The performance

of the stacking model will be compared with the base classifiers. Meanwhile, to study the influ-

ence of data bias of different types on the stacking model, we also investigated the stacking

model with the model built on balanced datasets. We set 74, the number of Type VI samples,

as benchmark number and randomly selected balanced samples from other types. Totally, 370
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PLOS ONE | https://doi.org/10.1371/journal.pone.0207777 December 21, 2018 5 / 16

https://doi.org/10.1371/journal.pone.0207777


samples were extracted as new training and testing dataset to predict antigenic relationship

between strains. The performance of stacking model with all datasets and balanced datasets

was compared to investigate the influence of imbalanced dataset distribution for prediction.

Furthermore, ROC (Receiver Operating Characteristic) curve was plotted by the stacking

model constructed above to validate its strengthen and stability.

We used the software R version 3.4.0 to conduct all the statistical analyses in this work,

including entropy calculation, feature engineering, model construction and validation. The

classifiers applied in training and testing models were performed by the package H2O ensem-

ble [34]. The package ROCR was used to plot the ROC curve and calculate the area under

ROC curve (AUC) [35].

Results

The HA1 viral protein, as the main antigen of influenza viruses, is the immunodominant part

of HA segment [36]. The analysis of mutation patterns of HA1 proteins in different periods

was implemented by the calculation of information entropy in each residue position. Because

of the conserved sites in aligned sequences of HA1, the value of information entropy would be

0 that caused steep distribution values on different sites when plotted in the figure. Therefore,

we used the moving average position information entropy with the window size of 11 to reflect

variation patterns of HA1 proteins. The results in Fig 2 presented a diverse patterns of entropy

variations of the HA1 residues. For example, the peaks of the curve in period 2 located at site

156 and 190, while the same position in period 3 or 4 was in the valley. Some other similar

Fig 1. The workflow of stacking model for the antigenic variants prediction based on pandemics and epidemics.

https://doi.org/10.1371/journal.pone.0207777.g001
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situations could also be found in the figure such as site 75, 145, 160, 200 and 275. These sites

could have undergone diverse mutation patterns in different periods. Although some sites

reflected similar mutational tendency in all periods, like site 103 and 210, the overall variation

patterns tended to be distinct in different periods. However, the accumulation of these muta-

tion sites in distinct variation patterns could lead to different extent of influenza outbreaks

through years.

The correlation analysis between residues’ information entropy on HA1 proteins in differ-

ent periods further verified distinct mutation patterns shown in Table 2. The correlations of

residues’ entropy variations of HA1 protein ranged from 0.03 to 0.69 among periods, which

was measured by Pearson Correlation Coefficient. These results indicated a medium (0.3-0.8)

or low (0-0.3) correlations of mutation patterns between periods. Especially, the correlation

coefficients of period 3-4 and 3-5 were quite low, only attaining 0.05 and 0.03 respectively. It

may infer the influenza H1N1 strains appeared in 1977 Russia flu yielded drastic and frequent

mutations during the years from 1978 to 2008, when there were intermittent epidemics

occurred all over the world. However, compared with strains in period 3, the strains in period

4 are less disparate than those in period 5 that the correlation reached 0.67. It also reasonably

accounted for the low correlation of strains between period 3 and period 5. In combination,

Fig 2. Position-dependent entropy. Moving average position information entropy was calculated with a window size of 11 for HA1 protein

if influenza A virus in each period, that is period 2 (black), period 3 (yellow), period 4 (red), period 5 (green) and period 6 (blue). The amino

acid position are in H1 numbering system [37].

https://doi.org/10.1371/journal.pone.0207777.g002

Table 2. Pearson correlation coefficient between different periods (P2 to P6) based on pandemics and epidemics.

H1N1 P2 P3 P4 P5 P6

P2 1.00 0.18 0.69 0.58 0.50

P3 0.18 1.00 0.05 0.03 0.25

P4 0.69 0.05 1.00 0.67 0.36

P5 0.58 0.03 0.67 1.00 0.36

P6 0.50 0.25 0.36 0.36 1.00

https://doi.org/10.1371/journal.pone.0207777.t002
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the results above suggested the diversity of mutation patterns of influenza H1N1 in terms of

pandemic and epidemic events, and gave a better insight for understanding the mutation pat-

terns for H1N1 strains.

Our analysis suggested that HA1 proteins of influenza H1N1 in different periods probably

experienced distinct variation patterns. The single models, trained and tested in each type,

were constructed by several basic classifiers. These classifiers consisted of logistic regression

(LR), support vector machine (SVM), naïve bayes (NB), neural network (NN) and k-nearest

neighbour (KNN). The predicting accuracy of single models on average was shown in Table 3

by three feature generation methods. Logistic regression, neural network and naïve bayes clas-

sifiers were selected for the construction of stacking model according to the superior experi-

mental results shown in red. Furthermore, we also explored whether the single model in one

type could perform well applied to others. We only presented the results with best classifiers,

that is, logistic regression, neural network and naïve bayes, corresponding to residue-based,

regional band-based and epitope region-based features respectively, to test the performance

of all types. The model performed quite well when tested within the same type that was

highlighted in bold but relatively poor on other types in most cases shown in Table 4. For

example, the single model on Type III achieved an accuracy over 0.9 on average based on three

different feature generation methods, but it only obtained the accuracy ranging from 0.3 to 0.8

for others. Similar cases can be found in other single models, which further validated the rela-

tive insufficient performance to predict the antigenic variants for mutation patterns of differ-

ent types using single models.

We further studied how the partition of different periods of HA1 proteins made the impact

on the model of antigenic variants prediction. Due to the rapid antigenic shift or drift that

brings about the occurrence of antigenic variants, the effects on antigenicity of specific muta-

tions have not been clear painted. The changes of antigenicity depend not only on the property

and number of the amino acid substitutions but also on the amino acids currently encoded at

certain key positions in HA1 [38]. The performance of the models based on different feature

vectors didn’t show much difference, which indicated that the generation of new features from

residue sites was probably not the main factor in influencing the prediction results. Some

more elements, such as environment and individual immune system, need to be considered

for the possibility of H1N1 variation mechanism that distinguishes epidemics and pandemics,

which is out of scope in this paper.

The pilots above prompt the construction of a comprehensive model that can contain all

different types for antigenicity prediction. Therefore, a stacking model was built to predict the

antigenic variants of HA1 proteins of influenza H1N1 for all circumstances. Logistic regres-

sion, neural network and naïve bayes were selected as base classifiers to constitute the models

at level 1 of stacking model due to their performance in single models. Except for these three

classifiers, we also introduced two ensemble classifiers, random forest (RF) and gradient

Table 3. Single model prediction accuracy on residue-based, regional band-based and epitope region-based fea-

tures within the same type.

Classifier Feature generation methods

Residue-based Regional band-based Epitope region-based

LR 0:943 0.883 0.809

SVM 0.851 0.855 0.820

NB 0.532 0.737 0:823
NN 0.907 0:919 0.804

KNN 0.848 0.784 0.817

https://doi.org/10.1371/journal.pone.0207777.t003
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boosting (GB), to jointly form the models at level 2, adding diversity and strengthening the

robustness. The stacking model at level 3 was built by logistic regression because of the small

dimension for new training dataset obtained from level 2. The performance of the stacking

model was presented in Fig 3 in comparison with other classifiers used at the level 2 for the

prediction of antigenic variants by three different feature vectors. We calculated the mean

value of each type obtained by these models in terms of accuracy, sensitivity and specificity.

The details of the results could be found in S3 File. Accordingly, the best predicting accuracy

was 0.908, achieved by stacking model with residue-based features. The sensitivity and speci-

ficity of the stacking model also displayed competitiveness, which was 0.755 and 0.811 respec-

tively. We may infer that the more residues we used, the better performance it would achieve

on the antigenic variants prediction. Although the results based on five epitope regions and

ten regional bands performed not as well as residue-based method, we observed that the stack-

ing model still slightly outperformed other models.

In comparison, we also investigated and compared the performance of the stacking model

with imbalanced and balanced datasets. The results in Fig 4 only showed the average perfor-

mance containing all types. (Details can be seen in S3 File) It suggested that the stacking model

with imbalanced datasets comprehensively presented slight better performances over balanced

datasets by all three different feature generation methods except for the sensitivity on five

epitope-based method. It was implausible that the evenly distributed datasets negatively

Table 4. Single model performance on residue-based, regional band-based and epitope region-based computational models trained and tested in Type II-VI. “Acc”,

accuracy; “Sen”, sensitivity; “Spe”, specificity.

Training Testing Residue-based Regional band-based Epitope region-based

Acc Sen Spe Acc Sen Spe Acc Sen Spe

Type II II 0.949 0.5 0.989 0.949 0.875 0.956 0.888 0.375 0.934

III 0.533 0.857 0.506 0.9 0.077 0.969 0.783 0 0.849

IV 0.692 0.559 0.743 0.498 0.081 0.659 0.610 0.423 0.682

V 0.722 0.758 0.375 0.25 0.134 0.892 0.472 0.458 0.553

VI 0.689 0.672 0.75 0.391 0.327 0.625 0.459 0.465 0.437

Type III II 0.666 0.25 0.703 0.626 0.375 0.648 0.878 0 0.956

III 0.95 0.5 0.987 0.938 0.785 0.951 0.861 1 0.849

IV 0.710 0.329 0.856 0.615 0.273 0.746 0.698 0.517 0.768

V 0.336 0.288 0.607 0.576 0.583 0.535 0.777 0.846 0.392

VI 0.702 0.810 0.312 0.445 0.344 0.812 0.837 0.931 0.5

Type IV II 0.282 0.75 0.241 0.747 0.125 0.802 0.858 0 0.934

III 0.455 0.714 0.433 0.894 0.428 0.933 0.85 1 0.837

IV 0.891 0.782 0.934 0.792 0.303 0.980 0.703 0.739 0.689

V 0.548 0.532 0.642 0.491 0.458 0.678 0.793 0.913 0.125

VI 0.581 0.568 0.625 0.5 0.396 0.875 0.851 0.931 0.312

Type V II 0.575 0.75 0.560 0.434 1 0.384 0.414 1 0.362

III 0.761 0.714 0.765 0.827 0.928 0.819 0.322 1 0.265

IV 0.581 0.850 0.478 0.442 0.944 0.25 0.317 0.965 0.0761

V 0.937 0.967 0.767 0.934 0.971 0.732 0.810 0.935 0.107

VI 0.918 0.948 0.815 0.770 0.810 0.625 0.851 1 0.312

Type VI II 0.394 0.75 0.362 0.686 0.25 0.725 0.868 0 0.945

III 0.167 1 0.097 0.827 0.194 0.714 0.855 0.928 0.849

IV 0.550 0.623 0.521 0.432 0.589 0.371 0.666 0.717 0.646

V 0.793 0.910 0.142 0.578 0.637 0.25 0.793 0.913 0.125

VI 0.986 0.982 1 0.945 0.982 0.812 0.851 1 0.312

https://doi.org/10.1371/journal.pone.0207777.t004
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contributed to the performance of the model. This was probably due to the small-scale bal-

anced samples we extracted for training and testing, which was not a lot to learn for classifiers.

Indeed, the insufficient antigenic data in different periods would set obstacles on the perfor-

mance of the model. Even though, our stacking model has successfully predicted antigenic

relationship between strains based on limited data. Moreover, Fig 5 showed the ROC (Receiver

Operating Characteristic) curve with a significant proportion of area under curve (AUC) of

0.915 by the stacking model. The AUC value illustrated the matching degree with the experi-

ment data ranging from 0 to 1 and the larger of the value, the better of the matching level.

These outcomes demonstrate that the stacking model built upon epidemics and pandemics

not only performs better than models using other classifiers in the experiments, but also

achieves comprehensive improvement compared with the results of single models in Table 4.

Fig 3. Performance comparison of residue-based, regional band-based and epitope-based computational models trained and tested across

different types. “acc”: accuracy; “sen”: sensitivity; “spe”: specificity.

https://doi.org/10.1371/journal.pone.0207777.g003

Predicting antigenic variants of H1N1 using stacking model

PLOS ONE | https://doi.org/10.1371/journal.pone.0207777 December 21, 2018 10 / 16

https://doi.org/10.1371/journal.pone.0207777.g003
https://doi.org/10.1371/journal.pone.0207777


Discussion

Since the occurrence of 1918 Spanish pandemic, the influenza H1N1 has been evolving and

circulating up to now. The rapid mutations of the antigenicity of influenza A virus are unceas-

ingly causing other epidemics or pandemics that severely threaten public health. In this work,

we analyzed and compared the mutation patterns of HA1 protein from six periods defined by

the characterization of epidemics and pandemics. The moving average position information

entropy and Pearson Correlation Coefficient were applied on mutation patterns analysis. Due

to the scarce data of strains in period 1, the analysis of mutation patterns of period 1 was

Fig 4. The performance of stacking model with imbalanced and balanced datasets based on three feature generation methods. “acc”: accuracy; “sen”: sensitivity;

“spe”: specificity. (a) The performance of residue-based stacking model (b) The performance of ten regional-based stacking model (c) The performance of five epitope-

based stacking model.

https://doi.org/10.1371/journal.pone.0207777.g004

Fig 5. The Receiver Operating Characteristic (ROC) curve of the stacking model predicting the antigenic variants

of influenza A H1N1 virus.

https://doi.org/10.1371/journal.pone.0207777.g005
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excluded. The results in Fig 2 showed similarity of mutation patterns in some regions of the

residue sites, for example, the residue sites from 180 to 200 indicated the same variation trend

across periods. But the overall variation trend indicates the distinct patterns of epidemics or

pandemics in different periods, which is in accordance with update of influenza vaccines every

year [39–41]. Besides, the value of moving entropy information of period 3 is small compared

with other periods. This could be caused by insufficient sequences collected for the calculation

of entropy information.

The purpose of applying three different methods of feature generation for antigenic variants

prediction is to validate the feasibility and reliability of the model constructed based on epidem-

ics and pandemics. The residue-based method converts the number of amino acids changes in

each residue site between a pair of sequences as one feature and all the sites are taken for gener-

ating feature vectors. Although not all sites are closely correlated with antigenic variation, we

obtain impressive performance in the prediction of antigenic relation between strains. The fea-

tures extracted from five epitope regions focus on the regions that encompass the sites at which

antibodies bind to HA1 [42]. Different from residue-based method, epitope region-based

method would more directly reflect the relation between antigenic sites and variants. Moreover,

some researchers regard that the evolutionary selective pressure has varied over time on some

specific amino acid position [43], indicating the significance of detecting other important sites

influencing immune response. Therefore, ten regional bands have been proposed [30] and the

features generated from ten regional bands not only contain many residues in epitope regions

but also implicate potential crucial sites that locate outside five antigenic epitopes. Fig 3 suggests

that the model using residue-based features achieves better prediction results than regional

band-based and epitope regional-based features. We might infer that the more features applied

for the prediction of antigenic variants, the better performance will be.

However, the relative few antigenic data is available in some periods for H1N1 viruses,

which could hinder the development of computational models and further hamper the perfor-

mance of prediction on antigenic variants. Meanwhile, the mutation pattern analyses demon-

strated the diversity of influenza virus antigens in different periods. Single model was built to

predict their antigenicity at first. The results turned out that these single models performed

much worse trained and tested in different types than in the same type, suggesting single

model is not capable of predicting antigenicity across types with acceptable confidence. There-

fore, a stacking model was developed that integrated all the situations of antigenic variants pre-

diction of influenza H1N1 HA1 proteins in different types using all the antigenic data. Feature

vectors extracted by three different methods were applied on the stacking model. Although it

performed slightly inferior to single models which were trained and tested in the same type in

Table 3, the performance of predicting antigenic variants by the stacking model across types

was much better than the single model. Besides, we can also find that the stacking model

showed the best performance compared with other classifiers applied at level 2, exceeding 0.87

in accuracy on average. This could be the optimized classifiers applied individual types that

constitute the level 2 of the base models, enabling us to average out the noise from diverse

models and thereby enhance the generalized prediction results. This is sometimes referred as

an approach named “wisdom of crowds”, pulling from the age-old philosophy of Aristotle

[44]. By combining antigenic data from all types in terms of epidemic and pandemic informa-

tion and using diverse modeling approaches, the stacking model gain more accuracy and

robustness than a fine-tuned single model can obtain.

Even if we could obtain good performance on the prediction results based on different

influenza epidemics and pandemics, there are still some space on the improvement of specific-

ity and sensitivity. For example, the sensitivity is low in some of the constructed models, espe-

cially for the prediction of Type II. (See in S3 File) One crucial factor is the limited antigenic
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data we can collect and the imbalanced classes of similar and distinct pair of strains. We may

bring in penalty mechanism or assign unequal weight distribution on samples in the training

process to tune the bias towards the minority class. Nevertheless, this stacking model validates

its feasibility and reliability on the prediction of antigenic variants of H1N1 influenza A virus.

The analysis also raises the perspective of how to select a proper model when predicting the

antigenic variants for influenza viruses in different types with few antigenic data available. The

model based on the chronological evolutionary paths of H1N1 that caused epidemics and pan-

demics with closest possible genetic relations could provide a suitable choice to target antigenic

variants. Meanwhile, the stacking model built on diverse epidemic and pandemic periods of

antigenic data would capture more comprehensive mechanisms behind antigenic variation.

Our future work moves towards the improvement of these models and the identification of

potential virulent sites that can distinguish the formation of epidemics and pandemics caused

by influenza H1N1 viruses.

Conclusion

In conclusion, we divide the influenza strains of H1N1 epidemic and pandemic events into dif-

ferent periods chronologically. Mutation pattern analysis of HA1 of influenza A H1N1 proves

that the amino acid changes and antigenic variation of strain pairs differ across periods. The

single prediction models constructed show clear poorer performance when tested in the anti-

genic relation with other types. Therefore, the construction of the stacking model of prediction

antigenic variants of influenza H1N1 overcomes the challenge of diverse mutation variations,

combining all the situations. Residue-based, five epitope region-based and ten regional band-

based feature vectors applied in the training process prove the feasibility and reliability of the

stacking model built on chronological epidemic and pandemic periods by achieving a good

performance on the prediction of antigenic variants. This study not only paves a path on the

study of distinct antigenic evolution of influenza H1N1 virus, but also gives insight on the

potential mutation sites that distinguish past epidemic and pandemic outbreaks. It also pro-

vides a new perspective for the antigenic variants prediction with reliability and accelerates the

selection of vaccine strains.
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