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Abstract: Photodynamic therapy (PDT) is able to non-invasively treat and diagnose various cancers
and nonmalignant diseases by combining light, oxygen, and photosensitizers (PSs). However,
the application of PDT is hindered by poor water solubility and limited light-penetration depth
of the currently available photosensitizers (PSs). Water solubility of PSs is crucial for designing
pharmaceutical formulation and administration routes. Wavelength of light source at visible range
normally has therapeutic depth less than 1 mm. In this review, focus is on the recent research progress
of metal-based nanoparticles being applied in PDT. The potential toxicity of these nanoscales and
future directions are further discussed.
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1. Introduction

Photodynamic therapy (PDT) is a modern and rapidly developing method for the diagnosis
and treatment of a wide range of diseases from cancer treatment to root canal treatment, and with
an increasing popularity owing to its antibacterial effect [1–3]. PDT involves the joint action of
chemotherapeutic and physical (laser radiation, radiation of LEDs and other sources) factors in the
presence of oxygen. The method is based on selective accumulation of photosensitizer in the tumor
tissue, which is capable of generating cytotoxic agents that cause the death of tumor cells under local
exposure to light with a wavelength corresponding to its maximum absorption [4,5]. The sensitizer is
injected into the body, most often intravenously, and accumulates in the tissues of the tumor. Then,
affected by the pathological process, the tissues are irradiated with light. The absorption of light quanta
photosensitizer molecules in the presence of oxygen leads to a photochemical reaction, which results in
the formation of singlet oxygen, causing tumor cell necrosis. In the early stages of tumor development,
its cells are fed and oxygen by diffusion, but as the tissue grows there is a need for blood supply.
The walls of the newly formed vessels are not as strong as in healthy vessels, so it is necessary to
use nanoparticles that can penetrate the walls of the newly formed vessels and accumulate in the
tumor tissues.

PDT is also used for the treatment of infectious agents in addition to the use of chemotherapy as
one of the new effective antimicrobial techniques [6,7]. The basis of such therapy are photosensitizers,
which are specific substances characterized by selective sensitivity to certain wavelengths of the optical
range [8]. Photosensitizers and light irradiation taken separately do not have a therapeutic effect on
the affected tissue [9]. The most significant component having an influential impact on photodynamic
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therapy process is photosensitizer. Appropriate choice of the substance is a guarantee of success.
Photosensitizers should be characterized by i.e., selectivity for tumor cells, formation of a long-lived
triplet excited state in reaction, activation with wavelength appropriate for tissue, and high chemical
purity. The most important of these are activation wavelength and period of photo-sensitivity [10].

Today there are more than 1000 known photosensitizers that have both natural and synthetic origin
(chlorophyll, phycobilin, porphyrins and intermediate products of their synthesis, some antibiotics,
quinine, Riboflavin and several other drugs). Such photosensitizers should have the following
characteristics: chemical purity and uniformity of composition; lack of dark toxicity; high ability
to accumulate in the target tissue; rapid elimination from the patient’s body; high photochemical
activity characterized by high quantum yield of singlet oxygen; absorption of light in the long-wave
part of the spectrum (600–800 nm), in which biological tissues are most transparent, with a high
coefficient of extinction [11–13].

The mechanism of action of PDT is that when the photosensitizer molecule absorbs a quantum of
light, it goes to an excited triplet state and enters into photochemical reactions of two types. In the
first type of reactions there is an interaction directly with the molecules of the biological substrate,
which ultimately leads to the formation of free radicals. In the second type of reactions there takes
place interaction of the excited photosensitizer with oxygen molecule to form singlet oxygen which
is cytotoxic for living cells due to its property of strong oxidizer [14]. The use of PDT is not limited
to oncology. This is due to the fact that most PS are able to accumulate not only in the tumor area,
but also in areas with some other pathologies. These pathologies include hyperplasia, metaplasia,
and inflammation. In recent years, PDT has been used to treat infectious diseases caused by bacterial
and fungal infections [15]. Efficacy of PDT is also shown for the treatment and prevention of several
cardiovascular diseases, and blood sterilization [16].

Currently, the technology of PDT is becoming increasingly used in modern medicine. However,
there are many factors that require further study in this area. Many modern scientists are working on
optimizing the mechanism of delivery of photosensitizers to target tissues, accelerating and improving
the impact of active substances on the body, reducing toxicity and accelerating the withdrawal of drugs
after the procedure. A separate area of research in this area is the use of metal-based nanoparticles.

The mechanism of photodynamic action is complex and not fully understood. It is known that
singlet oxygen plays the main role in PDT, which is formed in the molecules of lipids and proteins
of cell membranes and intracellular organelles when exposed to them by the quantum of light [17].
When the light absorption of the molecule PS also moving from the core to an excited state. The excited
light molecules, or quantum emission of fluorescence, enter into photochemical reactions of Type I
or II (as shown in Figure 1). In Type I, PS molecules interact directly with tumor tissue molecules,
forming intermediate radical products that then react with oxygen, which leads to the formation of
various highly active substances, primarily active forms of oxygen, entering into further redox reactions.
In this case, peroxide radicals, superoxide anion, hydroxyl radical are formed, lipid peroxidation is
activated, and cell membranes are damaged in violation of their functions. In a photodynamic reaction
of Type I, the photosensitizer molecule is excited and passes from the ground state first to the singlet
state and to the triplet excited state. In Type II, PS molecules react first with oxygen, converting it into
a highly active singlet form. It interacts with proteins, nucleic acids, and lipids of cell membranes,
causing their death by necrosis or apoptosis.
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Figure 1. The schematic illustration of a typical photodynamic reaction (Reproduced with permission [18]). 
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a maximum absorption at a wavelength of 630 nm, capable of actively generating singlet oxygen. 
ALC-based PS has been successfully used for the diagnosis and treatment of keratosis, bladder 
cancer, and brain tumors. Thus, photodynamic reactions of Type I and II lead to the formation of high 
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development of a modern approach to the study of photosensitizers and their impact on biological 
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However, not all possible reactions explaining the mechanism of PDT have been studied and
understood. There are a number of contradictory experimental data. In Reference [19] a fundamentally
different approach to PDT was proposed, based on the use of endogenous mechanisms for inducing
photosensitivity. The idea was to create conditions in the body in which there would be an excessive
amount of synthesis of endogenous porphyrins in tumor tissues. To this end, patients were orally
administered d-aminolevulinic acid, which in itself is not PS and does not accumulate in cells, but a
natural precursor of protoporphyrin IX. With exogenous administration of acid, protoporphyrin IX
accumulates in tumor cells. Protoporphyrin IX is a sufficiently active PS with a maximum absorption
at a wavelength of 630 nm, capable of actively generating singlet oxygen. ALC-based PS has been
successfully used for the diagnosis and treatment of keratosis, bladder cancer, and brain tumors. Thus,
photodynamic reactions of Type I and II lead to the formation of high toxicity, the development of
chain oxidation processes and, as a consequence, to the destruction of vital structures of cells and
their death. These types of reactions can occur simultaneously. The advantage of this or that type of
reaction is determined by the chemical structure of the photosensitizer, its concentration, the presence
of extinguishers, as well as the ratio of the molecular oxygen content and the oxidized substrate in the
tissues [20]. In the study of the distribution of PS in the body, it was noted that, in addition to the tissue
of skin tumors, many of them are retained in high concentrations in the cells of the reticuloendothelial
system, liver, kidneys, spleen, and inflamed tissues. This was a prerequisite for the study of the use of
PDT in a new direction: for the treatment of diseases of non-tumor nature.

2. Recent Progress of Photodynamic Therapy

PDT is a method of local activation accumulated in the tissue fluorescent dye-photosensitizer
by visible light in the presence of oxygen in the tissues, which leads to the development of free
radical reactions and, ultimately, to the death of target cells. Assessing inequality in the distribution
of such dyes in normal and pathological-modified tissue is based on fluorescent diagnostics [21,22].
Reactions underlying modern medical fields of PDT were used tens of centuries ago. The Egyptian
papyri and ancient Indian medical literature describes the treatment of skin diseases, in particular
vitiligo, with herbal preparations based on St. John’s wort, caraway, parsley and parsnip. It is known that
these plants contain photoactive compounds, derivatives of coumarins-psoralenes [23,24]. Isolated plant
preparations were used internally or locally, and the subsequent insolation of pathological areas with
bright sunlight contributed to the development of photosensitizing reactions [25,26]. The development
of a modern approach to the study of photosensitizers and their impact on biological objects began with
Reference [27], which described the death of Paramecia in an environment with small concentrations
of dyes such as acridine, eosin, fluorescin, when exposed to sunlight, while in the dark cell death was
not observed.

The first clinically approved photosensitizer, known as the “hematoporphyrin derivative” or
HpD, did not have a strictly defined chemical composition, but was a mixture of many porphyrins,
including hematoporphyrin, protoporphyrin, deuteroporphyrin, their derivatives, monomers, dimers
and oligomers and their esters. Photodynamic properties of hematoporphyrin, which became the basis
for the first generation of clinical photosensitizers, were first discovered and published in 1911 in the
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work [28]. The first person who experienced the effect of hematoporphyrin on the human body was
Meyer-Betz in 1912, when he injected himself with intravenous hematoporphyrin, resulting in swelling
and pigmentation under the influence of sunlight were lasted for 2 months [29].

The ability of hematoporphyrin to selectively accumulate in the tumor was shown in
Reference [30]. This work opened the possibility of using this compound for photodynamic therapy
and fluorescence imaging of malignant neoplasms. Widespread PDT began in the second half of the
1970s, which is associated with the appearance of works [31,32]. These works reported the results of
a successful application of a hematoporphyrin derivative in PDT for the treatment of patients with
skin and basal cell carcinoma, melanoma metastases and breast cancer [33–35]. Currently, there is
active research in the field of development of PDT. At the beginning of this century, new methods of
diagnosis and treatment of tumors of the colon and bladder, tumors of the brain and spinal cord, new
methods of treatment in skin and plastic surgery and cosmetology were developed [36–38]. To increase
the efficiency of PDT, compounds were proposed with greater selectivity of accumulation in tumor
tissue, better photosensitizing properties and providing an increase in the depth of photodynamic
action by shifting the absorption maxima into a longer-wave region of the spectrum (more than
650 nm) compared to first-generation drugs. Due to the individual characteristics of the patient’s
body, and considering the conditions of the disease, therapy requires the selection of optimal drugs
for treatment. In this regard, a large amount of scientific work aims to study the most common and
effective photosensitizers [39]. Ideally, this drug should meet the following requirements: to reliably
generate a photodynamic reaction, to be hydrophilic for easy systemic application and nontoxic to
activated light, to clinically activate beneficial light wavelengths. The drug should be well distributed
on target tissues and leave the body quickly and completely after the procedure [40,41].

Another important factor in the successful use of PDT is the use of the most effective light source to
activate the photosensitizers [42]. The light source must ensure the penetration of light to the required
depth into the tissues, provide full and uniform illumination of the required zone, the wavelength of
the light corresponding to the maximum absorption of the active substance. In this regard, the choice
of light source depends not only on the choice of drugs, but also on the depth, size, and characteristics
of target tissues [43–45]. The development of PDT technology can aid in the fight against a range of
diseases, such as tumors of the colon and bladder, tumors of the brain and spinal cord, and to develop
new methods of treatment of skin in plastic surgery and cosmetology [46,47]. Positive results of
treatment of proinflammatory diseases by photodynamic therapy show high efficiency of this method
in respect of aerobic, facultative, and obligate anaerobic bacteria, and microscopic fungi [48,49].

Photodynamic therapy includes the following mechanism of action: photosensitizer absorbs
the energy of the same wavelength from the light source, transmits this energy to the substrate,
and destroys the microorganisms by irreversibly oxidizing the cellular components through formation
of short-lived reactive molecules [50,51]. Photodynamic action can cause different types of cell death:
apoptosis, necrosis, and autophagy. For the development of apoptosis, it is necessary to preserve
the integrity of the plasma membrane and a sufficient level of ATP. Chromatin condenses and
forms apoptotic cells, and DNA fragmentation occurs when apoptotic cells die. This process of
self-destruction of the cell is strictly controlled at the level of regulatory proteins and participating
effector enzymes. Proteolytic caspases play a key role in apoptosis. Caspase activation can be initiated
both outside and inside the cells. In the first case, the start of the cascade begins with the activation of
one of the receptors located on the cell membrane, which perceives the external signal (for example,
Fas, TNF, DR-4, DR-5). However, in the second case, which is most likely under photodynamic action,
signals for starting apoptosis can come from mitochondria, electron paramagnetic resonance (EPR) and
lysosomes. Necrosis is a passive process that does not require energy. In necrosis, there is a violation
of the integrity and, accordingly, permeability of the membrane, protein denaturation, and output of
the cellular content in the external environment. In the case of autophagy in the cytoplasm of cells,
accumulation of membrane bubbles occurs that contain fragments of organelles. When you merge
autophagosome with lysosomes, autophagosomes are formed which digest the contents [52,53].
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The study of the mechanisms of intracellular and intercellular distribution of photosensitizers
is an important step in the development of new drugs for PDT. Knowledge of these mechanisms
allows for increased efficiency of photodynamic influence on pathological tissues, to predict toxic
properties of PS and, thus, to minimize degree of negative influence on normal organs and tissues.
Since the basic effector of photodynamic therapy singlet oxygen in its short life (less than 0.04 µs)
diffuses in the cell by no more than 0.02 µm, it is capable of exerting mainly local effects of the
PS molecule mucus. Singlet oxygen in cells oxidizes first of all amino acids as a part of proteins
(tryptophan, histidine, methionine, cysteine, etc.), ascorbate, and sugars and nucleotides, which are
much worse than lipids [54,55]. The radius of cytotoxic action of singlet oxygen to the cell does not
exceed 0.01–0.02 microns, and its life expectancy in biological systems is less than 0.04 µm [56], the small
radius of cytotoxic action of singlet oxygen determines the locality of the action, since it damages only
biostructures that are in the vicinity of molecules of the photosensitizer. Therefore, the localization of
the photosensitizer plays a crucial role in the mechanism of photo-damage, determining intracellular
and tissue targets, which will primarily be exposed to photodynamic effects [57]. With the introduction
of photosensitizer in the bloodstream, they bind to whey proteins—albumins, globulins, lipoproteins
of low or high density—and form complexes, and only a small part of the PS can remain free [58,59].
The possibility of binding to certain whey proteins affects the polarity of the PS.

With an increase in PS hydrophobicity, there is an increase in the probability of binding the dye
to low- and high-density lipoproteins [60]. The PS complexes formed with proteins are absorbed
by endothelial cells in the capillaries of the bloodstream, after which there is a binding of the dyes
with the adventitia of the vessels and the arrival of PS in the extracellular matrix with subsequent
accumulation in the cells [59,60]. After photoexcitation and subsequent relaxation of the molecule
of the photosensitizer is returned to its original state and is able to participate again in the chemical
reaction. The whole cycle can be started again after the absorption of a new quantum of light energy.
However, after a certain number of cycles, the photosensitizer “burns out”, i.e., loses the ability to
participate in the photodynamic reaction. This effect is called photobleaching [61].

After intravenous injection the highest concentration of photosensitizer is observed in the liver,
kidneys, spleen, and heart, as these organs are characterized by a high level of blood supply and the
presence of perforated capillaries. There is a redistribution of PS to other organs and tissues, such as
the lungs, intestines, stomach, and skin. The lowest level of accumulation of photosensitizers is noted
in the muscles [62].The ways to remove the photosensitizer from the patient’s body are determined
by the chemical structure of the drug. As a rule, hydrophobic PS are excreted with faeces and bile
through the liver, and hydrophilic with urine [63]. Tumor tissues have an increased disposition to the
accumulation of PS [64]. This may be due to a number of reasons:

(1) Tumor vessels have increased permeability compared to healthy tissues. Tissue with increased
vascular permeability is a weak barrier for most broadcasters moving with blood [65–67].

(2) Low lymph drainage characteristic of tumor area. The decrease in the drainage function of the
lymphatic system contributes to the fact that photosensitizers are slowly excreted from the tumor
site, which leads to their local accumulation [68].

(3) High speed of proliferation in the tumor, in which there is a high level of expression of low-density
lipoprotein receptors, binding a large number of hydrophobic molecules of photosensitizer [69].

(4) Lower pH value of the tumor than in healthy tissues. The main reason for strengthening
the accumulation of photosensitizers in the acidification of the environment is to increase the
lipophilicity of the drug, if protonated [70].

(5) Abnormal structure of the tumor stroma, characterized by increased intercellular space and
increased production of collagen, which binds porphyrins [71].

(6) Large number of macrophages in tumor tissue, which are effective traps for hydrophobic
photosensitizers [72].
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Photosensitizers, received from vessels in the extracellular matrix, can penetrate into the cell
either by diffusion or by receptor-mediated endocytosis (clathrin- and caveolin-dependent pathways).
Large aggregates or particles containing PS can be absorbed by the cell by phagocytosis. In the case of
endocytosis photosensitizer mainly enters lysosomes. The specific method of penetration of PS into
the cell depends primarily on the size of molecules and their ability to aggregate. Modern scientific
literature provides a detailed description of the mechanism of penetration of various sensitizers in
tumor cells by diffusion [73], endocytosis [74] and phagocytosis [75]. In References [76,77] it was
shown that after the PDT procedure it is possible to recalibrate the PS. This phenomenon can cause
damage to non-target subcellular structures.

Currently, PDT has attracted a lot of attention as a noninvasive and safe method for the treatment
of cancer [78,79]. Special attention is paid to the study of the possibility of using free radicals in
the treatment of diseases. According to commonly knowledge of free radicals, these reactive forms
are harmful for a whole organism. The molecules attack tissues at the cellular level leading to numerous
mutations, and this leads to diseases such as neurodegenerative disorders, diabetes, cardiovascular,
cancers etc. [80]. Considering the high reactivity of free radicals and their high possibility of damaging
cells, these forms can be influential for anticancer therapy. Current medicine pays increasingly more
attention to photodynamic therapy as a promising direction for cancer treatment. Based on the physical
and photochemical basis of the aforementioned PDT treatment, the basis of treatment is the ability
to attack and extinguish the free radical generation of cancers cells. PDT is considered to be a safe
and promising therapy. Nevertheless, this action is limited by naturally occurring defense systems
which unfortunately help the cancer cells survive and scavenge the radicals. Examples are superoxide
dismutase and glutathione which uphold the normal functioning organism and counteract the negative
influence of free radicals and oxidative stress [81]. Some terms should be retained for cancer treatment.
Firstly, the therapy should lead to irreversible damage of the cancer cells, the destruction should not
include healthy tissues/cells and, most significantly, the damage must lead to the total destruction
of tumor cells present in concrete tissue [82]. In view of this, a promising approach seems to be
in connection of traditional therapy (i.e., chemotherapy) with PDT. Continuous exploration in this
medical field allows us to infer the effects of synergy [83]. The most significant cases of the use of PDT
and its connection with other antitumor therapies are presented below.

Cancer treatment is not the only application of this technique in medicine: due to the presence
of its antibacterial effect, therapy can be applied to many diseases, including root canal treatment
of purulent diseases, anti-acne therapy, psoriasis and herpes therapy and physical damage [84].
The progress of scientists in the field of development of light sources and synthesis of new active
substances suggests that PDT is one of the most promising and quickly developing techniques in the
diagnosis and treatment of various diseases.

3. Applications of Metal-Based Nanoparticles in PDT

It is no secret that currently the use of nanotechnology is gaining in popularity and affects an
increasing number of scientific fields [85–93]. Nanomaterials are usually easily able to form complex
compounds with other substances, including organic materials. At the same time, the developed
surface of nanoparticles leads to its increased chemical activity, which makes it possible to use
oxide nanoparticles to suppress the growth of pathogenic bacteria, including those resistant to
antibiotics [94,95]. Irradiation of nanoparticles with relatively low-power radiation can lead to
photostimulated reactions on the surface of nanoparticles. Such reactions—in particular, the generation
of singlet oxygen—are used in photodynamic therapy. Formed complexes possess new properties.
Therefore, nanoparticles can be in contact with nucleic acids and proteins embedded in membranes,
to penetrate into cell organelles by altering the functions of the bio-structures [96,97]. The development
of knowledge in the application of nanoparticles has led to the possibility of using this technology
in the PDT method [98]. Recent studies have shown that metal-based nanoparticles can be used as
photosensitizers, delivery vehicles, and upconversion tools [99]. Dispersions, suspensions, and sols of
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metal nanoparticles are of interest among various forms of nanoscale material use. Their advantage
lies in their relatively narrow size and shape distribution and long period of activity. There is reason to
believe that stable nanoparticles of metals in water dispersions will find useful applications in biology
and medicine. Currently, a number of studies are being carried out to research the possibility of using
nanoparticles based on molybdenum oxide, TiO2, ZnO, and tungsten oxide as photosensitizers in
PDT [100–102].

3.1. Gold Nanoparticles

Gold is one of the most popular materials for nanoparticles used in medicine [103]. One of
the directions in cancer therapy is connected with the heating of gold particles by IR laser radiation.
A special feature of metal nanoparticles is the presence of resonant absorption of electromagnetic energy
for cases when the size of the nanoparticles is much smaller than the wavelength. This absorption is
associated with the surface plasmon resonance, which is the collective oscillation of electron gas on the
surface of the nanoparticle. For most metals, the wavelength of plasmon resonance lies in the region of
visible and shorter waves. For example, the surface plasmon resonance of a gold nanostar placed in
water lies close to 520 nm [104].

The technology of heating gold nanoparticles by infrared laser radiation for the purpose of local
thermal damage of cells was first proposed in Reference [105]. The successful application of this
technology in the field of cancer treatment was considered in Reference [106]. Due to the fact that
the heating of gold nanoparticles requires a wavelength of about 520 nm, these characteristics do not
allow light to penetrate deep into the tissue, for which the most optimal wavelengths are 800–900 nm.
This basic research aims to study the synthesis of nanoparticles at surface resonance wavelengths,
corresponding to the maximum transparency of body tissue [107,108]. The light-absorbing properties
of gold nanoparticles (the localized surface plasmon resonance) can be easily regulated by controlling
the morphology of the size and shape of the nanostructure of the material in the synthesis process [109].
In recent works, leading scientists have proven that a change in the structure of gold nanoparticles allows
to change their features to achieve the most efficient use of this material as a photosensitizer [110,111].
The results of Figure 2 shows that the temperature of mice treated with Au nanoparticles increased
significantly under light irradiation. The temperature changes of melanoma tumor transplanted mice
under 808 and 980 nm laser irradiation were 12.6 and 10.5 ◦C, respectively [110]. The results of 808 nm
laser irradiation are caused by nanomaterial-mediated photothermal (NmPTT) effect, while the results
of the 980 nm irradiation are considered to be the result of the combination of nanomaterial-mediated
photodynamic therapeutic (NmPDT) and NmPTT effects.
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In Reference [112], gold nanoparticles with a particle size of 2–4 nm were obtained using
a hydrophobic thiol group containing PS, namely phthalocyanine (PC), as a stabilizing agent. It should
also be noted that gold nanoparticles are not only photosensitizers, but also have found considerable
use in the field of delivery vehicles. In Reference [113], it was shown that, due to targeted delivery
through the use of gold nanoparticles, the efficiency of photodynamic therapy has significantly
improved. In addition, it did not reveal any toxic action of the conjugates if introduced into the body
at therapeutic doses. These results make it possible to conclude that gold is one of the most promising
materials in the field of development of PDT technology [114].

3.2. Silver Nanoparticles

Silver is one of the strongest-known natural antibiotics and has been used by humans to kill a
variety of microorganisms for many years. Colloidal nanosilver is a product consisting of microscopic
silver nanoparticles suspended in demineralized and deionized water. Typical silver nanoparticles have
a size of 20–25 nm. They have an extremely large specific surface area, which increases the contact
area of silver with bacteria or viruses, significantly improving its bactericidal action. Thus, the use
of silver in the form of nanoparticles allows the concentration of silver to reduce hundreds of times
while maintaining all bactericidal properties. In Reference [115], a wide-ranging study was conducted
to examine the effect of silver ions on bacteria. The use of nanoparticles of noble metals (including
silver) has found wide application as a technology of container delivery of photosensitizers to target
tissues. The action of silver nanoparticles in combination with conjugation in such nanocontainers
of photosensitizers can lead to a significant increase in the efficiency of fault detection and isolation
(FDI) microorganisms due to the bimodal action of such nanocomposites [116,117]. The formation
and stabilization of nanosized colloidal metal particles demands careful attention to the preparation
conditions and to the presence of stabilizers. Nanoparticles of silver, gold, platinum, and copper have
been prepared by various methods, but most of their shapes have been limited to spheres [118].
Thus, silver nanoparticles are a promising and effective approach to enhance photodynamic action on
microorganisms, as well as their safety for mammalian cells for photodynamic therapy of tumors.

3.3. Copper-Based Nanoparticles

Copper is a trace element vital for the human body. According to recommendations, the daily
demand for copper is about 900 µg. When copper deficiency decreases phagocytic activity of
granulocytes and synthesis of immunoglobulins, immunodeficiency occurs. An important biological
role of copper is to participate in the processes of proliferation and differentiation of cells. It is
experimentally proved that copper gluconate (Cu2+) in immunodeficiency contribute to the increase of
IgG level, prevent the appearance of malignant cells, and enhance the effect of anticancer protection.
On the contrary, copper deficiency increases the probability of neoplasms. During the course of
pathological processes, the body accumulates information for the bank of immunological memory.
As a result, specific antibodies in the synthesis involve copper. In case of repeated penetration into the
body of a known antigen, the acquired immunity is used, so the immune reaction proceeds faster and
more clearly, i.e., copper has immunomodulatory properties [119]. Copper sulfide nanoparticles are
also widely used in the field of PDT techniques. In modern research both the drug-delivery property in
the target tissue and the photodynamic activity of the copper-based particles themselves are described
in detail in Reference [120]. In Figure 3, B16 cells treated with plasmonic copper sulfide (Cu2−xS)
showed stronger 2,7-dichlorofluorescein (DCF) fluorescence signal under near infrared light irradiation.
The enhancement of the signal intensity is in accordance with the results of electron spin resonance
and fluorescence analysis. It is proved that Cu2−xS nanocrystal is involved in the PDT process and
can only induce the reactive oxygen species to trigger the biological reaction under the condition of
near-infrared light irradiation.



Molecules 2018, 23, 1704 9 of 23
Molecules 2018, 23, x FOR PEER REVIEW  9 of 23 

 

 
Figure 3. Visible light and fluorescence images of B16 cells incubated with plasmonic Cu2−xS 
nanocrystals for 6 h (Reproduced with permission [120]). 

CuS nanoparticles have a broad absorption from 700 to 1100 nm. This property allows heat to be 
generated by particles and near-infrared light, which can be harnessed to kill cancer cells [121]. In 
Reference [122] it was shown that CuS nanoparticles are effective agents for both PTT and PDT. The 
CuS nanoparticles produce both heat and reactive oxygen species when excited by laser and show 
strong anticancer effects. In Reference [123] it was proposed to use a new method of synthesis of gold 
nanocubes based on copper oxide nanoparticles. This method differs in economic efficiency and 
allows the use of the received particles as agents for carrying out photothermal therapy with 
simultaneous visualization of process by a photoacoustic method. 

As a new type of agent for treatment of cancer, CuS nanoparticles are characterized by their low 
cost, simple and easy preparation as well as small size for surface modification. The other efficient 
cancer treatment method is PDT. The photosensitizers (PSs) are used to generate highly reactive 
oxygen species (ROS) including hydroxyl radicals (%OH), singlet oxygen (1O2), and peroxides (R-O-
O%) for destroying cancer cells by photoexcitation [124,125]. For clinical applications, ideal PSs are 
supposed to occur at a wavelength between 700 and 1000 nm since human tissue is penetrable at this 
energy level. CuS nanoparticles are gaining more and more attention in PTT and PDT for their unique 
physicochemical characteristic [126]. However, the mechanisms for CuS nanoparticles as PTT and 
PDT agents are not yet clear. In this paper, we will concentrate on the mechanism studies by 
evaluation CuS nanoparticles as effective agents for simultaneous PTT and PDT on cancers. 

3.4. Magnetic Nanoparticles 

Magnetic nanoparticles are of particular interest for research and have great potential in their 
application in biology and medicine. These nanoparticles can affect certain target tissues in the body, 
without having a toxic effect on healthy tissues. In order to control and contain these particles, an 
adjustable magnetic field orientation is applied [127]. Toxicity of oxide nanoparticles is low in 
comparison with metal nanoparticles, therefore they are used for realization of unique methods, such 
as delivery vehicles in thermal therapy, when heated by laser or microwave radiation to the 
destruction temperature of the pathological tissue, etc. [128–130]. Various particles coated with a 
metal shell are usually used under the action of magnetic nanoparticles. The greatest attention is on 
particles with a shell of magnetite Fe3O4, which, thanks to their spherical shape and narrow size 
distribution, have found wide application in the diagnosis and treatment of various diseases [131]. In 
Reference [131], a study of the effects of chemo- and photothermal therapy of cancer tumors was 
conducted. Mesoporous magnetic nanoclusters of gold were used as carriers and therapeutic agents. 
As a result of the study, mice were found to have significant inhibition of tumor growth and 
metastasis due to the therapeutic effect and targeted delivery of gold nanoclusters. 
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nanocrystals for 6 h (Reproduced with permission [120]).

CuS nanoparticles have a broad absorption from 700 to 1100 nm. This property allows heat to
be generated by particles and near-infrared light, which can be harnessed to kill cancer cells [121].
In Reference [122] it was shown that CuS nanoparticles are effective agents for both PTT and PDT.
The CuS nanoparticles produce both heat and reactive oxygen species when excited by laser and show
strong anticancer effects. In Reference [123] it was proposed to use a new method of synthesis of gold
nanocubes based on copper oxide nanoparticles. This method differs in economic efficiency and allows
the use of the received particles as agents for carrying out photothermal therapy with simultaneous
visualization of process by a photoacoustic method.

As a new type of agent for treatment of cancer, CuS nanoparticles are characterized by their low
cost, simple and easy preparation as well as small size for surface modification. The other efficient
cancer treatment method is PDT. The photosensitizers (PSs) are used to generate highly reactive oxygen
species (ROS) including hydroxyl radicals (%OH), singlet oxygen (1O2), and peroxides (R-O-O%) for
destroying cancer cells by photoexcitation [124,125]. For clinical applications, ideal PSs are supposed
to occur at a wavelength between 700 and 1000 nm since human tissue is penetrable at this energy
level. CuS nanoparticles are gaining more and more attention in PTT and PDT for their unique
physicochemical characteristic [126]. However, the mechanisms for CuS nanoparticles as PTT and PDT
agents are not yet clear. In this paper, we will concentrate on the mechanism studies by evaluation
CuS nanoparticles as effective agents for simultaneous PTT and PDT on cancers.

3.4. Magnetic Nanoparticles

Magnetic nanoparticles are of particular interest for research and have great potential in their
application in biology and medicine. These nanoparticles can affect certain target tissues in the
body, without having a toxic effect on healthy tissues. In order to control and contain these particles,
an adjustable magnetic field orientation is applied [127]. Toxicity of oxide nanoparticles is low in
comparison with metal nanoparticles, therefore they are used for realization of unique methods,
such as delivery vehicles in thermal therapy, when heated by laser or microwave radiation to the
destruction temperature of the pathological tissue, etc. [128–130]. Various particles coated with a
metal shell are usually used under the action of magnetic nanoparticles. The greatest attention is
on particles with a shell of magnetite Fe3O4, which, thanks to their spherical shape and narrow size
distribution, have found wide application in the diagnosis and treatment of various diseases [131].
In Reference [131], a study of the effects of chemo- and photothermal therapy of cancer tumors was
conducted. Mesoporous magnetic nanoclusters of gold were used as carriers and therapeutic agents.
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As a result of the study, mice were found to have significant inhibition of tumor growth and metastasis
due to the therapeutic effect and targeted delivery of gold nanoclusters.

3.5. Metal-Organic Frameworks in PDT

Metal-organic frameworks (MOFs) are organic-inorganic hybrid materials, which form through
the self-assembly of organic ligands and metallic clusters through the coordination bonds with
intramolecular pores. The arrangement of organic ligands and metallic clusters has obvious directivity,
which can form different adsorption properties, optical properties, and electromagnetic properties.
The MOFs have the advantages of high porosity, low density, large specific surface area, regular
channel, adjustable aperture, and diverse topology and tailoring.

In recent years, MOFs have been used in PDT. Nanoscale metal-organic frameworks (NMOFs) have
shown great potential in biomedicine owing to their structural/chemical diversities, high molecular
loading capacities, and intrinsic biodegradability. In 2014, Lu et al. [132] reported the first application of
nanoscaled MOF in PDT. They reported the rational design of a Hf–porphyrin nanoscale metal–organic
framework, DBP–UiO, as an exceptionally effective photosensitizer for PDT of resistant head and
neck cancer. DBP–UiO displayed greatly enhanced PDT efficacy both in vitro and in vivo, leading
to complete tumor eradication in half of the mice receiving a single DBP–UiO dose and a single
light exposure. After that, more applications of nanoscaled MOFs in PDT were reported [36,133].
The MOFs have already become a new type of representative metal-based nanoparticles applied in
PDT applications.

4. Potential Toxicity of Metal-Based Nanoparticles

Metal nanoparticles have received increasing interest in many fields, including the PDT
applications mainly discussed in this review. However, due to their special physical and chemical
properties, nanoparticles may have adverse effects on the level of subcellular and protein in organs
and tissues. Properties such as chemical composition, small size, high surface-area-to-volume-ratio,
aggregation behavior, functional groups and so on would significantly influence the toxicity of
nanoparticles for living organisms [134,135]. When particle size decreases, some metal-based
nanoparticles exhibit increased toxicity, even though the same material is relatively inert in its
bulk form, such as Ag, Au and Cu. Nanoparticles also will interact with enzymes and proteins
in mammalian cells, which can interfere with antioxidant defense mechanisms, lead to the generation
of reactive oxygen species, the initiation of inflammatory reactions, and disturbance and destruction of
mitochondria, leading to cell apoptosis or necrosis. Thus, there is still a lot of work needed to be done
to recognize the potential toxicity of metal-based nanoparticles in PDT applications and determine
whether the benefits exceed the risks associated with them.

Compared with the photosensitizers traditionally used in photodynamic therapy, metal-based
nanoparticles have the advantages of high loading, slow degradation, long cycle time, and targeted
and controllable release. Thus, they are often used as target drug delivery carriers in PDT applications.
However, the interaction between metal-based nanoparticles and cells needs to be considered from
the entry routes of various possible pathways (e.g., through skin [136], gastrointestinal tract [137],
blood circulation, lungs [138], etc.) into potential target organs. After nanoparticles enter the body
circulation, they may affect the toxicity of the endothelial cell membrane and/or destroy the tight
junctions of the blood-brain barrier, and then enter the brain environment [139]. Compared with larger
size materials, Ag and Cu nanoparticles are more likely to enter human organs and circulatory systems,
and cannot be detected by normal phagocytic defense mechanisms, causing them to enter the blood
or move through the blood-brain barrier into the nervous system [140]. In addition, Ag, Cu and Al
nanoparticles can induce oxidative stress reaction and produce damaging free radicals on endothelial
cell membrane [139]. This interference may also lead to dysfunction of blood-brain barrier, leading to
the entry of metal-based nanoparticles into the central nervous system.



Molecules 2018, 23, 1704 11 of 23

In addition to penetrating the blood-brain barrier [141], metal-based nanoparticles also can
penetrate the blood-testis barrier (especially Leydig cells) [142], thus causing reproductive problems.
Recent studies show that certain metal-based nanoparticles can attenuated the proliferation of
spermatogonial stem cells in vitro [143]. However, the interaction between metal-based nanoparticles
and the normal function of human body has not been systematically studied and understood. In view
of the profound impact of nanoparticles on human health, it is foreseeable that researchers will continue
to systematically study and evaluate them through a variety of scientific methods. In this section,
the potential toxicity of several kinds of specific metal-based nanoparticles are discussed and organized
according to elemental compositions with an emphasis on the evaluation of toxicity.

4.1. Gold Nanoparticles

There are an increasing number of studies on the potential toxicity of Au-based nanoparticles.
According to currently published data, the toxicity of Au nanoparticle is highly dependent on its
synthetic methods and its shape, size, surface chemical properties and surface charge.

In vivo toxicity studies of intravenous colloid Au nanoparticles in mice showed that smaller
particles (10~50 nm) were more toxic than larger particles (100~200 nm). Pan et al. [144] systematically
studied the water-soluble gold nanoparticle of triphenylphosphine derivatives ranging in size from
0.8 to 15 nm, and tested the toxicity of these particles in four cell lines (including connective tissue
fibroblasts, epithelial cells, macrophages and melanoma cells). These cell lines are most sensitive
to gold nanoparticles 1.4 nm in size, which leads to a change in the IC50 value within the cell line
in the range of 30 to 56 µM, depending on the combination of particular 1.4 nm gold nanoparticles
and the cell line. When the size of gold nanoparticles is 15 nm, even the concentration of Tauredon
(gold thiomalate) under 60 or 100 times concentration is still nontoxic. Figure 4 shows typical pictures
of healthy cells and necrotic cells treated with 110 µM Au nanoparticles (1.4 nm in diameter) [144].
The untreated cells treated show double negative staining under annexin V and propidium iodide
(Figure 4a,b), whereas the cells treated with Au nanoparticles present double positive (Figure 4c,d).
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Figure 4. Fluorescence pictures of HeLa cells for the detection of apoptosis (annexin V, green
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negative for annexin V and propidium iodide, (c,d) necrotic cells presented green and red fluorescence
for annexin V and propidium iodide, respectively. (Reproduced with permission [144]).
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Wang et al. [145] studied the effect of shape of Au nanoparticles on toxicity. It was found
that cetyltrimethylammonium bromide (CTAB) coated Au nanoparticles were more toxic to human
HaCaT keratinocytes than spherical ones (~30 nm). MTT test, absorption spectroscopy and
transmission electron microscope (TEM) were applied to analysis the cytotoxicity of gold nanomaterial.
The researchers found the toxicity of Au nanoparticles is a result of a combination of factors, which is
difficult to understand by single-factor analysis. The recent results from Li’s group showed that
Au nanoparticles with the size of 20 nm average were nontoxic to lung fibroblasts when citric acid
decreased [146]. However, the Au nanoparticles did produce a large amount of oxidative DNA damage
and downregulated the DNA damage and the expression of cell-cycle genes.

There is still much controversy about whether Au nanoparticles are toxic in the academic
community. In other words, although the results for toxicity of Au nanoparticles seem to be bleak,
many other studies have reported them as nonreactive and nontoxic to body cells. Shukla’s group [147]
reported that the toxicity of 3.5 nm Au nanoparticles lysine to macrophages was 100 µM after 72 h
exposure, and there has no significant effect on the secretion of proinflammatory cytokines TNF-α
or IL-1β. Furthermore, Conner and co-workers [148] also reported that spherical Au nanoparticles
with different sizes (4, 12, and 18 nm) and surface modifiers are all nontoxic to human leukemic
cells. These studies have tried to indicate that the surface chemistry and synthesis conditions of Au
nanoparticles play important roles in modifying biological reactions.

4.2. Silver Nanoparticles

Carlson et al. [149] found that the toxicity of silver nanoparticles is also related to size. They further
found that the toxicity mechanism of silver nanoparticles is mainly mediated by oxidative stress.
They systematically evaluated the effects of three known sizes of silver nanoparticles (15 nm, 30 nm and
55 nm) on cell viability. Alveolar macrophages were selected as research objects and their potential roles
in the initiation of oxidative stress were studied. The cells exposed to silver nanoparticles will produce
abnormal morphology and adhesion characteristics, and 24 h later, there will be obvious nanoparticle
uptake. The researchers used mitochondria and cell membrane activity as well as reactive oxygen
species (ROS) as toxicity assessment indexes. After 24 h of exposure, the activity index decreased
sharply with the dosage increase of Ag 15 nm and Ag 30 nm nanoparticle (10–75 g/mL). When the
concentration of Ag 15 nm was 50 g/mL, the level of ROS increased by more than 10 times, indicating
that the cytotoxicity of Ag 15 nm might be mediated by oxidative stress. In addition, by measuring the
release of cytokine/chemokine levels (including tumor necrosis factor (TNF-α), macrophage inhibitory
protein (MIP-2), and interleukin-6 (IL-6)) in the medium, the activation of the release of traditional
inflammatory mediators was detected. After exposure to Ag 15 nm nanoparticles for 24 h, the release of
TNF-α, MIP-2, and IL-1β could show obvious inflammatory reaction. Figure 5 presents the endocytosis
of Ag nanoparticles with different sizes by alveolar macrophages. Obvious uptake of Ag nanoparticles
can be found after 24 h incubation, and the nanoparticles also tend to form micron-sized aggregations
both outside and inside the macrophages.
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Figure 5. Comparative study on the uptake of Ag nanoparticles by alveolar macrophages.
(a,b) Light microscope images illustrating uptake of nanoparticles in alveolar macrophages at 100×
oil magnification after 6 h. (a) Control; (b) Cells treated with 30 nm Ag nanoparticles (25 µg/mL) for
6 h; (c,d) Low-magnification and high-magnification TEM images of cells that internalized 55 nm Ag
nanoparticles (25 µg/mL) into vacuoles after 24 h incubation. The scale bars are 2 µm and 500 nm,
respectively. (Reproduced with permission [149]).

Kim and colleagues [150] used Sprague–Dawley rats as research objects and tested the oral
toxicity of silver nanoparticles (60 nm) for 28 days. Male and female rats were selected to conduct a
controlled trial of low-dose group (30 mg/kg), medium-dose group (300 mg/kg) and high-dose group
(1000 mg/kg). After 28 days of oral toxicity test, blood biochemical and hematological examinations
were carried out. The histopathological examination and the distribution of silver nanoparticles in
the rats’ bodies were also studied. The results showed that there was no significant variation in
weight and dose of silver nanoparticles in male and female rats. However, the values of alkaline
phosphatase and cholesterol in the subjects showed a significant dose-dependent variation, and silver
nanoparticles more than 300 mg may lead to slight liver damage. That is, silver nanoparticles do not
cause genotoxicity in male and female rats. However, the tissue distribution of silver nanoparticles did
show a dose-dependent accumulation of silver in all examined tissues. At the same time, the researchers
noticed a sex-related difference in the accumulation of silver nanoparticles, and the dose of silver
nanoparticles in the kidney of female rats was two-times higher than that in the kidney of male rats.
Similar study using Sprague–Dawley rats was also performed by Ji et al. [151].

The influence of silver nanoparticles on gene expression has also been investigated by researchers.
The effects of silver nanoparticles with the diameter of 25 nm on gene expression in different brain
regions of mice were systematically studied by Ali’s group [152]. Male adult C57BL/6N mice were
injected with 100 mg/kg, 500 mg/kg or 1000 mg/kg doses of silver nanoparticles, respectively,
and sacrificed 24 h after injection. Then the brain tissues from different regions were quickly removed
and divided into caudate nucleus, frontal cortex, and hippocampus. The total RNA was isolated from
the three brain regions collected, and real-time RT-PCR analysis was carried out using mouse oxidative
stress and antioxidant defense arrays. The results showed that the gene expression in caudate nucleus,
frontal cortex and hippocampus of mice injected with 25 nm silver nanoparticles was significantly
different, which proved that the Ag nanoparticles can induce apoptosis and produce neurotoxicity by
inducing altering gene expression and free radical induced oxidative stress.

4.3. Copper Nanoparticles

Histological analysis showed that Cu nanoparticles had serious toxicological effects and could
seriously damage the kidney, liver and spleen of mice [153]. The cytotoxicity of copper nanoparticles
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was systematically studied by Song et al. [154]. In order to test the cytotoxicity of copper nanoparticles,
the researchers added four different sizes of copper nanoparticles (25, 50, 78 and 100 nm) and a micron
grade of copper particles (~500 nm) to the fish cell lines (PLHC-1 and RTH-149) and mammalian cell
lines (H4IIE and HepG2), respectively. The results show that the size, morphology, and ion release of
copper nanoparticles will have an important effect on their toxicity.

Some researchers have also thought it important to distinguish the effects of dissolved metal
and metal-based nanoparticles. In order to solve this problem, Barber’s group [155] used zebrafish
to compare the toxicity of soluble copper and copper nanoparticles (80 nm). The results showed
that nanocopper was highly toxic to zebrafish. Although the copper concentration in the copper
nanoparticles suspension will accumulate above a certain concentration, it is not enough to explain the
mortality of zebrafish under the environment of nanocopper. Histological and biochemical analysis
showed that gill was the primary aggregation organ of nanoparticles. In order to further study the
effect of copper nanoparticles on the gills of zebrafish, the zebrafishes were placed in the suspension of
copper nanoparticle (100 g/L concentration) and soluble copper solution at the same concentration,
respectively. Under these experimental conditions, the nanoscale copper produced completely different
morphological effects and global gene expression patterns in the gills, proving that the insoluble copper
nanoparticles also affect the morphology of the gills of zebrafish.

The sources and toxicological effects of copper nanoparticles were studied by Yao’s group [156]
using stress-responsive bacterial biosensor arrays. According to the reaction of the biosensor,
the researchers can induce DNA damage, protein damage and cell membrane damage in addition
to inducing the oxidative stress reaction in Escherichia coli, and eventually cause to the inhibition of
cell growth. Further studies using enzyme detoxification analysis revealed that the toxicity of copper
nanoparticles was related to the formation of H2O2 (as shown in Figure 6a). In addition, the results of
transmission electron microscope show that the copper nanoparticles will be adsorbed by cells and
quickly phagocytic, while the copper particles in micron size are relatively stable in the cell system and
will not produce toxicity, which proves the importance of toxicity assessment of materials on nanoscale.
Figure 6b shows the transmission electron microscope results of Escherichia coli cells after exposure to
80 mg·L−1 Cu nanoparticles for 30 min, in which clear damage to the cell membrane can be found.
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30 min (Reproduced with permission [156]).

In Table 1 we list several more examples of the toxicity studies on Au, Ag, Cu, and other
metal-based nanoparticles both in vitro or in vivo
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Table 1. Selected comparative toxicity studies.

Nanoparticles Target Dose Result References

Au Mice (in vivo) 2 × 105 PPB
Uptake of nanoparticles occurred in the

small intestine [157]

Ag Zebrafish (in vivo) 5–100 µg/mL Dose-dependent toxicity in embryos [158]
Ag, Cu, Al Mice and Rat (in vivo) 30–50 mg/kg Blood-brain barrier penetration [159]

Ag, Mn PC-12 cells (in vitro) 1–100 µg/mL Cell shrinkage and irregular membrane [160]

Ag, TiO2
Murine macrophage cell line

(in vitro) 5 µg/mL Aggregates of nanoparticles [161]

TiO2 Mice (in vivo) 5 g/kg Show histopathological effects [162]
Cu, Mn PC-12 cells (in vitro) 10 µg/mL Genes expression altered [163]

Al, Al2O3 Rat (in vivo) 25–250 µg/mL Phagocytosis hindered [164]
Cu Zebrafish (in vivo) 0.25–1.5 mg/L Biochemical, histopathological changes [155]

5. Summary

PDT is undoubtedly a very promising direction for cancer treatment. However, the application of
PDT is hindered by classic PSs due to their poor water solubility and limited light-penetration depth.
Thus, PDT is still not recognized as a first-line treatment method. The application of nanoparticles,
especially metal-based nanoparticles, in PDT is a very promising approach for the breakthrough
of classic techniques in the near future. Metal-based nanoparticles can be applied as carriers
of hydrophobic PSs and deliver them to the sites of different tumors via EPR effect.

In this review, we have comprehensively introduced the applications of Au, Ag, Cu and other
metal-based nanoparticles in PDT. Classic PSs have defects such as low solubility, poor tumor selectivity
and undesirable pharmacokinetics, but a suitable carrier platform can solve these problems to a
certain extent. However, the application of metal-based nanoparticles is a double-edged sword.
Researchers found they may show toxicity to cells, animals, and even humans. Although some
researchers claim that the application of metal-based nanoparticles can be nontoxic under specific
controlled conditions, concerns still exist and prevent them from being used in practical clinical
treatments. In fact, rare metal-based nanoparticles have been approved by the FDA for clinical
application. There is still a long way to go from research results to practical applications. Furthermore,
we should realize that there is still great potential for efficient promotion of PDT, which can be achieved
by optimizing PDT parameters, improving stability of the PS carrier, improving upconversion efficiency,
etc. Since PDT involves multidisciplinary fields, frequent communication between researchers,
clinicians, engineers, and industrial producers is badly needed to share and discuss cutting-edge
opportunities and challenges in the field. Only in this way can PDT eventually become a frontier
method for cancer diagnosis and interventional treatments with practical application values.
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