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Summary
Background Cholelithiasis-induced acute cholangitis (CIAC) is an acute inflammatory disease with poor prognosis.
This study aimed to create machine-learning (ML) models to predict the outcomes of patients with CIAC.

Methods In this retrospective cohort and ML study, patients who met the both diagnosis of ‘cholangitis’ and ‘calculus of
gallbladder or bile duct’ according to the International Classification of Disease (ICD) 9th revision, or met the diagnosis
of ‘calculus of bile duct with acute cholangitis with or without obstruction’ according to the ICD 10th revision during a
single hospitalization were included from the Medical Information Mart for Intensive Care database, which records
patient admissions to Beth Israel Deaconess Medical Center, MA, USA, spanning June 1, 2001 to November 16, 2022.
Patients who were neither admitted in an emergency department nor underwent biliary drainage within 24 h after
admission, had an age of less than 18, or lost over 20% of the information were excluded. Nine ML methods, including
the Logistic Regression, eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine, Adaptive Boosting,
Decision Tree, Gradient Boosting Decision Tree, Gaussian Naive Bayes, Multi–Layer Perceptron, and Support Vector
Machine were applied for prediction of in-hospital mortality, re-admission within 30 days after discharge, and
mortality within 180 days after discharge. Patients from Zhongda Hospital affiliated to Southeast University in
China between January 1, 2019 and July 30, 2023 were enrolled as an external validation set. The area under the
receiver operating characteristic curve (AUROC) was the main index for model performance assessment.

Findings A total of 1156 patients were included to construct models. We performed stratified analyses on all patients,
patients admitted to the intensive care unit (ICU) and those who underwent biliary drainage during ICU treatment.
13–16 features were selected from 186 variables for model training. The XGBoost method demonstrated the most
optimal predictive efficacy, as evidenced by training set AUROC of 0.996 (95% CI NaN–NaN) for in-hospital
mortality, 0.886 (0.862–0.910) for re-admission within 30 days after discharge, and 0.988 (0.982–0.995) for
mortality within 180 days after discharge in all patients, 0.998 (NaN–NaN), 0.933 (0.909–0.957), and 0.988
(0.983–0.993) in patients admitted to the ICU, 0.987 (0.970–0.999), 0.908 (0.873–0.942), and 0.982 (0.971–0.993) in
patients underwent biliary drainage during ICU treatment, respectively. Meanwhile, in the internal validation set,
the AUROC reached 0.967 (0.933–0.998) for in-hospital mortality, 0.589 (0.502–0.677) for re-admission within 30
days after discharge, and 0.857 (0.782–0.933) for mortality within 180 days after discharge in all patients, 0.963
(NaN–NaN), 0.668 (0.486–0.851), and 0.864 (0.757–0.970) in patients admitted to the ICU, 0.961 (0.922–0.997),
0.669 (0.540–0.799), and 0.828 (0.730–0.925) in patients underwent biliary drainage during ICU treatment,
respectively. The AUROC values of external validation set consisting of 61 patients were 0.741 (0.725–0.763),
0.812 (0.798–0.824), and 0.848 (0.841–0.859), respectively.

Interpretation The XGBoost models could be promising tools to predict outcomes in patients with CIAC, and had
good clinical applicability. Multi-center validation with a larger sample size is warranted.
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Research in context

Evidence before this study
Cholelithiasis-induced acute cholangitis (CIAC) is an acute
inflammatory disease with poor prognosis. Although
researches on the prognostic risk factors of CIAC have become
increasingly profound, there is currently no systematic model
to integrate these risk factors and accurately predict various
outcomes. We searched PubMed and the Cochrane Library for
peer reviewed articles published up to July 15, 2024 using the
search terms “(CIAC OR cholelithiasis-induced acute
cholangitis OR acute cholangitis) and (prediction model)”,
with no language restriction. We could not find any effective
models and clinical application tools for predicting the
outcomes of patients with CIAC.

Added value of this study
To the best of our knowledge, it is the first time that
applicable models based on the eXtreme Gradient Boosting

(XGBoost) were developed for predicting in-hospital
mortality, re-admission within 30 days after discharge, and
mortality within 180 days after discharge in patients with
CIAC, and their performance was validated in internal and
external validation cohorts. These models have been
translated into convenient webpages to facilitate the utility of
clinicians. In addition, several laboratory indicators were
proposed for the first time to correlate with prognosis of
CIAC.

Implications of all the available evidence
Our XGBoost models firstly built a series of user–friendly
online prediction platforms that can track multiple short- or
long-term clinical outcomes in patients with CIAC, which
warrant further validation with multi-center cohorts and a
larger sample size.
Introduction
Acute cholangitis (AC) is an infectious disease arising
from either partial or complete obstruction within the
biliary system. According to recent international clinical
guidelines,1 the diagnostic parameters of AC was
considered to be associated with several key elements:
fever, jaundice, indicators of systemic inflammation,
abnormal hepatic function, radiological anomalies, and/
or biliary obstruction. Globally, cholelithiasis afflicts
approximately 10–15% of the adult populace,2 with one
in five of them encountering gallstone-related compli-
cations, while the remainder remain largely asymp-
tomatic.3 AC represents a consequential complication of
cholelithiasis, with the latter constituting the main
etiological factor for AC onset.4 Some scholars found
that over half of the patients admitted to the Intensive
Care Unit (ICU) due to severe acute cholangitis (SAC)
were caused by cholelithiasis (53%), followed by tumors
(22%).5

AC occurs rapidly and may progress to SAC within a
brief timeframe. Sepsis occurs in approximately
10–29% of patients with AC,6 and 5% of them will
develop septic shock.7 Therefore, adequate antibiotic
therapy to mitigate the occurrence of sepsis is a key step
in the management of patients with acute cholangitis.8

Moreover, timely intervention for restoring biliary
drainage, particularly when administered within 48 h of
obstruction onset, significantly helps patient prog-
nosis.5,9 Nevertheless, despite favorable responses to
antibiotic treatment and effective biliary drainage in
most cases, contemporary researches underscore a 7-day
mortality rate of up to 10% in SAC cases, with a 30-day
in-hospital mortality rate reaching 36.25%.10 Also, re-
admission within 30 days after discharge and mortality
within 180 days after discharge are other two main
variables for assessing prognosis of SAC.11,12

Taking the disease severities of AC into consider-
ation, there have been increasing number of researches
for the aims of predicting prognostic outcomes of AC.
Lina Pan et al. devised a nomogram for predicting in-
hospital mortality within 30 days among patients with
AC admitted to the ICU.13 This nomogram incorporated
factors such as oxygen saturation (SpO2), Glasgow
Coma Scale (GCS), the ratio of aspartate aminotrans-
ferase (AST) to alanine aminotransferase (ALT), potas-
sium concentration, serum albumin, blood glucose,
partial thromboplastin time (PTT), and the presence of
peripheral vascular disease. Similarly, Qingqing Liu
et al. developed a risk-prediction nomogram comprised
five variables for sepsis in patients with AC.14 In addi-
tion, O Inan et al. conducted a study in line with the
Tokyo severity grading system and identified several
factors correlated with clinical outcomes in geriatric
patients.15 These studies highlighted the identification of
various factors that contribute to the prognosis of AC,
but the model algorithms used in the researches may
not be able to meet the precision requirements of
modern diagnosis and treatment. In 2016, Schneider
J et al. constructed a Random Forest model using 22
clinical variables to stratify patients into different treat-
ment pathways based on their risk of mortality.16 How-
ever, their research only studied the single outcome of
www.thelancet.com Vol 76 October, 2024
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in-hospital mortality, and the features ultimately
included in the model were not selected after extensive
screening, thus lacking sufficient persuasiveness.
Currently, the field still lacks comprehensive models
that can integrate clinical factors systematically and
quantify their predictive power for outcomes in a robust
manner. Further research is required to enhance our
understanding of these prognostic factors and improve
the accuracy of outcome prediction in SAC.

The utilization of machine-learning (ML) models
within clinical contexts has garnered increasing atten-
tion and acknowledgment. As an emerging technolog-
ical paradigm, ML is extensively employed across
various medical domains, owing to its capacity for
formulating robust risk models and augmenting pre-
dictive efficacy.17 Compared to traditional scoring sys-
tems like sepsis-related organ failure (SOFA) and acute
physiology score (APS) II, ML models exhibit a mark-
edly expanded capability to accommodate a larger array
of predictors.18 The progression in computational
prowess ensures that they largely mitigate the limita-
tions inherent in conventional scoring systems during
the calculation phase, such as massive input variables
requirement, poor sensitivity and specificity, large fluc-
tuation of prediction results, reliance on practitioner
experience, and cumbersome process.19 Moreover,
contemporary ML models, exemplified by the eXtreme
Gradient Boosting (XGBoost),20 are increasingly regar-
ded as viable alternatives to traditional linear models like
logistic or Cox regression for predicting various clinical
outcomes.21 Traditional linear models necessitate
manual selection of variables and lack the ability to
address nonlinearities within clinical applications,
while, XGBoost can engender superior models by
combining weaker models with more adaptable data
processing mechanisms.22

By comparing the performance indicators and clin-
ical utility of ML models, with multi-dimensional clin-
ical characteristics inputted, this study aimed to develop
a series of ML models to predict the outcomes of pa-
tients with cholelithiasis-induced acute cholangitis
(CIAC) and provide clinicians with efficacious prospec-
tive decision support tools for practice.
Methods
Data source
The training and internal validation set data used in ML
model construction were retrieved from the Medical In-
formation Mart For Intensive Care (MIMIC) database,
which records patient admissions to Beth Israel
Deaconess Medical Center (BIDMC) spanning from June
1, 2001 to November 16, 2022, including MIMIC III and
IV version2.1.23,24 Detailed information of all patients with
CIAC during their hospitalization, such as time of
discharge and admission, basic demographic characteris-
tics, vital signs, laboratory and microbiological results,
www.thelancet.com Vol 76 October, 2024
fluid balance records, course of medication, survival data
and more are available in the MIMIC database (Certificate
number: 52598832). Additionally, data from Zhongda
Hospital affiliated to Southeast University, Nanjing,
China, was collected as an external validation set, span-
ning from January 1, 2019 to July 30, 2023. The research
methodology adheres to the principles declared in the
Declaration of Helsinki and its subsequent revisions, as
confirmed by the approval obtained from the Ethics
Committee (2019ZDSYLL093-P01, 2022ZDSYLL456-
P01). Informed consent was waived for the retrospective
study, and this study adheres to STROBE guidelines. An
overview of the study workflow is depicted in Fig. 1.

Diagnostic criteria of SAC from external validation
patients
The diagnostic criteria for patients from Zhongda hos-
pital is consistent with the currently internationally
recognized TG18/TG13 diagnostic criteria.1

Case inclusion criteria from MIMIC database
Patients who met the both diagnosis of ‘cholangitis’ and
‘calculus of gallbladder or bile duct’, the diagnostic code
of which are ‘5761’ and ‘574**’ (* can represent any
number between 0 and 9) according to the International
Classification of Disease 9th revision (ICD-9), or met the
diagnosis of ‘calculus of bile duct with acute cholangitis
with or without obstruction’, the diagnostic code of
which are ‘K8032, K8033, K8036, K8037’ according to
the International Classification of Disease 10th revision
(ICD-10) during a single hospitalization were consid-
ered for inclusion. The excluded criteria were: (1) pa-
tients neither admitted in an emergency department nor
underwent biliary drainage within 24 h after admission;
(2) patients under the age of 18 years; (3) patients with
essential information missed or over 20% of the infor-
mation lost.

Data collection
The following parameters were systematically gathered
across all patients diagnosed with CIAC: (1) de-
mographic characteristics, encompassing gender and
age; (2) treatment and clinical management, including
operations, renal replacement therapy, arterial cathe-
terization, intravenous catheterization, mechanical
ventilation, use of intravenous antibiotics and vaso-
pressors; (3) comorbidities and complications, including
hypertension, diabetes, acute kidney injury, sepsis and
acute pancreatitis; (4) laboratory test results, comprising
blood routine, arterial blood gas analysis, kidney func-
tion, electrolytes, liver function, coagulation function,
and microbial cultures from bile and blood specimens;
(5) others, including length of hospitalization, length of
ICU stay and severity grade of cholangitis. For variables
measured repeatedly during hospitalization, the
maximum, average, and minimum values of them were
involved, as outlined in Table 1. For example, ALT_max,
3
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Fig. 1: The overall flowchart of the study (a). The algorithm chart of the study (b). CIAC, cholelithiasis-induced acute cholangitis; MIMIC,
Medical Information Mart for Intensive Care; HR, heart rate; RR, respiratory rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC,
white blood cell; TBil, total bilirubin; SOFA, sepsis-related organ failure; GCS, glasgow coma scale; ICD, International Classification of Disease.
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ALT_avg, and ALT_min represent, respectively, the
maximum, average, and minimum value of ALT
measured throughout the hospitalization.

For patients admitted to ICU, additional indicators
were collected on their first day in the ICU, including
anthropometric measurements (height and weight),
physiological parameters (blood glucose level, blood
oxygen saturation, body temperature, heart rate, respi-
ratory rate, systolic and diastolic blood pressure, and
mean arterial pressure). Additionally, various scores
reflecting disease severity were incorporated into the
assessment, including but not limited to the Systemic
Inflammatory Response Syndrome (SIRS), GCS, Logis-
tic Organ Dysfunction System (LODS), APS III, Model
for End-Stage Liver Disease (MELD), Oxford Acute
Severity of Illness Score (OASIS), and SOFA. All the
variables are shown in Supplementary Table S1.

For patients who underwent biliary drainage during
ICU treatment, the interval between admission and
biliary drainage was calculated independently. Descrip-
tion of variables can be found in Supplementary
Table S2. The data comprising the external validation
www.thelancet.com Vol 76 October, 2024
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Characteristics n (%), mean ± SD
(range), or med [IQR]

Age (years) 76 [63–85]

Male, n (%) 604 (52.2%)

Female, n (%) 552 (47.8%)

Length of stay in hospital (days) 6 [4–8]

Length of stay in ICU (hours) 21 [0–52]

Re-admission within 30 days after discharge,
n (%)

262 (22.7%)

Death in hospital, n (%) 52 (4.5%)

Follow-up after discharge until death, n (%) 343 (29.7%)

Death within 180 days after discharge, n (%) 166 (14.4%)

Severity of cholangitis, n (%)

Mild 252 (21.8%)

Moderate 197 (17.0%)

Severe 707 (61.2%)

Surgical operations, n (%) 339 (29.3%)

Endoscopy, n (%) 995 (86.1%)

Interventional operations, n (%) 108 (9.3%)

Surgical or interventional or endoscopic
operations, n (%)

1072 (92.7%)

Endoscopy combined with surgical
operations, n (%)

275 (23.8%)

Endoscopy combined with interventional
operations, n (%)

79 (6.8%)

Endoscopy combined with another
operations, n (%)

326 (28.2%)

Surgical or interventional operations other
than endoscopy, n (%)

77 (6.7%)

Endoscopic, surgical, and interventional
procedures were performed during a single
hospitalization, n (%)

28 (2.4%)

Duration of intravenous antibiotic use
(hours)

119 [68–233.5]

Blood culture positive, n (%) 219 (18.9%)

Bile culture positive, n (%) 37 (3.2%)

Hypertension, n (%) 598 (51.7%)

Diabetes, n (%) 342 (29.6%)

Acute pancreatitis, n (%) 247 (21.4%)

Anion gap _ max (mEq/L) 16 [15–18]

Anion gap _ avg (mEq/L) 13.5 [12.2–15]

Anion gap _ min (mEq/L) 11 [9–13]

Bicarbonate _ max (mEq/L) 27 [25–30]

Bicarbonate _ avg (mEq/L) 24.6 [22.4–26.5]

Bicarbonate _ min (mEq/L) 22 [19–24]

Chloride _ max (mEq/L) 108 [105–111]

Chloride _ avg (mEq/L) 104.7 [102.5–107]

Chloride _ min (mEq/L) 101 [98–104]

Creatinine _ max (mg/dL) 1.1 [0.8–1.6]

Creatinine _ avg (mg/dL) 0.9 [0.7–1.3]

Creatinine _ min (mg/dL) 0.8 [0.6–1]

Glucose _ max (mg/dL) 140 [115–183]

Glucose _ avg (mg/dL) 109.3 [95.4–127]

Glucose _ min (mg/dL) 83 [72–95]

Potassium _ max (mEq/L) 4.3 [4–4.7]

Potassium _ avg (mEq/L) 3.8 [3.6–4.1]

Potassium _ min (mEq/L) 3.4 [3.1–3.6]

Sodium _ max (mEq/L) 142 [140–144]

Sodium _ avg (mEq/L) 139.3 [137.4–141]

Sodium _ min (mEq/L) 137 [134–139]

Urea nitrogen _ max (mg/dL) 21 [15–33]

Characteristics n (%), mean ± SD
(range), or med [IQR]

(Continued from previous column)

Urea nitrogen _ avg (mg/dL) 15.9 [11.2–25.2]

Urea nitrogen _ min (mg/dL) 11 [7–17]

Hematocrit _ max (%) 36.4 ± 4.8 (25.1–56.6)

Hematocrit _ avg (%) 32.6 [29.8–36.1]

Hematocrit _ min (%) 30.3 ± 5.5 (10–45.3)

Hemoglobin _ max (g/dL) 12.1 ± 1.7 (7.5–18.3)

Hemoglobin _ avg (g/dL) 10.9 [9.9–12.1]

Hemoglobin _ min (g/dL) 10.1 ± 1.9 (3.8–15.4)

MCH _ max (pg) 31.1 [29.6–32.4]

MCH _ avg (pg) 30.4 [29.1–31.7]

MCH _ min (pg) 29.9 [28.5–31.2]

MCHC _ max (%) 34 [33.1–34.9]

MCHC _ avg (%) 33.2 [32.5–34]

MCHC _ min (%) 32.4 [31.5–33.2]

MCV _ max (fL) 93 [90–97]

MCV _ avg (fL) 91.3 [88–95.4]

MCV _ min (fL) 90 [86–93]

PLT _ max (K/μL) 236 [170–322]

PLT _ avg (K/μL) 189.8 [142–251.9]

PLT _ min (K/μL) 152 [109–207]

RDW _ max (%) 14.7 [13.9–16.2]

RDW _ avg (%) 14.5 [13.6–15.6]

RDW _ min (%) 14.1 [13.3–15.1]

RBC _ max (m/μL) 4 ± 0.6 (3.6–4.4)

RBC _ avg (m/μL) 3.6 ± 0.6 (3.2–4)

RBC _ min (m/μL) 3.3 ± 0.6 (2.9–3.8)

WBC _ max (K/μL) 13.6 [9.4–19.5]

WBC _ avg (K/μL) 9.7 [7.2–12.9]

WBC _ min (K/μL) 6.7 [5–8.9]

TBil _ max (mg/dL) 4 [2–6]

TBil _ avg (mg/dL) 2.3 [1.3–4]

TBil _ min (mg/dL) 1.2 [0.7–2.2]

ALT _max (IU/L) 167 [83.3–320.8]

ALT _avg (IU/L) 105.8 [55.9–185]

ALT _ min (IU/L) 54.5 [28–107]

ALP _ max (IU/L) 244 [155–387.5]

ALP _ avg (IU/L) 195.2 [132.1–296.4]

ALP _ min (IU/L) 151.5 [104–235]

AST _max (IU/L) 145 [74–282.5]

AST _avg (IU/L) 80 [48.4–134]

AST _min (IU/L) 34.5 [23–56]

Magnesium _ max (mg/dL) 2.2 [2–2.4]

Magnesium _ avg (mg/dL) 1.9 [1.8–2.1]

Magnesium _ min (mg/dL) 1.7 [1.5–1.9]

Calcium _ max (mg/dL) 8.7 [8.4–9.2]

Calcium _ avg (mg/dL) 8.3 [8–8.7]

Calcium _ min (mg/dL) 7.9 [7.4–8.4]

Phosphate _ max (mg/dL) 3.5 [3–4.2]

Phosphate _ avg (mg/dL) 2.9 [2.5–3.3]

Phosphate _ min (mg/dL) 2.2 [1.8–2.6]

INR (PT) _ max 1.4 [1.2–1.8]

INR (PT) _ avg 1.3 [1.2–1.5]

INR (PT) _ min 1.2 [1.1–1.3]

PT _ max (seconds) 15.3 [13.3–19.3]

PT _ avg (seconds) 14.3 [13–16.2]

PT _ min (seconds) 13.1 [12.2–14.3]
(Table 1 continues on next page)(Table 1 continues on next column)
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Characteristics n (%), mean ± SD
(range), or med [IQR]

(Continued from previous page)

PTT _ max (seconds) 33.1 [28.7–42.8]

PTT _ avg (seconds) 31.2 [27.4–36.8]

PTT _ min (seconds) 28.7 [25.4–31.9]

Lipase _ max (IU/L) 54 [20–564]

Lipase _ avg (IU/L) 46 [18.6–264.4]

Lipase _ min (IU/L) 26.5 [15–100]

Basophils _ max (%) 0.3 [0.1–0.6]

Basophils _ avg (%) 0.2 [0.1–0.4]

Basophils _ min (%) 0.1 [0–0.3]

Eosinophils _ max (%) 1.2 [0.2–2.8]

Eosinophils _ avg (%) 0.9 [0.2–2]

Eosinophils _ min (%) 0.4 [0–1.5]

Lymphocytes _ max (%) 10.8 [6.6–16]

Lymphocytes _ avg (%) 9.2 [5.9–12.8]

Lymphocytes _ min (%) 7 [4–10.9]

Monocytes _ max (%) 5.1 [3.7–7]

Monocytes _ avg (%) 4.4 [3.2–5.9]

Monocytes _ min (%) 3.8 [2.2–5.1]

Neutrophils _ max (%) 85.3 [80.8–90.1]

Neutrophils _ avg (%) 82.3 [78–86.9]

Neutrophils _ min (%) 79.7 [72.6–86]

Albumin _ max (g/dL) 3.2 [2.9–3.6]

Albumin _ avg (g/dL) 3.1 ± 0.5 (1.3–4.9)

Albumin _ min (g/dL) 3 [2.6–3.3]

LD _ max (IU/L) 257 [180–437.6]

LD _ avg (IU/L) 223.2 [172–311.4]

LD _ min (IU/L) 188.8 [151–259.9]

PH _ max (units) 6 [5.4–6.6]

PH _ avg (units) 5.9 [5.4–6.5]

PH _ min (units) 5.8 [5.1–6.3]

Specific gravity _ max 1.018 [1.009–1.034]

Specific gravity _ avg 1.017 [1.012–1.03]

Specific gravity _ min 1.018 [1.01–1.031]

Lactate _ max (mmol/L) 1.8 [1–2.9]

Lactate _ avg (mmol/L) 1.6 [1.1–2.2]

Lactate _ min (mmol/L) 1.3 [0.9–1.9]

Amylase _ max (IU/L) 75.9 [25–295]

Amylase _ avg (IU/L) 72.4 [25.6–212]

Amylase _ min (IU/L) 55 [20.9–195.7]

NLR _ avg 9 [6.1–14.7]

PLR _ avg 21.8 [13.6–35.5]

MLR _ avg 0.5 [0.3–0.7]

SII _ avg (K/μL) 1796.7 [1065.8–3113.9]

SIRI _ avg (%) 39.6 [26.4–61.3]

Total (n = 1156). SD, standard deviation; IQR, inter-quartile range; ICU,
intensive care unit; MCH, mean corpuscular hemoglobin; MCHC, mean
corpuscular hemoglobin concentration; MCV, mean corpuscular volume; PLT,
platelet count; RDW, red blood cell distribution width; RBC, red blood cells;
WBC, white blood cells; TBil, total bilirubin; ALT, alanine aminotransferase;
ALP, alkaline phosphatase; AST, aspartate aminotransferase; INR (PT),
international normalized ratio of prothrombin time; PT, prothrombin time;
PTT, partial thromboplastin time; LD, lactate dehydrogenase; NLR,
neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio; MLR, monocyte-
lymphocyte ratio; SII, platelet*neutrophil/lymphocyte; SIRI,
neutrocyte*monocyte/lymphocyte.

Table 1: Baseline characteristics of all the patients included.
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set originated from the electronic medical record (EMR)
system of Zhongda Hospital. Measures were under-
taken to harmonize the data units with those existing in
the MIMIC database. For example, when measuring
total bilirubin in blood, the unit used by Zhongda
Hospital is μmol/L, while mg/dL is used in MIMIC
database, and the conversion formulas is that 1 mg/dL is
equal to 17.1 μmol/L. The unit conversion details were
presented in Supplementary Table S3.

Clinical and model outcomes
This study concentrated on three primary endpoints,
including in-hospital mortality, re-admission within 30
days after discharge and mortality within 180 days after
discharge.

Statistical analysis
Continuous variables were reported as either
mean ± standard deviation (with range) or median (with
interquartile range) and were compared utilizing either
the Student’s t-test or the Wilcoxon rank-sum test.
Categorical variables were expressed as frequency and
percentage, and comparisons were conducted using
either the chi-square test or Fisher’s exact test, as
appropriate.

Data processing
To mitigate bias stemming from missing data, factors
exhibiting over 20% missing values were excluded
during the data collection phase. The multiple imputa-
tion (MI) technique was implemented to address
missing values within the remaining variables for
analysis. The MI method involves comprehensively
considering inter-variable relationships, assigning mul-
tiple plausible values to missing entries, and generating
multiple interchangeable datasets.25 Ten-fold cross-vali-
dation was performed to reduce overfitting and enhance
model stability. In this approach, the complete dataset
was randomly divided into ten folds, with each fold
serving as an internal validation set during model
development, while the remaining folds were employed
as training sets. This procedure was replicated ten
times. Within the training subset of patients with CIAC,
variables independently associated with outcomes were
identified by employing univariate logistic regression. A
P-value cut-off of 0.1 was then chosen for feature se-
lection, which balances the need to avoid missing
potentially important features (Type II errors) with the
goal of creating an inclusive initial model, constituting a
crucial stage in model construction. This approach is
particularly useful in high-dimensional data contexts
and exploratory phases of model building. The Select-
FromModel algorithm utilized herein is a model-driven
feature selection method, adept at identifying the most
salient features from a given model. Its basic principle is
to rank importance of features based on the model,
subsequently select those exceeding the given threshold
www.thelancet.com Vol 76 October, 2024
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and delete those less than the threshold value, so as to
foster model accuracy and diminish feature
dimensionality.26

Algorithms
A total of nine ML algorithms were included for model
construction, namely Logistic Regression (LR), eXtreme
Gradient Boosting (XGBoost), Light Gradient Boosting
Machine (LightGBM), Adaptive Boosting (AdaBoost),
Decision Tree, Gradient Boosting Decision Tree
(GBDT), Gaussian Naive Bayes (GNB), Multi–Layer
Perceptron (MLP), and Support Vector Machine
(SVM). A total of nine imputed datasets were generated
corresponding to various clinical outcomes and patient
treatment groups respectively, and the nine ML algo-
rithms were applied to each dataset, with the results of
each dataset summarized individually.

Model evaluation indexes
The area under the receiver operating characteristic
curve (AUROC) was the main index for model perfor-
mance assessment. Additionally, various performance
metrics including accuracy, sensitivity, specificity, Pos-
itive Predictive Value (PPV), Negative Predictive Value
(NPV), F1 score, and Kappa value were scrutinized.
Furthermore, the area under the precision–recall curve
(AUPRC) was assessed, complemented by an evaluation
of clinical utility through decision curve analysis
(DCA). The statistical analyses and modeling proced-
ures were implemented utilizing Python (version 3.8),
with a significance threshold set at a two-sided P value
of less than 0.05.

Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report. There was no commercial support. All
authors had full access to the data in the study and YF
had final responsibility for the decision to submit for
publication.
Results
Patient characteristics
According to the inclusion criteria, a total of 1203 pa-
tients with CIAC were included. Subsequent to the
application of exclusion criteria, 47 patients were
omitted, resulting in the final inclusion of 1156 patients,
as delineated in Fig. 1, with details presented in Table 1.
Among these patients, there were 52 deaths during
hospitalization (4.5%), 262 cases (22.7%) requiring re-
admission within 30 days after discharge, and 166
deaths (14.4%) within 180 days after discharge. Notably,
the differences in characteristics between patients with
distinct prognostic outcomes were detailed in
Supplementary Table S4. Our analysis revealed that the
advanced age (P = 0.021, P < 0.001) and the absence of
www.thelancet.com Vol 76 October, 2024
interventional procedures (P = 0.040, P = 0.031) were
associated with heightened risks of re-admission within
30 days after discharge and mortality within 180 days
after discharge. Meanwhile, factors including the length
of hospitalization (P = 0.009, P < 0.001), severity grading
of cholangitis (P < 0.001, P < 0.001), duration of intra-
venous antibiotic administration (P < 0.001, P < 0.001),
and blood culture results (P = 0.026, P = 0.001) inde-
pendently influenced the re-admission rate within 30
days after discharge, as well as mortality within 180 days
after discharge. Furthermore, it should be emphasized
that the occurrence of acute pancreatitis (P = 0.006)
during hospitalization was linked to an increased prob-
ability of in-hospital mortality. In fact, among patients re-
admitted within 30 days after discharge, there may be
concurrent deaths within 180 days (Supplementary
Table S5, n = 262). By analyzing cases that fit both
outcome categories (Supplementary Table S6,
Supplementary Table S7), it was found that these pa-
tients had higher age (P < 0.001, OR = 0.16), cholangitis
severity grade (P = 0.008, OR = 15.38), and several higher
laboratory tests during hospitalization (P < 0.050) than
re-admitted patients without mortality within 180 days
after discharge. In addition, patients re-admitted within
30 days had a higher mortality within 180 days after
discharge (Supplementary Table S8, P < 0.001). Ac-
cording to the consistency analysis (Kappa = 0.049,
P = 0.065), re-admission within 30 days after discharge
and mortality within 180 days after discharge are inde-
pendent outcomes in this patient cohort.

The duration of ICU stay exhibited a significant
correlation with the occurrence of all three primary
outcomes. Patients admitted to the ICU during hospi-
talization (Supplementary Table S1, n = 652) had a
higher risk of in-hospital mortality and mortality within
180 days after discharge (Table 2, P < 0.001, P < 0.001),
in comparison to those placed in standard ward settings.
However, they displayed reduced probabilities of re-
admission within 30 days after discharge (P < 0.001).
Within the ICU-admitted patient subgroup
(Supplementary Table S9), the duration of intravenous
antibiotic administration emerged as an independent
prognostic determinant for all three aforementioned
outcomes (P = 0.012, P = 0.012, P < 0.001). Further-
more, the advanced age (P = 0.002), prolonged hospi-
talization (P = 0.008), extended ICU stay (P < 0.001),
higher severity of cholangitis (P < 0.001), and absence of
endoscopic therapy (P = 0.014) were identified as posi-
tive factors predisposing patients to mortality within 180
days after discharge. The onset of acute pancreatitis
(P = 0.018) emerged as an independent determinant of
death during ICU stay.

Biliary drainage is a critical treatment for patients
with CIAC. A total of 614 patients underwent various
operative procedures during their ICU treatment,
including surgical, interventional and endoscopic oper-
ations. As described in Table 2, patients underwent
7
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Outcomes All (n = 1156) Patients admitted to the ICU Patients underwent operations during
ICU treatment

Yes (n = 652) No (n = 504) P-value Yes (n = 614) No (n = 38) P-value

In-hospital mortality 52 (4.5%) 50 (7.7%) 2 (0.4%) <0.001 43 (7.0%) 7 (18.4%) 0.020
Re-admission within 30 days after discharge 262 (22.7%) 116 (17.8%) 146 (29.0%) <0.001 112 (18.2%) 5 (13.1%) 0.293
Mortality within 180 days after discharge 166 (14.4%) 136 (20.9%) 30 (6.0%) <0.001 122 (19.9%) 14 (36.8%) 0.014

ICU, intensive care unit.

Table 2: Different outcomes corresponding to various patient categories.
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biliary drainage during ICU treatment had an in-
hospital mortality rate of 7.0%, with corresponding re-
admission rates within 30 days after discharge and
mortality within 180 days after discharge up to 18.2%
and 19.9%, respectively. There was no statistically sig-
nificant difference observed in the re-admission rates
within 30 days after discharge (P = 0.29) between pa-
tients who underwent biliary drainage and those who
did not. However, biliary drainage demonstrated effi-
cacy in mitigating the mortality rates among ICU pa-
tients, both during the hospitalization period (P = 0.020)
and within 180 days after discharge (P = 0.014). The
statistical correlations between clinical variables and
outcomes were shown in Supplementary Table S10.

Feature selection
A total of 186 clinical variables were counted and clas-
sified according to the type of data distribution, as
shown in Supplementary Table S11. Univariate logistic
regression was employed to scrutinize all the variables
alongside associated outcomes. Variables with a P value
less than 0.1 were documented in Supplementary
Table S12, and were analyzed for feature importance
ranking and filtration. The outcomes of feature selec-
tion, conducted utilizing the SelectFromModel algo-
rithm, were illustrated in Fig. 2.

After a comprehensive analysis on all the patients, 13
key variables were found have most influence on the
occurrence of in-hospital mortality. These variables, in
order of significance, comprise total bilirubin (TBil)
_min, white blood cells (WBC)_avg, TBil_avg,
WBC_min, lactate dehydrogenase (LD)_avg, red blood
cell distribution width (RDW)_max, Phosphate_max,
RDW_avg, PTT_max, PTT_avg, duration of ICU stay,
urea nitrogen_avg, and urea nitrogen_min. Similarly, a
hierarchical assessment revealed the 15 variables most
closely linked to re-admission within 30 days after
discharge, namely, duration of intravenous antibiotic
administration, age, duration of ICU stay, red blood
cells (RBC)_max, mean corpuscular hemoglobin con-
centration (MCHC)_avg, basophils_min, WBC_avg,
RDW_avg, chloride_avg, ALT_avg, chloride_max,
sodium_avg, PTT_avg, PTT_min, and monocytes_max.
Likewise, a set of 15 factors, including albumin_avg,
albumin_min, chloride_avg, creatinine_max, duration
of ICU stay, phosphate_max, PTT_max, RDW_avg,
RDW_max, RDW_min, urea nitrogen_avg, urea nitro-
gen_max, urea nitrogen_min, WBC_avg, and
WBC_min, emerged as most significantly associated
with mortality within 180 days after discharge. In
addition, 16, 13, 15 and 15, 14, 16 variables were
selected for all patients admitted to the ICU and patients
underwent biliary drainage during ICU treatment, when
constructing prediction models of in-hospital mortality,
re-admission within 30 days after discharge, and mor-
tality within 180 days after discharge, respectively. De-
tails of selected variables were listed in Supplementary
Table S13.

Simultaneously, feature selection was performed on
patients admitted to the ICU and those underwent
biliary drainage during their ICU treatment. In addition
to the variables mentioned above, some other features
were also screened out and entered the model con-
struction process, such as acute kidney injury (AKI)
stage, LODS score, APS III score, GCS score, OASIS
score, SOFA score, duration of auxiliary ventilation,
duration of vasopressor drug administration, SpO2 on
the first day of ICU admission, temperature on the first
day of ICU admission, PH, anion gap, bicarbonate,
glucose, lactate, alkaline phosphatase, and lipase.

Comparisons of model performance
A total of nine ML models were employed to predict
outcomes for all the patents with CIAC. The predictive
efficacy of models was presented in Fig. 3, as depicted
by receiver operating characteristic (ROC) and
precision-recall (PR) curves. For patients who were
admitted to the ICU and those underwent biliary
drainage during ICU treatment, outcomes were pre-
dicted as shown in Supplementary Figure S1. Compre-
hensive performance metrics detailing the predictive
capabilities of the ML models across various prognostic
outcomes, stratified by patient classifications, were
delineated in Supplementary Tables S14–S22.

Taking each metric of the models into account,
XGBoost was found to be the most proficient in pre-
dicting all three outcomes. When predicting in-hospital
mortality for all the patients, XGBoost model has the
best discriminative performance as evidenced by
training set AUROC of 0.996 (95% CI NaN–NaN), with
the highest AUROC value (0.967, 95% CI 0.933–0.998),
accuracy (0.968, 95% CI 0.961–0.975), sensitivity (0.964,
www.thelancet.com Vol 76 October, 2024
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Fig. 2: Feature selection based on the SelectFromModel algorithm. The horizontal axis represents the name of each variable, while the
vertical axis represents the significance attributed to each variable. Outcomes of all the patients (a–c): in-hospital mortality, re-admission within
30 days after discharge and mortality within 180 days after discharge. Outcomes of patients admitted to the ICU (d–f). Outcomes of patients
underwent biliary drainage during ICU treatment (g–i). ICU, intensive care unit; PTT, partial thromboplastin time; RDW, red blood cell distri-
bution width; LD, lactate dehydrogenase; WBC, white blood cells; TBil, total bilirubin; ALT, alanine aminotransferase; RBC, red blood cells; SOFA,
sepsis-related organ failure; LODS, logistic organ dysfunction system; APSIII, acute physiology score iii; ALP, alkaline phosphatase; MCHC, mean
corpuscular hemoglobin concentration; AKI, acute kidney injury; OASIS, oxford acute severity of illness score.
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95% CI 0.892–1.035), PPV (0.665, 95% CI 0.553–0.777),
F1 Score (0.783, 95% CI 0.693–0.872), and Kappa value
(0.623, 95% CI 0.553–0.694) in the internal validation
set. Meanwhile, the specificity of XGBoost stood at 0.899
(95% CI 0.860–0.939) and the NPV was 0.983 (95% CI
0.980–0.986). Likewise, when predicting re-admission
within 30 days after discharge, the XGBoost model
presented the highest AUROC value of 0.886 (95% CI
www.thelancet.com Vol 76 October, 2024
0.862–0.910) in the training set, along with leading
performance across various metrics compared to the
other ML models, encompassing accuracy (0.813, 95%
CI 0.773–0.853), sensitivity (0.808, 95% CI 0.777–0.840),
specificity (0.816, 95% CI 0.768–0.864), PPV (0.569,
95% CI 0.493–0.646), NPV (0.934, 95% CI 0.923–0.945),
F1 score (0.666, 95% CI 0.609–0.723), and Kappa value
(0.541, 95% CI 0.458–0.624), followed by the internal
9
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Fig. 3: Receiver operating characteristic curve and Precision-Recall curve of nine models. Outcomes of all the patients: in-hospital mortality
(a–c), re-admission within 30 days after discharge (d–f), and mortality within 180 days after discharge (g–i). XGBoost, eXtreme Gradient
Boosting; LightBGM, Light Gradient Boosting Machine; AdaBoost, Adaptive Boosting; GBDT, Gradient Boosting Decision Tree; GNB, Gaussian
Naive Bayes; MLP, Multi-Layer Perceptron; SVM, Support Vector Machine.
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validation set AUROC of 0.589 (0.502–0.677). Similarly,
when predicting mortality within 180 days after
discharge, XGBoost consistently outperformed its
counterparts across all evaluated metrics. As described
in Supplementary Table S16, the training set AUROC
value, accuracy, sensitivity, specificity, PPV, NPV, F1
score, and Kappa value were 0.988 (95% CI
0.982–0.995), 0.962 (95% CI 0.935–0.990), 0.953 (95%
CI 0.915–0.992), 0.965 (95% CI 0.939–0.992), 0.834
(95% CI 0.718–0.950), 0.990 (95% CI 0.983–0.997),
0.887 (95% CI 0.805–0.968), and 0.861 (95% CI
0.763–0.959), respectively, with the AUROC of 0.857
(0.782–0.933) in the internal validation set. In addition,
as shown in Supplementary Figure S1, corresponding to
three different clinical outcomes, the training set
AUROC of the XGboost models reached 0.998 (95% CI
NaN–NaN), 0.933 (95% CI 0.909–0.957), and 0.988
(95% CI 0.983–0.993) in patients admitted to the ICU,
0.987 (95% CI 0.970–0.999), 0.908 (95% CI
0.873–0.942), and 0.982 (95% CI 0.971–0.993) in pa-
tients underwent biliary drainage during ICU treatment,
respectively. Meanwhile, the internal validation set
www.thelancet.com Vol 76 October, 2024
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AUROC reached 0.963 (NaN–NaN), 0.668
(0.486–0.851), and 0.864 (0.757–0.970) in patients
admitted to the ICU, 0.961 (0.922–0.997), 0.669
(0.540–0.799), and 0.828 (0.730–0.925) in patients un-
derwent biliary drainage during ICU treatment,
respectively. Regarding the PR curve analysis results
(Fig. 3), the AUPRC values of the XGBoost models were
0.955 (95% CI 0.927–0.983), 0.728 (95% CI
0.661–0.794), and 0.960 (95% CI 0.928–0.993) in all the
patients, respectively. The optimal ML models for pre-
dicting various clinical outcomes based on patient clas-
sifications were summarized in Table 3.

Moreover, to further demonstrate the clinical utility
of XGBoost, we selected the ML model having best
predictive power other than XGboost in the process of
predicting various clinical outcomes based on patient
classifications. The selected model may not be consis-
tent across each predicted category, as shown in Table 3.
For example, when predicting the in-hospital death for
all patients, Adaboost was considered to be second only
to XGboost after considering various metrics of model.
It was therefore used to further compare the clinical
efficacy with that of XGBoost. As shown in the DCA
curve (Fig. 4), XGBoost demonstrated a superior net
benefit than that of Adaboost. Supplementary Figure S2
presented additional DCA curves for patients admitted
to the ICU and those underwent biliary drainage during
ICU treatment. These findings underscored the
XGBoost as the optimal model with favorable clinical
applicability.

Validation of the XGBoost models
A total of 61 patients (five deaths in hospital, 15 re-
admissions within 30 days after discharge, 12 deaths
within 180 days after discharge) from January 2019 to
July 2023 in Zhongda Hospital were enrolled as an
external validation cohort, with detailed information
shown in Supplementary Table S23. The XGBoost
models were validated based on the 14 to 16 top-ranking
risk factors and got the AUROC values of 0.741 (95% CI
0.725–0.763), 0.812 (95% CI 0.798–0.824), 0.848 (95%
Outcomes ROC training (AUROC) ROC inte

All-hospdeath Adaboost (0.999) XGBoost

All-1month XGBoost (0.886) Logistic (

All-180death XGBoost (0.988) XGBoost

ICU-hospdeath Adaboost (0.999) XGBoost

ICU-1month XGBoost (0.933) Adaboost

ICU-180death XGBoost (0.988) XGBoost

ICU-operation-hospdeath XGBoost (0.987) XGBoost

ICU-operation-1month XGBoost (0.908) Adaboost

ICU-operation-180death XGBoost (0.982) XGBoost

ICU, intensive care unit; ROC, Receiver Operating Characteristic curve; AUROC, area under
the precision-recall curve; DCA, Decision Curve Analysis; XGBoost, eXtreme Gradient Bo

Table 3: Optimal machine-learning algorithms for predicting various outcom
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CI 0.841–0.859), proving the favorable generalizability
of our models (Supplementary Figure S3).

Application of the model
We have developed a series of online platforms
(Table 4), providing access to web tools tailored to the
classification of patients with CIAC and the targeted
outcome events. By inputting clinical feature data
directly into designated text fields on the webpage, users
can obtain the desired prediction outcomes conveniently
(Fig. 5).
Discussion
Although researches on the prognostic risk factors of
CIAC have become increasingly profound, there is
currently no systematic model to integrate these risk
factors and accurately predict various outcomes. In this
study, we utilized 13–16 clinical parameters to establish
models based on the XGBoost, demonstrating that our
models can better predict multiple clinical outcomes of
CIAC.

Our study has several characteristics: In terms of
prognostic research on CIAC, (1) we first combined and
applied three elements in the same study: online data-
base, offline collected real clinical data, and ML
methods. (2) The clinical variables collected included
not only individual data that can only be collected at a
fixed time point but also indicators dynamically
measured during hospitalization (with maximum,
minimum, and average values involved). This allowed
the models to function throughout the whole treatment
process, providing continuous tracking predictions that
change with the disease during hospitalization. (3) The
included clinical elements were multidimensional.
Various objective laboratory examination indicators,
process of clinical treatment and care, as well as several
disease scores that need to be calculated manually were
involved. By adding these clinically convenient data, the
accuracy of the model prediction was further improved.
(4) Our team believed that traditional disease scoring
rnal validation (AUROC) PR curve (AUPRC) DCA

(0.967) Adaboost (0.979) XGBoost

0.609) XGBoost (0.728) XGBoost

(0.857) XGBoost (0.960) XGBoost

(0.963) XGBoost (0.992) XGBoost

(0.687) XGBoost (0.811) XGBoost

(0.864) XGBoost (0.964) XGBoost

(0.961) XGBoost (0.925) XGBoost

(0.683) XGBoost (0.758) XGBoost

(0.828) XGBoost (0.924) XGBoost

the receiver operating characteristics curve; PR, Precision-Recall; AUPRC, area under
osting; AdaBoost, Adaptive Boosting; Logistic, Logistic regression.

es corresponding to patient categories.
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Fig. 4: The decision curve analyses of XGBoost and the model with the most disputable predictive efficacy apart from XGBoost.
Outcomes of all the patients: in-hospital mortality (a), re-admission within 30 days after discharge (b), and mortality within 180 days after
discharge (c). XGBoost, eXtreme Gradient Boosting; AdaBoost, Adaptive Boosting.

Outcomes
corresponding to
various patient
categories

All-hospdeath

All-1 month

All-180 death

ICU-hospdeath

ICU-1 month

ICU-180 death

ICU-operation-hospdeath

ICU-operation-1 month

ICU-operation-180 death

CIAC, cholelithiasis-induced a

Table 4: Links to the web
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systems have undergone many years of clinical practice
verification and have their unique advantages. There-
fore, instead of complete abandonment, we incorpo-
rated them as ordinary variables into the ML models,
which differs from other studies. (5) The models we
created can predict both short-term and long-term
prognosis of patients. (6) The patients included in our
study come from different countries. Although the
models were built based on a single MIMIC database,
satisfactory results were still achieved when using data
from patients in China for external validation. (7) For
the first time, we created a series of user-friendly online
prediction platforms for endoscopists and patients
worldwide that can also be internalized into the EMR.
Despite that the information of the patients involved in
model construction and validation came from only two
regions, there are no significant regional differences in
the diagnosis and treatment process of AC between
countries, therefore, our models have universal appli-
cability. Clinical workers only need to click a few times
to extract specific data of each patient and then obtain
the final prediction results. Even without the EMR, we
enable real-time prognosis prediction based on part of
Links to the web tools

https://keyan.deepwise.com/predict?id=395468&taskName

https://keyan.deepwise.com/predict?id=395470&taskName

https://keyan.deepwise.com/predict?id=395472&taskName

https://keyan.deepwise.com/predict?id=395476&taskName

https://keyan.deepwise.com/predict?id=395478&taskName

https://keyan.deepwise.com/predict?id=395480&taskName

https://keyan.deepwise.com/predict?id=395482&taskName

https://keyan.deepwise.com/predict?id=395484&taskName

https://keyan.deepwise.com/predict?id=395486&taskName

cute cholangitis; ICU, intensive care unit.

tools for predicting different outcomes of patients with CIAC.
the patient’s baseline data in an outpatient clinic by
inputting these parameters into the program through
the network. This will facilitate the rapid triage of
emergency patients, the efficient screening of high-risk
patients and reasonably assignment of specialist physi-
cians. The visual interface display allows patients to have
a clearer understanding of the severity of disease,
helping to achieve more convenient doctor-patient
communication and nursing cooperation.

With the development of ML, the XGBoost provides
better method for establishing medical prediction models.
In previous studies, scholars have found that the XGBoost
model has outstanding performance in predicting acute
kidney injury in patients with diabetic ketoacidosis.27 To
our surprise, after comprehensive comparison of various
model performance indicators, the XGBoost models were
found to have the best predictive performance and clinical
utility in all nine combinations of CIAC populations
corresponding to outcomes. The previously prognosis
model was the Random Forest curve proposed by
Schneider J et al.,16 with AUROC, sensitivity, and speci-
ficity of 0.91, 0.829, and 0.851, (which lower than those of
the XGBoost model in our study, 0.967, 0.964, and 0.899
=%E5%88%86%E7%B1%BB%E4%BB%BB%E5%8A%A1%262&language=en

=%E5%88%86%E7%B1%BB%E4%BB%BB%E5%8A%A1%262&language=en

=%E5%88%86%E7%B1%BB%E4%BB%BB%E5%8A%A1%262&language=en

=%E5%88%86%E7%B1%BB%E4%BB%BB%E5%8A%A1%262&language=en

=%E5%88%86%E7%B1%BB%E4%BB%BB%E5%8A%A1%262&language=en

=%E5%88%86%E7%B1%BB%E4%BB%BB%E5%8A%A1%262&language=en

=%E5%88%86%E7%B1%BB%E4%BB%BB%E5%8A%A1%262&language=en

=%E5%88%86%E7%B1%BB%E4%BB%BB%E5%8A%A1%262&language=en

=%E5%88%86%E7%B1%BB%E4%BB%BB%E5%8A%A1%262&language=en
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https://keyan.deepwise.com/predict?id=395468&amp;taskName=%E5%88%86%E7%B1%BB%E4%BB%BB%E5%8A%A1&amp;2&amp;language=en
https://keyan.deepwise.com/predict?id=395470&amp;taskName=%E5%88%86%E7%B1%BB%E4%BB%BB%E5%8A%A1&amp;2&amp;language=en
https://keyan.deepwise.com/predict?id=395472&amp;taskName=%E5%88%86%E7%B1%BB%E4%BB%BB%E5%8A%A1&amp;2&amp;language=en
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https://keyan.deepwise.com/predict?id=395486&amp;taskName=%E5%88%86%E7%B1%BB%E4%BB%BB%E5%8A%A1&amp;2&amp;language=en
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Fig. 5: An example of web tool usage. The prediction of in-hospital mortality was conducted by inputting 15 clinical parameters pertaining to
a single patient underwent biliary drainage during ICU treatment, thereby indicating an unfavorable prognosis.
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respectively) for predicting in-hospital mortality of CIAC.
The performance of the model proposed by Li-Na Pan
et al., in 2023,13 a nomogram for predicting mortality of
AC in ICU (with the AUROC of training and validation
set were 0.896 and 0.847 respectively), is not as good as
the model constructed based on the XGBoost in our study
(with the AUROC of 0.998 and 0.963). Therefore, the
prognostic prediction models for CIAC we constructed
can be considered more reliable than those proposed in
previous studies.

We found that, for all the patients, on one hand, the
length of ICU stay is positively correlated with in-
hospital mortality and mortality within 180 days after
discharge, on the other hand, the longer the ICU stay of
patients, the less likely they are to be re-admitted within
30 days after discharge. This finding is consistent with
www.thelancet.com Vol 76 October, 2024
the experience of clinicians. Patients who need to stay in
the ICU for long-term monitoring are often those with
severe conditions and a higher risk of death. Adequate
length of ICU treatment increases the likelihood of be-
ing cured, hence reduces the risk of re-admission. 13–16
features were included in each model for the various
populations corresponding to different outcomes of
CIAC in our study. Most features are consistent with the
factors related to the severity grading of AC proposed in
the TG18 guidelines.1 At the same time, our study found
a tight relationship between MCHC and re-admission
within 180 days after discharge in patients with CIAC
for the first time. The prognostic significance of MCHC
has not been directly linked to AC before, but it has been
confirmed to be associated with short-term death in
serum biomarker studies of acutely admitted patients.28
13
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RDW, as a frequently occurring indicator in complete
blood cell count examinations, is a strong indicator of
poor prognosis, while is often ignored by clinical
workers. Interestingly, our study found that RDW is also
a key feature in multiple models. For all the patients and
those underwent biliary drainage during ICU treatment,
RDW is the strongest predictive factor of re-admission
within 180 days after discharge. High risk of malnutri-
tion is associated with high RDW values, and patients
with elevated RDW values demonstrate a robust
responsiveness to nutritional interventions, which is
much stronger than those with low RDW values.29 The
discovery of these two new indicators may be used as
supplements to the TG18 diagnostic guidelines.

In prior researches, single-center data were utilized
to identify factors relevant to a single prognostic
outcome of AC, with limited clinical dimensions
explored and predominantly traditional linear model
algorithms employed. Furthermore, due to the lack of
data validation from different institutions, most previ-
ous prediction models tended to suffer from overfitting
issues, making it challenging for a model developed by
one institution to be applicable to another. In this
context, our work integrating and enriching significant
clinical features identified in previous studies, coupled
with validation of prediction models using both online
and offline data, is poised to become a significant
milestone in developing universal, highly practical
models applicable across multiple hospitals.

The corresponding diagnostic criteria of MIMIC III
and IV version2.1 databases used in our study is the ICD-
9 and ICD-10, respectively. Therefore, to avoid diagnostic
bias, the updated ICD-11 was not used to replace ICD-9
and ICD-10 as inclusion criteria. In this study, some
cases were placed in both positive outcome groups, that
is, some patients were re-admitted within 30 days after a
discharge and then died within 180 days after that
discharge. This is in line with the actual clinical situation.
The exclusion of data from this particular subset of pa-
tients would lead to bias in patient inclusion criteria and
inaccurate estimates of outcome incidence in the process
of exploring the occurrence of mortality within 180 days
after discharge. Our study also had some limitations.
Firstly, despite of the high quality of MIMIC database,
and satisfactory performance of external validation set,
our models were developed retrospectively based on the
data from a single database, which introduced inherent
biases in data collection. Secondly, the sample size of the
external validation set is relatively small, which may affect
the assessment of model performance on external data.
As real-world clinical data varies across hospitals, estab-
lishing a stable prediction model well applied in multiple
institutions proves challenging. We hope that future
studies will include larger-scale, multi-center external
validation cohorts to further verify the generalizability of
the models. Thirdly, some key data were missed, such as
the time interval between symptom onset and hospital
admission, the timing of bile duct drainage, and the
absence of laboratory markers like N-terminal pro-brain
natriuretic peptide and C-reactive protein. Failure to
further explore the database may also result in the
omission of critical variables. Fourthly, the ML models
we proposed lacks prospective validation, which is what
our team will strive to achieve in future.

In conclusion, this study demonstrates that the
XGBoost models could be promising tools to predict the
occurrence of outcomes in patients with CIAC. Multi-
center validation and large-scale prospective studies
should be conducted to help verify our findings.
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