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Gut microbiota communities have coevolved for millions of years in a symbiotic 
relationship with their mammalian hosts. Elucidating and understanding the molecular 
mechanisms by which microbiota interacts with its host and how this contributes to the 
homeostasis of the host is crucial. One of these molecular relationships is the so-called 
chemical crosstalk between microbiota and host metabolisms, including the poorly 
explored epigenetic regulation of host tissues by the metabolic activity of gut microbiota 
in response to changes in diet. DNA methylation and histone modifications are epigenetic 
marks partly regulated by enzymes such as methylases and acetylases, whose activity 
depend on host and microbiota metabolites that act as substrates and cofactors for 
these reactions. However, providing a complete mechanistic description of the regulatory 
interactions between both metabolisms and the impact on the expression of host genes 
through an epigenetic modulation, remains elusive. This article presents our perspective 
on how metabolomic, metagenomic, transcriptomic, and epigenomic data can be used 
to investigate the “microbiota–nutrient metabolism–epigenetics axis.” We also discuss the 
implications and opportunities this knowledge may have for basic and applied science, 
such as the impact on the way we structure future research, understand, and prevent 
diseases like type 2 diabetes or obesity.
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CROSSTALK BETWEEN HOST AND GUT MICROBIOTA 
METABOLISMS

The human body co-habit with a diverse community of symbiotic microorganisms and their set 
of genes, collectively known as the microbiome (Ursell et al., 2013). The acquisition of the initial 
microbiome is a dynamic rather than a static process during early life (Ferretti et al., 2018). A recent 
estimation of the number of bacterial cells over human cells in our body has reduced the ratio from 
10:1 (Savage, 1977) to a 1.3:1 (Sender et al., 2016a; Sender et al., 2016b). This implies a similar number 
of bacterial and human cells in and on the human body. However, the human microbiome encodes 
for at least 100 times more genes than our genome (Qin et al., 2010). Therefore, the corresponding 
higher functionality of bacterial genes is a key aspect to understand existing metabolic interactions 
between the host and its microbiota.

The microbiota helps their hosts to digest dietary fiber; produces some important neurotransmitters 
(Sampson and Mazmanian, 2015; Yano et al., 2015; Strandwitz et al., 2018), hormones, and vitamins 
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(Kau et al., 2011; Trial et al., 2016); helps in training the host 
immune system (Kau et al., 2011; Chu and Mazmanian, 2013); 
and protects against pathogens (Watanabe et al., 2017), among 
many other functions. However, unbalanced microbiota can also 
cause disease. Some common diseases in western societies such 
as obesity and type 2 diabetes are associated with shifts in the 
relative abundance of gut bacteria composition and functionality, 
compared to the ones observed in healthy individuals. The cause 
of the microbiota imbalance (dysbiosis) of unhealthy individuals 
across age and geography has been mainly correlated with dietary 
habits (Turnbaugh et al., 2008; De Filippo et al., 2010; Muegge et al., 
2011; Wu et al., 2011; Arumugam et al., 2011; Menni et al., 2017). 
Therefore, the so-called chemical crosstalk between the microbiota 
and its host has tangible consequences for the physiological state 
of the host (Sharon et al., 2014; Caesar et al., 2015; Ussar et al., 
2016). However, the molecular mechanisms by which microbiota 
chemically interacts with host cells and regulate gene expression 
remain largely unknown. In this regard, the role that certain host-
microbiota derivate metabolites may exert on epigenetic events at 
the DNA, RNA, and histone level needs to be further investigated.

THE “MICROBIOTA–NUTRIENT 
METABOLISM–HOST EPIGENETIC” AXIS

Differences in the microbiota or epigenome in two genetically 
identical organisms, such as same-sex inbred mice or monozygous 
twins, can create differences in susceptibilities to diseases 
including  obesity and type 2 diabetes (Ling and Groop, 2009; 
Franks and Ling, 2010). As with gut microbiota, new studies have 
demonstrated that epigenetic events are highly dynamic, changing 
in response to nutrient availability (Bouchard et al., 2010; Hullar 
and Fu, 2014) or physical exercise (Laker et al., 2017). DNA 
methyltransferases, DNA hydroxylases, histone acetyltransferases, 
histone deacetylases, histone methyltransferases, and histone 
demethylases are enzymes responsible for adding or removing 
these dynamic epigenetic modifications. In this regard, 
endogenous metabolites can regulate gene expression through 
epigenetic events in host cells (Katada et al., 2012). For instance, 
histone deacetylation regulated by sirtuin family deacetylases 
is regulated by the NAD+/NADH ratio, acetyl-CoA, O-acetyl-
ADP-ribose, and nicotinamide (Peleg et al., 2016; Ringel et  al., 
2018). Whether gut microbiota metabolism is regulating 
the concentration and/or activity of endogenously produced 
metabolites by the host remains largely unexplored, and it is only 
recently that an increasing number of researchers have started to 
investigate this possibility (Krautkramer et al., 2016; Aleksandrova 
et al., 2017; Romano et al., 2017). Krautkramer and colleagues 
(2016) have demonstrated that microbial colonization regulates 
global histone acetylation and methylation in multiple host tissues 
in a diet-dependent manner.

Short-chain fatty acids (SCFAs) are exclusively produced by 
the microbial fermentation of dietary carbohydrates, and their 
abundances are regulated by the composition of the microbiota 
(Chen et al., 2007; Cai et al., 2011). Importantly, SCFAs, particularly 
butyrate and acetate, produced by the microbiota, inhibit histone 
deacetylases (Figure 1) (Maslowski and MacKay, 2011). Increased 

levels of histone acetylation promote decondensation and relaxation 
of chromatin, supporting a more transcriptionally active state of 
chromatin (Bolduc et al., 2017).

Alteration of chromatin state is a possible mechanism by 
which gut microbiota induces host immune maturation (Cani 
et al., 2012; Seeley et al., 2018). Recognition of a “self ” antigen 
should not only be limited to mammalian host antigens, but 
also symbiotic microbiota antigens forming part of the whole 
human ecosystem in a healthy state. The human leukocyte 
antigen (HLA) or major histocompatibility complex (MHC) 
gene system encodes many antigen-presenting proteins, which 
are essential to recognize and distinguish “self ” from “non-self ” 
antigens. Colonization of germ-free mice has demonstrated the 
capacity of microbiota-specific species to activate MHC class II 
genes (Umesaki et al., 1995). However, little is known about the 
immunomodulatory effect of microbial metabolites. A poorly 
explored possibility is that epigenetically relevant metabolites 
such as SCFA, highly influenced by microbiota composition, 
would regulate MHC gene expression by coordinating activity of 
enzymes that acetylate and methylate histones and DNA allowing 
chromatin accessibility (Ting and Trowsdale, 2002).

Regulation of DNA and histone methylation may be driven 
by complex microbiota–host metabolism interactions involving 
S-adenosyl methionine (SAM), derived from the essential amino 
acid methionine through diet (Poirier et al., 2001). Folate plays 
an essential role by re-methylating homocysteine to methionine 
(Figure 1), thereby ensuring the provision of SAM (Kim, 2005; 
Krautkramer et al., 2017). In this regard, enzymes that are depleted in 
obese microbiomes are frequently involved in cofactor and vitamin 
metabolism (Greenblum et al., 2012), including the production of 
cobalamin (vitamin B12), pyridoxal phosphate (the active form of 
vitamin B6), tetrahydrofolate, and folate (Arumugam et al., 2011; 
Kau et al., 2011; Yatsunenko et al., 2012). Taken together, dysbiosis 
of microbiota can influence SAM levels and, as a result, alter the 
methylation status of DNA and histones. Whether dysbiosis of 
microbiota can alter α-ketoglutarate and succinate levels in specific 
peripheral host tissues, and regulate the rate of DNA demethylation, 
is a plausible but little explored possibility. Ten-eleven translocation 
(TET) enzymes are a key family of DNA and histone demethylases 
that use α-ketoglutarate as co-substrate. However, due to the 
structural similarity with α-ketoglutarate, Tets are susceptible 
to competitive inhibition by fumarate and succinate, causing an 
increase in histone and DNA methylation levels (An et al., 2017).

Another modification that could be regulated by microbial 
metabolism is histone phosphorylation. In response to a low 
ATP/AMP ratio indicative of energy status, the AMP-activated 
protein kinase (AMPK) can translocate to chromatin and 
phosphorylate histone H2B (Bungard et al., 2010). Changes in 
AMPK activity have been reported in obesity, type 2 diabetes, 
metabolic syndrome, and cardiovascular disease (Kola et al., 
2008). Interestingly, germ-free mice were resistant to obesity 
and insulin resistance that develop after consuming a Western-
style, high-fat, and sugar-rich diet (Bäckhed et al., 2007). The 
persistently lean phenotype of germ-free animals was associated 
with increased skeletal muscle and liver levels of phosphorylated 
AMPK. It is also tempting to speculate that phosphotransferase 
systems (PTS) overrepresented in the Western diet microbiomes 
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(Turnbaugh et al., 2008; Turnbaugh et al., 2009) could have an 
impact on this histone modification.

In short, dysbiosis and reduction of the microbiota diversity 
can potentially alter the levels of nutrients and metabolites 
that can potentially act as regulators of DNA methylation and 
histone modifications either by directly inhibiting enzymes that 
catalyze the processes, or by altering the availability of substrates 
necessary for the enzymatic reactions.

HOLOBIONTS, MULTIFACTORIAL 
DISEASES, AND OMIC TECHNOLOGIES

Hosts and their microbiota have a very intimate relationship and 
should be considered as a single biological and evolutionary unit, 

termed holobiont (Youle et al., 2013; Carrier and Reitzel, 2017; 
Groussin et al., 2017; van de Guchte et al., 2018). In this regard, 
we could arguably talk about holo–genome, –transcriptome,  
–proteome, or –metabolome, referring to the combination of 
both, host and host microbiota molecular layers or modules 
of information at the DNA, RNA, protein, or metabolite level, 
respectively (Figure 2). To investigate the dynamics of the 
holobiont ecosystem network, multi-omic approaches bring 
unprecedented advantages. Diseases such as obesity and diabetes 
are known to be multifactorial, and the collection of several 
-omic data (Table 1) from the same holobiont specimen, may 
provide a detailed molecular description and new mechanistic 
insights of how dietary nutrients and gut microbiota metabolism 
can regulate the host phenotype through gene expression and 
epigenetic and metabolic regulation.

FIGURE 1 | The “microbiota–nutrient metabolism–epigenetics” axis. Most of the key molecules involved in one-carbon metabolism are dietary- and microbiota-
dependent, being susceptible to gut dysbiosis or diet intervention. Folate is the precursor of dihydrofolate (DHF) and tetrahydrofolate (THF), and dietary intake is 
the only source for humans. Together with vitamin B12, 5’methy-THF is in charge of remethylating homocysteine (Hcy) to methionine (Met), a crucial step in the 
process of transferring a methyl group to DNA or histones through SAM. The ratio of S-adenosyl homocysteine (SAH) to SAM regulates the overall methylation 
status of the genome at the DNA or histone level. Vitamins B12, B2, and B6 are key cofactors in the folate cycle that are produced by the microbiota or ingested 
through diet. Intermediates of the tricarboxylic acid cycle (TCA) are known to positively or negatively regulate histone methylation. For example, alpha-ketoglutarate 
(α-KG) is known to be an essential substrate for jumonji C histone demethylases (jmjC), and levels of succinate and fumarate can inhibit jmjC demethylases. 
α-Ketoglutarate is a co-substrate of TET dioxygenases in charge of demethylation processes of histones and DNA. As for jmjC demethylases, increased levels of 
fumarate and succinate can inhibit TET enzymes with the consequent increased levels of histone and DNA methylation. Short-chain fatty acids (SCFAs) produced 
by the gut microbiota are also known to inhibit or promote histone PTMs. Butyrate and propionate are inhibitors of sirtuins deacetylases enzymes. Acetate from 
gut fermentation contributes to the pool of intermediate molecules known to form acetyl-coenzyme A, the major acetyl group donor for histone acetyl transferases 
(HATs). Acetate is also known to be an inhibitor of histone deacetylases (HDAC), increasing histone acetylation levels and regulating chromatin accessibility. Whether 
levels of FAD/FADH2, NAD/NADH, TCA intermediates, and other host endogenous epigenetically relevant metabolites are modulated by gut microbiota metabolism 
needs to be further investigated. DMG, dimethylglycine; ATP, adenosine triphosphate; ADP, adenosine diphosphate; FAD/FADH2, Flavin adenine dinucleotide; NAD+/
NADH, nicotinamide adenine dinucleotide.
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To study a complex metabolic disorder such as familial type 
1 diabetes mellitus (T1D), Heintz-Buschart et al. (2016) used 
a combination of host genomics and proteomics together with 
metagenomics, metatranscriptomics, and metaproteomics 
to demonstrate a pronounced family membership effect in 
the structuration and functionality of the microbiomes. They 
observed a correlation between certain human pancreatic 
enzymes and the expression of specific microbial genes involved 
in key T1D metabolic transformations. Krautkramer et al. (2016) 
used a combination of metabolomic, proteomics of histones, 
transcriptomic, and metagenomic techniques in conventional 
and germ-free mice, to demonstrate how SCFAs produced by 
the microbiota, or supplemented exogenously to germ-free 

mice, regulate histone post-translational modifications (PTMs). 
Comparing histone PTMs and transcriptional profiles between 
conventional, germ-free mice and germ-free mice supplemented 
with SCFAs, Krautkramer et al. concluded that SCFAs alone 
are partially causative for histone PTMs. In the same direction, 
Thaiss et al. (2016) used a combination of metagenomics, 
transcriptomics, epigenomics, and metabolomics together with 
imaging electron microscopy, to identify a diurnal rhythmicity in 
the microbial biogeography, metabolic profile, and metagenomic 
functionality as critical orchestrators of host epigenetic marks 
and gene expression. Thaiss et al. have demonstrated that host 
epigenetic and transcriptional circadian oscillations are partially 
dependent on environmental signals such as microbiome 

FIGURE 2 | The human holobiont. Representation of few examples of known interactions between different molecular levels within a holobiont. Exercise, 
environment, and diet can affect the physiology and molecular interactions between human (host) and its microbiota at the DNA, RNA, protein, or metabolite level. 
As an example, fecal host micro RNAs (miRNAs) are used by the host to modulate the composition of its own gut microbiota, interacting at the microbiota RNA and 
DNA levels to control microbial growth (Liu et al., 2016). Short-chain fatty acids (SCFAs), products of gut bacterial anaerobic fermentation of dietary fiber, have been 
proved to cause changes in histone PTMs in multiple host tissues (Krautkramer et al., 2016). Butyrate is a potent histone deacetylase inhibitor (HDACi), regulating 
the transcription levels of genes involved in colorectal tumorigenesis (Hassig et al., 1997). The direct transformation of dietary nutrients (Sharon et al., 2014) and 
secondary products of host metabolites such as primary bile acids (Wahlström et al., 2016) evidencies the strong interdependency between host and microbiota. 
Folate production by Biffidobacterium spp. is another example of how gut microbiota products can affect epigenetics such as DNA or histone methylation (Paul 
et al., 2015). Microbiota diversity shifts, products, or bacterial structural components such as flagellin can cause the activation of the immune system as well as 
impact the immune reconstitution after certain diseases or immunotherapy (Manzo and Bhatt, 2015). Immune system maturation and allergic disease development 
are other examples of how the host and its microbiome interact (Christmann et al., 2015).
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metabolite dynamics in the intestines and that peripheral organs 
“sense and adapt” to this circadian metabolite rhythms in a 
similar manner.

Overall, multi-omic approaches will facilitate the structuration 
of future research, improve patient stratification toward a 
more personalized care, and open new avenues to evaluate 
the effectiveness of functional probiotics, functional foods, or 
nutritional interventions aimed at regulating host gene expression 
in health and disease.

OPPORTUNITIES FOR BIOMEDICAL AND 
CLINICAL RESEARCH

The development and improvement of new technologies and 
bioinformatic tools are advancing biomedical research at a fast 
pace. Multi-omic experiments are allowing researchers to obtain 
mechanistic insights on the human holobiont homeostasis, 
improving decision-making for next experiments to be performed. 
In a research context, extensive collection of -omic data will allow 
integration of information into modulable and controlled models 
of microbial communities (Franzosa et al., 2015). However, it is 
important to identify confounding factors in longitudinal -omic 
studies. Standardization of methods and techniques to reduce 
noise and bias in microbiome research will improve how we 
translate lab findings into the clinic (Knight et al., 2018).

Using germ-free or gnotobiotic mouse models provide a 
framework to manipulate the gut microbial composition in 
a controlled manner. These models can be used to study the 

chemical crosstalk between host and microbiota by uncovering 
specific epigenetic changes in host cells induced by colonization 
of specific bacterial strains. Colonizing gnotobiotic mice with 
single strains or small bacterial consortia, instead of whole fecal 
transplants, might bring more accurate information to understand 
specific molecular mechanisms and molecular pathways involved 
in the host epigenetic regulations. Microbiota-induced dysbiosis 
with antibiotics might provide a useful approach to validate 
findings in gnotobiotic models by partially mimicking the effects 
of absence of microbiota or a reduction in the microbial diversity. 
Interestingly, organoids might also provide a challenging but 
very useful in vitro culturing system to study host–microbiota 
interactions (Williamson et al., 2018).

In a clinical context, gaining knowledge on the “microbiota–
nutrient metabolism–host epigenetics axis” using multiple 
-omic approaches in combination with microbiota modulation 
therapies, has the potential to prevent and treat more efficiently 
metabolic diseases:

(1) Fecal microbiota transplantation (FMT): The use of 
microbiota modulation therapies such as FMT to treat 
recurrent Clostridium difficile infections has been proved 
significantly more efficient than a vancomycin treatment 
(Petrof and Khoruts, 2012; van Nood et al., 2013). Recently, 
the potential of FMT as microbiome modulation technique 
for treating metabolic (Kootte et al., 2017) (Gupta et al., 
2016), neurological (Kang et al., 2017), and immunological 
disorders (Pamer, 2014) has been tested, improving these 
conditions by partially restoring microbiota diversity and 

TABLE 1 | Popular omic techniques in the fields of epigenomics, metagenomics, metabolomics, and proteomics.

Omics Focus Trait studied Techniques used Reference

Epigenomics DNA modifications 5-methylcytosine WGBS (whole genome bisulfite Seq) (Lister et al., 2009)
RRBS (reduced represented bisulfite Seq) (Xi et al., 2012)
MeDIP-Seq (methylated DNA IP Seq) (Down et al., 2008)

5-hydroxymethylation oxBS-Seq (oxidative bisulfite Seq) (Booth et al., 2012)
5-formylcytosine RedBS-Seq (reduced bisulfite Seq) (Booth et al., 2014)

RNA modifications 6-methyladenosine m6A-Seq (m6A specific methylated IP Seq) (Meyer et al., 2012)
DNA 3D structure DNA structure and 

protein interaction
ChIP-Seq (chromatin IP Seq) (Barski et al., 2007)
ATAC-Seq (assay transposase accessible chromatin Seq) (Buenrostro et al., 2013)
Hi-C (chromatin conformation capture) (Lieberman-Aiden et al., 2009)
DNase-Seq (DNase I hypersensitive sites Seq) (Boyle et al., 2008)

RNA transcripts Transcribed DNA RNA-Seq (mRNA/size/strand Seq) (Mortazavi et al., 2008)
GRO-Seq (global run-on-sequencing Seq) (Core et al., 2008)
NET-Seq (native elongating transcript Seq) (Churchman and Weissman, 2011)
UMI method (unique molecular identifiers) (Kivioja et al., 2012)

Metagenomics Marker gene Hypervariable region 16S gene (16S amplicon PCR/sequencing) (Woese and Fox, 1977)
Whole metagenome Whole genome DNA-Seq (regular DNA Seq) (Tyson et al., 2004)
Metatranscriptome RNA RNA-Seq (regular RNA Seq) (Gilbert et al., 2008)

Metabolomics Targeted Known metabolites QqQ (triple quadrupole) (Lu et al., 2008)
Untargeted profiling Unknown metabolites qTOF-MS (quadrupole time of flight) (Patti et al., 2012)

Orbitrap-MS
NMR (nuclear magnetic resonance) (Brindle et al., 2002)

Proteomics Histones PTMs H2A, H2B, H3, and 
H4 modifications

Bottom-up (Sidoli et al., 2012)
Middle-down
Top-down
MALDI-imaging mass spectrometry (Lahiri et al., 2016)

The integration and combination of these techniques have the potential to reveal more mechanistic insights on how gut microbiota influence epigenetics and gene expression, 
ultimately affecting host health. IP, immune precipitation; Seq, sequencing; m6A, 6’methyl adenosine; MS, mass spectrometry; LC, liquid chromatography; GC, gas chromatography; 
PTMs, posttranslational modifications; MALDI, Matrix-assisted laser desorption ionization.
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functionality. Assessing long-term host epigenetic effects of 
FMT has to be further investigated.

(2) Microbiota as drug target: The unique microbiome 
composition of each person is probably responsible for different 
susceptibilities to the same nutrient, pollutant, or drug treatment 
(Koppel et al., 2017). Microbiota-derived metabolites can enter 
the bloodstream and interact with drug treatments, impacting 
the efficacy, toxicity, and clearance of the drug. Diagnosing or 
treating diseases using microbiota-targeted drugs, probiotics, 
and use of bacteriophages or engineered bacteria has recently 
re-emerged (Bhat and Kapila, 2017; Landry and Tabor, 2017; 
Manrique et al., 2017; Maier et al., 2018).

(3) Nutritional intervention, probiotics, and prebiotics: The acute 
consumption of a cocktail of probiotics containing a selection 
of five strains of Lactobacillus and five strains of Enterococcus 
modulates the microbiome and enhances SCFAs production 
in human and mice (Nagpal et al., 2018). The consumption of 
some probiotics has proven to be beneficial and ameliorates 
stress felt in healthy women (Tillisch Kirsten, 2013), improves 
insulin sensitivity (Gomes et al., 2014), protects against 
infections (Reid and Burton, 2002), and helps to restore 
microbiota after distortion by antibiotics (Langdon et al., 
2016), among other benefits. Promoting SCFAs producing 
bacteria in the host gut by a nutritional intervention that 
increases fiber consumption (Zhao et al., 2018) may have an 
epigenetic effect in the host (Krautkramer et al., 2016).

CONCLUSIONS AND PERSPECTIVE

The study of the “microbiota–nutrient metabolism–host 
epigenetic” axis has great potential to reveal the molecular 
mechanisms by which gut microbiota composition affects the 
expression of genes in their hosts. In a human holobiont context, 
this axis is relevant to understand, prevent, diagnose, and treat the 
existing epidemic of metabolic disorders such as type 2 diabetes 
and obesity. Microbiota is a key player in health outcomes due to 

the potential myriad of metabolites that can produce and interact 
with any cell of our body through systemic circulation. Those 
metabolites are coming from direct transformations of nutrients 
available in the gut microbiota or from secondary transformed 
host products. The link between epigenetic marks and gut 
microbes appears to be mediated by host-microbial metabolites 
that act as substrates and cofactors for key epigenetic enzymes in 
the host. A disruption in the composition of the gut microbiota 
may lead to unbalanced key metabolites that sequentially may 
impact epigenetic pathways and alter gene expression. The 
implementation of multi-omic approaches to study the human 
holobiont will facilitate the stratification of patients toward 
a personalized-oriented care, improving disease prevention, 
diagnostics, drug election, and treatment efficiency.
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