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Abstract

Background

Identification of community-dwelling older adults at risk of unplanned hospitalizations is of
importance to facilitate preventive interventions. Our objective was to review and appraise
the methodological quality and predictive performance of prediction models for predicting

unplanned hospitalizations in community-dwelling older adults

Methods and findings

We searched MEDLINE, EMBASE and CINAHL from August 2013 to January 2021. Addi-
tionally, we checked references of the identified articles for the inclusion of relevant publica-
tions and added studies from two previous reviews that fulfilled the eligibility criteria. We
included prospective and retrospective studies with any follow-up period that recruited
adults aged 65 and over and developed a prediction model predicting unplanned hospitali-
zations. We included models with at least one (internal or external) validation cohort. The
models had to be intended to be used in a primary care setting. Two authors independently
assessed studies for inclusion and undertook data extraction following recommendations of
the CHARMS checklist, while quality assessment was performed using the PROBAST tool.
A total of 19 studies met the inclusion criteria. Prediction horizon ranged from 4.5 months to
4 years. Most frequently included variables were specific medical diagnoses (n = 11), previ-
ous hospital admission (n=11), age (n = 11), and sex or gender (n = 8). Predictive perfor-
mance in terms of area under the curve ranged from 0.61 to 0.78. Models developed to
predict potentially preventable hospitalizations tended to have better predictive performance
than models predicting hospitalizations in general. Overall, risk of bias was high, predomi-
nantly in the analysis domain.
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Conclusions

Models developed to predict preventable hospitalizations tended to have better predictive
performance than models to predict all-cause hospitalizations. There is however substantial
room for improvement on the reporting and analysis of studies. We recommend better
adherence to the TRIPOD guidelines.

Background

In the Netherlands, approximately one in five older adults is admitted to hospital each year [1].
Moreover, hospital admission rates in ED patients aged 65 years and older are twice as high as
those in ED patients aged <65 years [2]. When hospitalized, older adults are at high risk of
experiencing adverse events such as hospital-associated infections and delirium, causing
lengthy hospital stays [3, 4]. In addition, hospitalizations pose a significant risk to the func-
tional ability of older adults, whereas 30% of older patients experiences loss of independence
in activities of daily living (ADL) after hospital admission [5].

Older adults account for a large proportion of hospitalized adults, which is likely to increase
with the aging population, causing overcrowding of emergency departments (EDs) and hospital
wards [6, 7]. Overcrowded EDs have been described as a global health problem having negative
effects on patients (e.g. treatment delay), healthcare staff (e.g. stress) and the healthcare system
(e.g. increased length of stay in ED as well as in hospital wards) [8]. Taking into account that a
large proportion of hospitalizations and ED visits in older adults is considered preventable [9],
it seems crucial to timely identify older adults at risk of hospitalization to assess possible preven-
tive measures. This would not only increase patient’s health and quality of life, but also relieve
pressure on secondary and tertiary care, resulting in a decrease in overall health care costs [10].

Prediction models can be used to identify community-dwelling older adults at risk for
unplanned hospital admissions. By defining and combining important predictors of future
emergency care use, preventive interventions can be targeted at high risk individuals [11]. Sev-
eral prediction models for the prediction of unplanned hospitalizations have been developed
and two systematic reviews on this topic have previously been published. However, these
reviews included studies in adults of all ages or only included easy to apply case-finding instru-
ments [12, 13]. Furthermore, these reviews were published over seven years ago. In an era of
personalized and precision medicine, interest in and the number of prediction models have
grown rapidly [14, 15]. Moreover, with the emergence of big data, attention has grown towards
different modelling techniques beside traditional regression methods, such as machine learn-
ing (ML). Despite guidelines as the Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD) [16], quality of methodology and reporting
of clinical prediction model studies is however often insufficient [17, 18].

We carried out a systematic review of validated prediction models for predicting unplanned
hospital admissions in community-dwelling older adults (>65 years). Our objective was to
describe characteristics of the models’ development, the predictors included in the final models,
the predictive performance, and to appraise methodological quality of the included models.

Methods

This review is reported according to the Preferred Reported Items for Systematic Reviews and
Meta-Analyses (PRISMA) Statement [19]. The study protocol has been registered on the
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International Prospective Register of Systematic Reviews (PROSPERO, registration number:
CRD42020207305).

Search strategy, study selection and data-extraction

We conducted systematic searches in the bibliographic databases PubMed, Embase.com and
CINAHL (Ebsco) in January 2021, in collaboration with a medical information specialist. The
following terms were used (including synonyms and closely related words) as index terms or

free-text words: "Hospital admission”, "Patient admission”, "Unplanned”, "Aged", "Older
adults", "Prediction”. We applied a validated search filter for finding clinical prediction model
studies [20]. The full search strategies are provided in S1 File.

As previously mentioned, two systematic reviews on this topic have been published. Wal-
lace et al. carried out a systematic literature search in February 2014 on risk prediction models
to predict emergency admissions in community-dwelling adults [13]. O’Caoimbh et al.
reviewed short case-finding instruments, published up and until November 2014, for commu-
nity-dwelling older adults (> 50 years) at risk for multiple adverse outcomes, of which hospi-
talization was one [12]. To provide a complete overview of available prediction models our
search was restricted to August 2013 through January 2021 and we added the models described
in the previous reviews that fulfilled the eligibility criteria of this systematic review.

The references of the identified articles were searched for relevant publications. Duplicate
articles were excluded.

Studies were included if they met the following criteria:

i. Population: community-dwelling older adults, aged 65 years and over

ii. Intervention: prognostic prediction models derived from retrospective or prospective
cohort studies and containing at least one validation cohort

iii. Comparator: not applicable

iv. Outcome: one or more unplanned hospitalizations (defined as unplanned overnight stay in
hospital). Studies that had admission to the ED as part of their outcome of interest (i.e.
combined endpoints) were also included

v. Timing: admission to hospital within any time period
vi. Setting: prediction models intended to be used in primary care
We excluded studies if the prediction models:
i. were contingent on an index hospital admission or ED visit (i.e. readmission models)

ii. studied hospitalizations for specific conditions (e.g. falls or congestive heart failure) as pri-
mary outcome

iii. were intended to be used in the ED

iv. were developed in specific populations (e.g. patients in palliative care or with psychiatric
conditions), with the exception of participants with sensory impairments, because of high
prevalence in the older population [21]

Studies that assessed risk factors only and did not build a prediction model, studies that
were not developed to specifically predict unplanned hospitalizations, such as models that
identify frailty, and studies published in languages other than English, Dutch, German, French,
Italian and Spanish were also excluded.
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All records were deduplicated in Endnote v9.1, and consequently exported to the Rayyan
web app for title and abstract screening and study selection [22]. After study selection, data
extraction was performed using a standardized form following the recommendations of the
ChecKlist for critical Appraisal and data extraction for systematic Reviews of prediction
Modelling Studies (CHARMS; S2 File) [23]. Both selection and data extraction phases were
independently conducted by two reviewers (JK and SP). Any disagreements were resolved
through a consensus procedure or by third review (OM, KJ, HvH). Additional data were
sought from authors, when necessary.

Due to heterogeneity of the prediction models, meta-analysis was not possible. We there-
fore narratively summarized each unique prediction model on study population, predictors,
number of outcomes and predictive performance. For clarity reasons, regression models and
machine learning models were presented separately. Predictive performance was assessed as
model discrimination using the area under the ROC curve (AUC) with 95% confidence inter-
vals. Higher AUC values indicate better discriminatory ability. An AUC of 0.7-0.8 reflects fair
discrimination, whereas a model with AUC > 0.8 represents good discrimination [24].

Methodological quality assessment

The Prediction model Risk of Bias ASsessment Tool (PROBAST; S2 File) was used to assess
risk of bias and applicability, of which the latter addresses whether the primary study matches
the review question [25]. PROBAST rates study methodology and applicability to the review
question as being at “high”, “low” or “unclear” risk of bias based on a predetermined set of
questions and scoring guide [26].

In addition, we calculated the number of events per variable (EPV) for each model. The
number of EPV is the number of outcome events divided by the number of candidate predic-
tors assessed in the multivariable modelling [27]. Studies with an EPV <10 are generally sub-
ject to overfitting, therefore an EPV of >20 is recommended. Prediction models developed
using ML techniques often require higher EPVs (often >200) to minimize overfitting [26].

Results
Study selection

The literature searches yielded a total of 16,098 citations (Fig 1). After removing duplicates
8,820 references remained. Additionally, twenty-three articles were identified by checking the
reference lists of relevant studies. Full texts were retrieved for 170 studies of which ten met all
inclusion criteria. Additionally, a total of nine studies were included from the previously pub-
lished systematic reviews (Tables 1 and 2).

Description of included studies

Of the 19 studies included, the majority were developed in the United States (n = 10) [28-37]
and two in Italy [38, 39]. The other studies were developed in the United Kingdom [40], Ire-
land [41], Canada [42], Sweden [43], Spain [44], Taiwan [45], and South-Korea [46]. Twelve
studies included participants aged >65 years [29, 33, 35-39, 41, 42, 44-46], the remaining
studies used a higher age as inclusion criterion with 81 years [30] as the highest minimum age
for inclusion. Total sample sizes ranged from 150 [34] to 1,095,613 [39] participants. Two
studies were developed in patients receiving home or community care [34, 41], and one study
developed a prediction model in older adults with a vision and/or hearing impairment [29].
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16,098 records identified through 23 additional records identified
database searching from August 2013 through:

PubMed (n=5,780) reference checking (n=8)

Embase (n=6,542) systematic reviews published before
Cinahl (n=3,776) August 2013 (n=15)

\ 4 A 4

8,843 unique records after removing duplicates

v

8,673 records excluded

8,843 records screened > R
based on title and abstract

A 4
170 full-text articles assessed 151 full-text articles excluded:

for eligibility »| - risk factors only (n=46)
- incorrect population (e.g. participants
aged <65, hospitalized patients or nursing
home residents) (n=34)
- incorrect outcome (n=24)
- validation study (n=20)
- incorrect publication type (e.g.
conference abstracts) (n= 12)
- incorrect study design (n=9)
- derivation cohort only (n=6)

A

19 studies included in
narrative summary

Fig 1. PRISMA flow diagram of included risk prediction models.
https://doi.org/10.1371/journal.pone.0275116.9001

Eight studies developed their model using administrative or electronic medical record data
[31, 32, 34, 39, 43-46]. Eight studies used survey data to develop their model [28-30, 33, 36,
38, 40, 41], and three models were developed using both [35, 37, 42].

Various outcomes were assessed in the development of the prediction models. Two studies
validated their models for more than one outcome (i.e. unplanned hospitalizations and poten-
tially preventable hospitalizations, separately) [37, 39]. Two models predicted a combined end-
point of any hospitalization or ED visit [34, 36]. Fourteen studies assessed unplanned
hospitalizations as single endpoint [29-33, 37-45], two studies predicted multiple hospitaliza-
tions within a specific time period [28, 35], and three studies presented a model for potentially
preventable hospitalizations [37, 39, 46]. Two out of these three studies defined admissions as
potentially preventable based on the principal diagnosis on admission [37, 46]. The third study
did not report its definition for preventable admissions [39]. The prediction horizon ranged
from 4.5 months [30] to 4 years [28]. The majority of studies (n = 12) were developed to pre-
dict the outcome within 12 months [29, 31, 32, 36, 37, 39-41, 43-46].

Variables used in prediction models

The number of predictors included in the final model ranged from 3 [36] to 38 [43]. The vari-
ables most frequently included in the final models were previous hospital admission (n = 11)
[28, 29, 31, 35, 36, 38, 40, 42-44, 46], age (n = 11) [28, 31-33, 37-39, 43-46] and sex or gender
(n=8) (28,32, 33, 35,37, 38, 43, 44] (Table 3). Twelve studies included one or more specific
diseases in the final model, of which cardiovascular diseases (e.g. coronary artery disease, heart
failure, or hypertension) were most frequently included (n = 11) [28-30, 33, 36, 39, 40, 42-45].
The most frequently included cardiovascular predictor was ischemic heart disease (n = 7) [28,
29, 33, 39, 42-44]. Diabetes was included in seven models [28, 30, 33, 35, 42-45]. Other
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Table 3. Variables included in and excluded from the models.

Category Variable Included in final model, N, (%) | Excluded after
evaluation, N (%)
Demographics Age 1(73%) [28, 31-33, 37-39, 43— | 4 (27%) [29, 35, 36, 42]
46)
Sex 8 (62%) [28, 32, 33,35,37,38, | 5 (38%) [29, 31, 36, 42,
43, 44] 46]
Education 2 (33%) [33, 45] 4(67%) [28, 29, 35, 36]
Race/ethnicity 2 (40%) [33, 37] 3 (60%) [28, 29, 31]
Income/SES 1(20%) [38] 4 (80%) [28, 29, 35, 46]
Residential area 3 (100%) [33, 39, 46] 0
Marital status 1(33%) [31] 2 (67%) [36, 45]
Insurance coverage 2 (50%) [33, 46] 2 (50%) [29, 31]
Employment 1 (100%) [35] 0
Health status Self-rated health 5(63%) [28, 29, 35, 40, 42] 3 (37%) [28, 30, 36]
Mental health 2 (50%) [34, 41] 2 (50%) [35, 36]
Physical health 2 (67%) [34, 41] 1(33%) [36]
Use of alcohol or tobacco 1 (50%) [33] 1 (50%) [35]
Medical history Specific medical diagnoses 12 (63%) [28-30, 33, 35, 36,39, | 7 (37%) [28, 29, 33, 35,
40, 42-45] 40, 44, 45]
Multimorbidity 6 (86%) [31, 32, 36, 37, 44, 46] 1 (14%) [35]
Sensory impairment 4 (50%) [32, 33, 37, 38] 4 (50%) [28, 33, 35, 40]
Cognitive impairment 5 (83%) [32-34, 37, 40] 1(17%) [28]
Health care Prior hospitalization 1(73%) [28, 29, 31, 35, 36,38, | 4 (27%) [28, 30, 42, 45]
utilization 40, 42-44, 46)
Prior ED visit 3(60%) [29, 43, 45] 2 (20%) [30, 46]
Prior outpatient visits 2 (40%) [28, 43] 3 (60%) [28, 30, 42]
Primary care visits 1 (100%) [31] 0
Continuity of care 0 1 (100%) [46]
Receiving homecare 2 (67%) [38, 45] 1 (33%) [28]
Previously in LCF 0 3 (100%) [30, 31, 35]
Receiving treatment for specific | 1 (50%) [42] 1 (50%) [31]
condition
Laboratory results 1(33%) [35] 2 (67%) [31, 35]
Barrier to receiving care 0 1 (100%) [29]
Satisfaction with received 0 1 (100%) [29]
health care
Medication Number of prescription 5(71%) [36, 38, 39, 44, 46] 2 (29%) [30, 40]

medication

Use of a specific medication 2 (67%) [35, 39] 1(33%) [35]
Social status Caregiver availability 3 (67%) [28, 41] 1(33%) [40]
Lack of social support 2 (67%) [32, 37] 1(33%) [35]
Living arrangement 1 (14%) [42] 6 (86%) [28, 29, 33, 35,

36, 40]

Functional status ADL 6 (75%) [29, 33-35, 38, 41] 2 (25%) [30, 40]
IADL 3 (50%) [30, 34, 38] 3 (50%) [29, 30, 35]
Urinary or fecal incontinence 3 (43%) 32, 33, 37] 4 (57%) [28, 30, 35, 40]
History of falls 2 (40%) [32, 37] 3 (60%) [28, 30, 40]
Mobility 6 (86%) [30, 35, 39, 40, 42, 46] | 1 (14%) [28]
Malnutrition or weight loss 3 (100%) [32, 37, 38] 0
Other Recent stressful event 0 2 (100%) [30, 40]
(Continued)
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Table 3. (Continued)

Category Variable Included in final model, N, (%) | Excluded after
evaluation, N (%)
Need help to complete survey 1(33%) [33] 2 (67%) [30, 33]
Participation at religious events | 1(100%) [35] 0
State of home 0 1 (100%) [42]

ADL: activities of daily living, ED: emergency department, IADL: instrumental activities of daily living, LCF: long-

term care facility, SES: socio-economic status. This table is limited to the information provided in the publications.

https://doi.org/10.1371/journal.pone.0275116.t003

frequently included medical diagnoses were cancer (n = 4) [29, 33, 43, 45] and COPD or respi-
ratory problems (n = 4) [33, 39, 44, 45]. Six studies included a multimorbidity measure, either
defined as the Charlson Comorbidity Index or a disease count, in the final model [31, 32, 36,
37, 44, 46]. Living arrangement (mostly defined as living alone) was considered for inclusion
in seven models [28, 29, 33, 35, 36, 40, 42], and was retained in one model [42]. This model
defined living arrangement as living with a spouse.

Predictive accuracy of the models

Two studies analyzed predictive performance of the same prediction model for two different
outcomes [37, 39]. One study did not report its predictive performance [42].

Eighteen studies reported an AUC, ranging from 0.61 to 0.78 after validation. The models
published after 2014 tended to perform better; median AUC was 0.72 (range 0.64-0.78)

(n =9), whereas the median AUC from the models in the previous reviews was 0.67 (range
0.61-0.76) (n = 9). Models developed using survey data had median AUC of 0.67 (range 0.61-
0.72) (n = 8), the median AUC of models developed with administrative data was 0.73 (range
0.64-0.78) (n = 8). Studies that used both data sources are not included in this count.

The models developed for a specific type of hospitalization (i.e. preventable hospitalization
or fall with hospitalization) (n = 3), tended to perform better than the models for all-cause hos-
pitalization (n = 17), with a median AUC of 0.78 (range 0.74-0.78) versus 0.69 (range 0.61-
0.76), respectively. The two models that assessed AUCs for both outcomes (i.e. Tarekegn et al.
and Wu et al. [37, 39]) were included in calculations of both medians with its corresponding
AUC and were thus counted twice.

Methodological quality

Overall, the methodological quality of included studies was low (Table 4). Risk of bias was
either high or unclear in all studies, predominantly due to bias or insufficient reporting in the
analysis domain. More specifically, the handling of missing data was not reported or per-
formed inappropriately in ten studies [29, 31, 33, 36, 37, 40-42, 44, 45], eight studies selected
predictors based on univariable analyses [30, 31, 33, 35, 40, 42, 43, 45], and five studies solely
handled a split-sample procedure for internal validation [28, 30, 31, 33, 45]. Whereas almost
all studies (except one [42]) reported model performance in terms of discrimination, only five
sufficiently evaluated calibration [28-30, 38, 45]. Four studies only reported results of the Hos-
mer-Lemeshow test as a single calibration measure [31, 35, 40, 44].

The median EPV was 60 and ranged from 8 [36] to 2003 [45] (n = 15). Two studies reported
an EPV <20 [36, 41]. In four studies the EPV could not be computed because data on the
number of events or the number of candidate predictors were not reported [30, 33, 34, 42].
The models published after 2014 had a higher EPV (median = 129 (range 27-2003)) than the
older models (median = 46 (range 8-64)).
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Table 4. Methodological quality assessment of included prediction models according the recommendations of the PROBAST.

First author Risk of bias

Participants

Boult
Deardorff
Freedman
Inouye
Kan

Kim
Kurichi
Lin
Lopez-Aguila
Lyon
Marcusson
Mazzaglia
Mishra
O’Caoimh
Reuben
Roos
Shelton
Tarekegn
Wu

Predictors

Applicability Overall
Outcome Analysis EPV! Participants Predictors Outcome ROB Applicability
- + 48 - - - + -
- ? 103 + - -
- + NI - -
60 - - -
- ? 358 - - -
168 - - -
NI - - -
2003 + - -
54 - - -
44 - - -
87 - - -
64 - - -
NI + - -
12 - - -
36 - - -
NI - -

N

+

.
+
O S o o IS A I R e S
+

.
O e N T o

'

N

N
'

o+ +
~ A+ +
'

-/?? 129 - ? -

3 27 - - - ?/+3 -

-~

-+

+: high risk of bias/concern for applicability, -: low risk of bias/concern for applicability,?: unclear risk of bias/concern for applicability. EPV: events per variable, ROB:

risk of bias, NI: no information (i.e. either number of events or number of candidate predictors was not reported)

! For studies where multiple outcomes were assessed, only the lowest number of events per variable per study is reported.

% For the outcome preventable hospitalization, no definition was reported, ROB was therefore evaluated as unclear. For the outcome acute hospital admission, ROB in

this domain was low.

* ROB was low for the outcome any inpatient hospital admission. ROB was high for the outcome preventable hospital admissions, since predictors were included in the

outcome definition. Overall ROB was therefore unclear and high, respectively.

https://doi.org/10.1371/journal.pone.0275116.1004

Concern for applicability was high in three studies, because the study population or study
outcome did not fully match the review question: one study only included older adults with a
sensory impairment [29], one study excluded older adults with a hospital admission <6
months prior to the index date [45], and one study evaluated preventable hospital admissions
as only outcome [46].

Discussion

This systematic review identified 19 prediction models to predict unplanned hospital admis-
sions in community-dwelling older adults. With our search strategy we built on a review by
Wallace et al. on the same topic, however focusing the study population to adults aged 65 years
and over. In total we identified 19 prediction models, of which the current review added 10
new prediction models that were not included in the previous reviews. The new models had
higher predictive accuracy than the older models. This might be explained by the fact that new
models had larger samples of the development cohort and also higher EPV's than the older
models. Both are recommended by the TRIPOD guidelines, published in 2015 [16], to improve
predictive accuracy and methodological quality. Moreover, the new models used administra-
tive or clinical record data more often for the development of their model. Consistent with
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Wallace et al., we found that models developed using administrative or clinical record data had
higher predictive accuracy than those developed using self-report data. Of the 10 new predic-
tion models, eight used administrative data for development of their model.

To potentially improve predictive accuracy, Wallace et al. suggested to consider nonmedical
factors (e.g. social support and functional status) [13]. Despite this reccommendation, these var-
iables were rarely evaluated for inclusion in the latest studies. We found that predictors most
frequently included in the final models were medical diagnoses (specifically heart disease),
prior hospitalizations, age, and sex, which is in line with Wallace’s findings. These risk factors
seem to have more impact in the prediction of unplanned admissions than nonmedical factors,
considering the relatively high beta-coefficients of these variables in most models (data not
shown). Also, chronic diseases and health care use variables are probably more readily avail-
able in large routine care data, whereas nonmedical factors are rarely assessed in a systematic
way.

Opverall, reporting of methodology and findings was often inappropriate or lacked relevant
information, risk of bias was therefore either unclear or high in all models. Moreover, despite
the publication of the TRIPOD guidelines in 2015, only one [29] out of seven studies published
after 2015 reported their study according to the TRIPOD checklist. The majority of studies
showed high risk of bias in the analysis domain. Mainly because of univariable analyses as
selection method or inappropriate handling of missing data.

Strengths and limitations

The aging population across the globe and increasing interest in personalized medicine makes
this review topical. We added a substantial number of prediction models to the previous sys-
tematic reviews on this topic. Furthermore, we conducted a thorough search strategy using a
validated search filter and assessed data using tools specifically designed for systematic reviews
of prognostic studies. However, there are some limitations. First, care must be taken with
directly comparing the prediction models because of heterogeneity in study characteristics
(e.g. study populations, and selection of candidate predictors) and study outcomes. Since mod-
els perform differently in other populations, comparison of predictive performance can only
be performed when these models are validated in the same sample. Further, by limiting our
inclusion criteria to participants aged 65 and over, we excluded potential prediction models
developed in participants with younger age. For example, the DIVERT scale, a tool to predict
emergency department visits, was developed in home care clients aged >50 years. Even though
reported AUC:s are a little over 0.6 after geographical validation, targeted application of the
risk score has shown its clinical added value for cardiorespiratory management and reduction
of hospitalizations in home care recipients [47]. Last, while in principle CHARMS and PRO-
BAST are relevant for prediction model studies using ML, they predominantly focus on regres-
sion-based modelling and some unique aspects of ML methods are not captured [48]. This
complicated the critical appraisal of the ML study and therefore risk of bias was unclear.
Necessity for guidelines for reporting and critical appraisal of prediction model studies using
ML has been addressed and PROBAST-ML (as well as TRIPOD-ML) has been announced
[48]. Until then, it is recommended to use TRIPOD, CHARMS and PROBAST as benchmark
for the development of prediction model studies rather than none [49].

Implications for future research

Our findings provide a proper basis of prediction models on hospitalizations in older people.
Knowing that prediction models often perform worse in new populations, external validation
studies are needed to assess generalizability across different countries and healthcare systems.
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Moreover, models that underperform in external samples should not be discarded and studies
should assess the possibility of updating existing models by recalibrating, adjusting weights or
considering additional predictors [50, 51]. This way, data of the original development model is
not wasted. However, updating of a prediction model is only recommended provided that the
initial model was appropriately developed and demonstrated promising accuracy [51]. Most
prediction models in this review are poorly reported and all are at either high or unclear risk of
bias, which makes updating of the existing models more complicated and we therefore cannot
recommend one specific model.

Moreover, while recalibration and adjusting weights only affect a model’s calibration, add-
ing (previously missed) important predictors should be considered to improve a model’s dis-
crimination [51]. As mentioned above, nonmedical factors remain under researched in the
prediction of hospital admissions in older adults. Taking into account the influence of non-
medical factors on unscheduled secondary care use [52, 53], these variables may contribute to
a better discriminative ability of the model.

Last, for both development studies and validation studies we advise to fully report all
modelling steps and analysis in sufficient detail according to the TRIPOD guidelines [16]. The
TRIPOD guidelines have been developed to improve the reporting of studies developing, vali-
dating, and updating prognostic models and to maximize transparency and reproducibility.
More specifically, for example, predictive performance should not only be evaluated in terms
of discrimination, but also in terms of calibration. Regarding calibration, it is reccommended to
include a calibration plot or table in addition to the p-value of the Hosmer-Lemeshow test.
Furthermore, variables or participants with missing data should not simply be omitted, multi-
ple imputation is recommended as the preferred method for handling of missing data to
decrease bias [26].

Implications for future practice

Our study found that the models to predict preventable hospitalizations tended to have better
predictive ability than models for all-cause hospitalizations. Preventable admissions reflect
admissions for conditions that could have been managed with timely and effective treatment
by outpatient primary care (e.g. pneumonia, congestive heart failure, and COPD, often also
referred to as ambulatory care sensitive conditions (ACSCs)) [54]. Interventions targeted at
older adults with ACSCs provide a window of opportunity for prevention of admissions. Possi-
bly even more so if targeted at persons with additional important risk factors (e.g. recent hospi-
talization, polypharmacy and/or multimorbidity). In consequence, reduction of the incidence
of preventable admissions could substantially lower healthcare costs, and improve health out-
comes and older adult’s quality of life [11].

There is however limited evidence for effective preventive interventions to reduce prevent-
able admissions in general [54]. High continuity of care with a general practitioner is associ-
ated with lower rates of hospital admissions [55]. Furthermore, several targeted interventions
have shown to be effective in patients with specific diseases, such as self-management in
patients with COPD and heart failure, and telemedicine in patients with heart failure [11].
Focusing on these targeted interventions may have a beneficial impact on the reduction of hos-
pital admissions in community-dwelling older adults [54].

Conclusion

The prediction models developed to predict preventable hospitalizations tended to perform
better than models predicting all-cause hospitalizations. Focusing on enhancing primary care
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management of conditions related to these preventable admissions may have a beneficial effect
on health care quality.

To improve predictive accuracy of prediction models the use of administrative data sources
is recommended as well as incorporation of important variables, i.e. age, prior hospitalization
and multimorbidity. The impact of nonmedical factors remains unresearched. Moreover,
future researchers are recommended to follow the TRIPOD guidelines for prediction model
studies, as methodological quality of reporting and analyses of the included studies was low.
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