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Temporal lobe epilepsy (TLE) is a chronic neurological disorder that is

divided into two subtypes, complex partial seizures (CPS) and simple partial

seizures (SPS), based on clinical phenotypes. Revealing di�erences among the

functional networks of di�erent types of TLE can lead to a better understanding

of the symbology of epilepsy. Whereas Although most studies had focused

on di�erences between epileptic patients and healthy controls, the neural

mechanisms behind the di�erences in clinical representations of CPS and SPS

were unclear. In the context of the era of precision, medicine makes precise

classification of CPS and SPS, which is crucial. To address the above issues,

we aimed to investigate the functional network di�erences between CPS

and SPS by constructing support vector machine (SVM) models. They mainly

include magnetoencephalography (MEG) data acquisition and processing,

construction of functional connectivity matrix of the brain network, and the

use of SVM to identify di�erences in the resting state functional connectivity

(RSFC). The obtained results showed that classification was e�ective and

accuracy could be up to 82.69% (training) and 81.37% (test). The di�erences

in functional connectivity between CPS and SPS were smaller in temporal

and insula. The di�erences between the two groups were concentrated in

the parietal, occipital, frontal, and limbic systems. Loss of consciousness and

behavioral disturbances in patients with CPS might be caused by abnormal

functional connectivity in extratemporal regions produced by post-epileptic

discharges. This study not only contributed to the understanding of the

cognitive-behavioral comorbidity of epilepsy but also improved the accuracy

of epilepsy classification.
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Introduction

According to the World Health Organization, about 50

million people worldwide suffered from epilepsy (Fiest et al.,

2017). In recent years, epilepsy has been proposed to be

a disorder of the brain network caused by hypersynchrony

of neuronal activity (Zhang et al., 2011; Richardson, 2012).

Epilepsy could be divided into focal, generalized onset,

and unknown onset based on clinical manifestations and

electroencephalogram (EEG) in line with the new International

League Against Epilepsy ILAE criteria in 2017 (Scheffer et al.,

2017). Depending on whether awareness was impaired, focal

seizures were classified as aware or impaired awareness seizures,

which are also known as “simple partial seizure (SPS)” and

“complex partial seizure (CPS),” respectively (Falco-Walter et al.,

2018).

Temporal lobe epilepsy (TLE), a common neurological

disorder originates in the temporal lobe (de Lanerolle et al.,

1989). Seizures types in TLE primarily incorporated SPS,

which can cause focal motor or selective emotional or

visual changes with relatively preserved consciousness, and

CPS, which has more sophisticated clinical manifestations,

including epigastric paresthesia, cognitive impairment,

paresthesia, and automatisms (Proposal for Revised Clinical and

Electroencephalographic Classification of Epileptic Proposal

for Revised Clinical Electroencephalographic Classification

of Epileptic Seizures., 1981; Depaulis et al., 1997). The EEG

is mostly normal in SPS, and abnormal EEG changes were

transient and were generally restricted peaks or paroxysmal

activity in the temporal lobe regions (Inoue et al., 2000; Janszky

et al., 2004).

During the past few decades, increasing evidence have

linked epileptic cognitive impairment and loss of consciousness

to diffuse brain network changes (Blume, 2002; Blumenfeld

et al., 2009; Xu et al., 2009; Englot et al., 2010; González

et al., 2019; Hermann et al., 2021). The duration of CPS

invariably exceeded 30 s, and the discharge position was

deeper. Meanwhile, CPS tended to spread to the brainstem

or contralateral hemisphere, resulting in extensive neurological

alterations (Stayman and Abou-Khalil, 2011; Hauf et al., 2013).

“Network inhibition hypothesis” was a new theory of CPS

proposed by Blumenfeld (Blumenfeld et al., 2004, 2009; Guye

et al., 2006), was According to the theory, focal discharges in the

temporal lobe interfered with brainstem–diencephalon arousal

system, and then inhibited ascending reticular activation system,

which indirectly brought forth impaired cortical function and

loss of consciousness (Steriade, 1970; Motelow et al., 2015).

Pathophysiological studies had shown a significant increase

in slow-wave activity in the frontoparietal neocortex and an

enhanced rate of diffusion of fast EEG activity from the

medial temporal lobe to the contralateral side during CPS

compared to SPS (Englot et al., 2017). In animal studies,

it was also found that blood oxygenation level-dependent

in the hippocampus of TLE increased, while it decreased

in the cortex and thalamus (Motelow et al., 2015). This

suggested that cortical and subcortical structures are involved

in regulating consciousness. Studying alterations in resting-

state brain functional connectivity could be conducive to

explore the mechanisms underlying cognitive dysfunction in

individuals with epilepsy. Memory deficiencies in individuals

with CPS were associated with compensatory increases in

the hippocampus. There was also evidence that executive

dysfunction was relevant to a reduced resting-state functional

connectivity in the frontoparietal lobe (Park et al., 2017; Ives-

Deliperi and Butler, 2021; Li et al., 2022). Language dysfunction

was associated with reduced functional connectivity in the

frontotemporal lobe language network. EEG researches have

revealed that even if the bilateral pikes in patients with SPS

and CPS originated in disparate brain regions, the discharges

spread to the same area, the temporal lobe base (Sirven et al.,

1996). This indicated that SPS and CPS may have shared

network nodes in the temporal lobe. However, the mechanisms

by which CPS brain network alterations are associated with

impaired consciousness and behavioral abnormalities have not

been systematically studied.

Unlike other diseases, the first symptom defined the epilepsy

type, consciousness turned into a “watershed,” differentiated

SPS from CPS. Nevertheless, a flat dichotomy may result in

neglecting the other clinical symptoms (Muayqil et al., 2018).

Currently, there is a lack of direct studies on brain network

alters among SPS and CPS individuals. Therefore, our study

hypothesized that aberrant differences in functional connectivity

of CPS and SPS were vital nodes involved in the regulation

of brain network consciousness and behaviors. Furthermore,

seizures were primarily self-reported by the patient, and even

with EEG testing, the underreporting rate was still as high as

50% (Glauser et al., 2010; Elger and Hoppe, 2018; Verdru and

Van Paesschen, 2020). Especially, when epilepsy originates in

deep or non-dominant regions, the initial weak signal may not

be obtained on scalp EEG (Benbadis et al., 2020). Compared to

EEG, the sensitivity and specificity of magnetoencephalography

(MEG) for localization of minute EEG activity were higher than

that of EEG (van Mierlo et al., 2014). In contrast to MRI, even

though functional brain networks were widely used in MRI

(Salma et al., 2019; McKavanagh et al., 2021), the time span for

information processing was only milliseconds to seconds when

the brain was in a resting state. Therefore, the selection of MEG

with higher localization accuracy for the analysis of functional

connectivity differences wasmore promising for detecting subtle

changes in the brain (Kakisaka et al., 2013; Nissen et al., 2018;

van Klink et al., 2019).

Prior to this study, we preprocessedMEG data from patients

with SPS and CPS and normal controls, and performed a source

level analysis. The results of the coherence analysis showed that

the functional connectivity of patients with both SPS and CPS

was lower than that of normal individuals in the whole brain,

while there was no significant difference between the two groups.

Therefore, to address the problems of low efficiency and easy
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FIGURE 1

The working flowchart of the proposed framework. CPS, complex partial seizures; SPS, simple partial seizures; SVM, support vector machine;

ACC, the accuracy rate.

misdiagnosis in manual identification of EEG signals, we chose

machine learning to further differentiate the differences between

patients with SPS and CPS (Fallahi et al., 2021). At present,

machine learning has shown sound application prospects for

various neurological diseases incorporating epilepsy (Craley

et al., 2020; Gleichgerrcht et al., 2020; Pavel et al., 2020). (Li

et al., 2018; Bharath et al., 2019). In a previous study, SVM was

able to distinguish temporal lobe epilepsy from benign epilepsy

in healthy controls or central temporal spikes (Jin and Chung,

2017; Sriraam and Raghu, 2017; Yang et al., 2020). In addition,

the use of SVM could also distinguish between resected and

unresected regions based on preoperative interictal MEG data

in epileptic patients. Therefore, the present study intends to

use SVM combined with two sample selection approaches to

explore the differences in functional connectivity between the

two groups at rest.

Materials and methods

Patient population

This study was part of a research program on neuroimaging

in epilepsy. It consecutively recruited 40 patients with TLE

between 2015 and 2020. Inclusion criteria were as follows: 1. in

line with the International League Against Epilepsy (ILAE, 1989)

diagnostic criteria for epilepsy; 2. partial epilepsy diagnosed

by V-EEG observation and medical history; 3. the clinical and

EEG characteristics were onefold SPS or CPS ; 4. individuals

had no visible lesions in structural MRI images.; 5. able to

cooperate with the inspection and the head movement during

MEG examination was nomore than 5mm. Exclusion criteria: 1.

combined with a history of generalized seizure ; 2. suffered from

other types of paroxysmal illness (e.g., mental illness, severe

systemic illness, etc.); 3. implants that may seriously interfere

with MEG and MRI data collection (such as dentures, cochlear

implants, pacemakers, etc.); 4. unable to cooperate with MEG

and MRI examination. Of the 40 patients we recruited, All of

them underwent MEG andMRI scans at Nanjing Brain Hospital

affiliated with Nanjing Medical University. All individuals have

read and signed voluntary and written informed consent for the

study prior to enrollment, according to the standards set by the

ethical committee of Nanjing Brain Hospital of Nanjing Medical

University, which approved this study.

MEG resting state acquisition

All studies were performed in a magnetically shielded room

by using our 275-channel whole-head biomagnetometer (VSM
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TABLE 2 Ictal semiology in the three groups of patients,the number of

patients in each group having the concerning symptoms.

CPS (n = 16) SPS (n = 16)

Age (year) 29.11± 8.63 23.53± 5.66

Male (n, %) 5 (31.25) 8 (50)

Seizure duration (second) 104.06±34.62 15.56±6.12

Impairment of consciousness

(n, %)

16 (100) 0 (0)

Oro-alimentary Automatisms

(n, %)

13 (81.25) 5 (31.25)

Motor Automatisms (n, %) 15 (93.75) 2 (12.5)

Vegetative symptoms (n, %) 6 (37.5) 2 (12.5)

MedTech, Coquitlam, BC, Canada). The full head sensor of the

275 super-conducting quantum interference device (SQUID)

was used to measure the brain magnetic field in the direction

perpendicular to the scalp. Three electrically active coils were

placed as fiducial markers at the nasion and 1 cm anterior to

the left and right tragus to measure the position of each person’s

head relative to the MEG sensor.

All individuals did not have seizures at least 16 h before the

examination. If the frequency of seizures was less than once a

week, individuals were required to stop anti-epileptic drugs for 2

days and overnight sleep deprivation (increased seizure activity).

MEG recording is performed at a sample rate of 1,200Hz for

twenty 120-s recordings with the patient in the state of rest and

their eyes closed to detect interictalMEG sharpwaves and spikes,

as well as bursts of rhythmic activity.

Anatomical mri

MRI data were collected using a US GE Signa NV/i

1.5 T super-conducting magnetic resonance apparatus, and

the head of the subject was fixed with a sponge pad. The

routine anatomical MRI data were acquired to detect structural

details. T1-weighted image scans were obtained, with following

parameters: TR/TE = 1,750 ms/24ms, FA = 90◦, matrix = 256

× 256, FOV = 24 × 24 mm2, slice thickness = 6mm, slice gap

= 2mm, and acquired slices= 16. Coronal T2-FLAIR-weighted

image scans were also obtained, with following parameters:

TR/TE = 8,400 ms/135ms, FA = 150◦, matrix = 256 × 256,

FOV= 24× 24mm2, slice thickness= 16mm, slice gap= 2mm

and acquired slices= 16.

Data preparation

All MEG recordings were reviewed by two experienced

epileptologists at Nanjing Medical University, and the peaks of
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all epileptic spikes and inter epileptic discharge were marked

manually based on the MEG recordings.

Artifact rejection and subtraction of
inter-spikes relative-stable activity

All analyses were done with custom-written MATLAB

(Mathworks, Natick, MA) scripts and FieldTrip (http://www.

ru.nl/fcdonders/fieldtrip/). Firstly, all spikes and abnormal

discharge before and after the 10 s time period were excluded.

Then we short-cut the remaining segments with a non-

overlapped length of 10 s and further extracted the sub-segments

which are free from jump-like artifacts and muscular artifacts.

To ensure the same length of the remaining sub-segments, we

further removed the ones with a length <4 s and short-cut the

others with a length of 4 s. The number of segments per subject

varied from 33 to 169 at last. The total number of segments for

all the individuals with CPS was 1,306, and the total number of

segments for all the individuals with SPS was 1,526.

Filtering and removing artifact

The remaining signals were low-pass-filtered at 70Hz and

high-pass-filtered at 1Hz with notch-filtered around 50Hz (the

vertical refresh rate of the LCD projector). Furthermore, to

increase the speed of the following data analysis, the data

were down-sampled to 100Hz. In addition, we removed blink

artifacts and ECG noise from data by using Independent

Component Analysis (ICA).

Source reconstruction

We performed source reconstruction after preprocessing

using a partial cannonical correlation/coherence (PCC)

(Mukuta and Harada, 2014). Specifically, first, the subject-

specific T1-weighted MR images were re-sliced and segmented

to obtain brain/skull boundary by using FieldTrip. Then,

we generated the individual cortical meshes with > 1,00,000

vertices per hemisphere by using the Freesurfer package

(version 5.3.0) (surfer.nmr.mgh.harvard.edu), and we

downsampled them to 8,196 nodes in all by using MNE Suite

(martinos.org/mne/stable/index.html). Next, the downsampled

cortical sheet was coregistered to the sensor-based coordinate

system with FieldTrip. Finally, the volume conduction for the

forward model was computed by using FieldTrip’s “single shell”

method, and the source reconstruction was computed between

1 and 40Hz with a partial canonical correlation/coherence

(PCC) method.

Functional connectivity analysis

For each segment time course, we calculated functional

connectivity (FC) by the imaginary part of the coherency

index between the time courses at every two sheets after

source reconstruction. To reduce the dimensionality

of the FC matrix, we applied a parcellation scheme

according to the Destrieux Atlas, which consists of 74

parcels in the whole cortical surface (Destrieux et al.,

2010). Therefore, each FC matrix was merged to a size

of 74-by-74.

Classification of fc matrix between cps
and sps

In the next step, we tried to find the functional connectivity

pairs that were different between CPS and SPS groups by

using a nonlinear classification method with feature extraction

and leave-one-out loop. The features which contributed well

and were stable for separating the two patient groups were

considered to indicate the corresponding cortical pairs having

obvious distinct functional connectivity between them. The

operational flowchart of the proposed framework is shown

in Figure 1.

Specifically, as shown in Table 1, we divided all the subjects

into 16 subsets, and each subset had one patient with CPS and

one with SPS. For each subset, the number of CPS FC matrices

was basically equal to the number of SPS FC matrices. We

randomly selected two subsets as the testing set, and the others

were considered as a training set for classification.

To improve the generalization ability of the classification

model as possible as we can, we adopted a leave-one-out method

for the training processing in this work. For each loop, we

selected 13 subsets from the training set as sub-training set

and left one subset as validating set to select the best hyper-

parameters for the classification model. For the sub-training

set, we selected the FC features, which have stable and great

contribution for separating the CPS and SPS, as the methods

introduced in “Feature extraction” section. Then, we trained

SVM classifier as introduction in “Support vector machine

classifier”. And then, we repeated this process 14 times for all

possible selection options.

After leave-one-out training, we counted the overlap rate

of all appeared features among 14 times leave-one-out training

loop and extracted the features with the highest (≥12/14)

overlap rate as a reliable feature assemblage. Finally, we extracted

the corresponding feature values in the testing dataset as the

input for the classifier and performed the classification as we

trained. The test accuracy rate here was calculated. The method

for feature extraction and classification were introduced below

in detail.
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Feature extraction

To reduce the duplicate information in the FC matrix which

was symmetrical, we extracted its lower triangular part and

its main diagonal as the vector. Each value in the vector is a

feature for classification, indicating an FC strength between a

pair of cortical areas. The total number of features contained

in each vector is C_74∧2+74=2,775. It is important to select the

FIGURE 2

The F-score of 2,775 features.

most essential features using feature selection before entering the

classifier (Guyon and Elissee, 2003) when the number of features

is much more than the number of subjects used in classification.
To more effectively enhance the efficiency of computation

and avoid the high-dimensional and small-sample-size problem
for classification, we further measured the classification
capability of each feature by the F-score method (Chen et al.,
2006) and removed the features which were irrelevant or has
low correlation to the classification (Guyon and Elissee, 2003).
F-score is a simple and generally quite an effective technique
that can measure the ability of a feature to discriminate
between two classes of samples. Given a set of training samples
xk, k = 1, · · · ,m, then the F-score of the ith feature is defined
as follows:

Fi =
(x

(−)
i − xi)

2
+ (x

(+)
i − xi)

2

1
n+−1

∑n+
k=1

(x
(+)

k,i
− x

(+)
i )

2
+

1
n−−1

∑n−
k=1

(x
(−)

k,i
− x

(−)
i )

2

(1)

where xi is the average of the i
th feature in the whole data set,

whereas x
(+)
i , x

(−)
i are the average of the ith feature in CPS, and

SPS data sets, respectively; n+ and n− represent the number

of samples in CPS and SPS data sets, respectively; and x
(+)

k,i

and x
(−)

k,i
indicate the ith feature of the kth sample in the two

groups’ data sets, respectively. F-score is positive, and the larger

FIGURE 3

The nodes and edges involved in the FC features with high overlap rate (12/14) among training. (A,B) Regions involved in 28 FC features with

overlapping ratios ≥12/14 across 14 training sessions. (C) Edges involved in 28 FC features with overlap ratio ≥12/14 in 14 training sessions.
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TABLE 4 The nodes and edges involved in the FC features with high

overlap rate (12/14) among training.

Index ROI 1 ROI 2

1 G_pariet_inf-Angular G_front_middle

2 S_parieto_occipital G_cuneus

3 S_interm_prim-Jensen G_front_middle

4 S_intrapariet_and_P_trans G_cingul-Post-ventral

5 S_intrapariet_and_P_trans G_cuneus

6 G_cingul-Post-ventral G_and_S_cingul-Mid-

Post

7 S_pericallosal G_pariet_inf-Angular

8 G_parietal_sup G_and_S_cingul-Ant

9 S_front_inf G_oc-temp_med-

Lingual

10 G_occipital_middle G_pariet_inf-Angular

11 S_intrapariet_and_P_trans G_and_S_cingul-Ant

12 G_precuneus G_and_S_cingul-Ant

13 G_pariet_inf-Angular G_cingul-Post-ventral

14 S_interm_prim-Jensen Lat_Fis-post

15 S_subparietal G_precuneus

16 S_pericallosal G_cingul-Post-ventral

17 S_subparietal G_cuneus

18 G_pariet_inf-Angular G_and_S_cingul-Mid-

Ant

19 S_intrapariet_and_P_trans S_calcarine

20 S_front_middle G_occipital_middle

21 G_cuneus G_and_S_occipital_inf

22 S_parieto_occipital S_intrapariet_and_P_trans

23 S_subparietal G_and_S_cingul-Ant

24 Pole_temporal G_oc-temp_med-

Lingual

25 S_postcentral G_front_middle

26 S_cingul-Marginalis G_cingul-Post-ventral

27 S_interm_prim-Jensen S_front_middle

28 S_front_inf G_pariet_inf-Angular

The pairs are ranked in descending order according to the mean F-score value of each

feature among 14 times training.

the F-score of a feature is the stronger its ability to distinguish

two categories of samples.

As a pretest, we calculated the F-score of 2,775 features on

the whole training set first and arranged them in descending

order. As shown in Figure 2, it can be found that the F-score

curve of 2,775 features declines rapidly and there are a large

number of feature F-scores close to zero, suggesting only a

very small number of features have a good contribution to

classification while the others are redundant. Therefore, in the

following classification processing, we extracted the features

with the top 1% F–scores from the training subset as the input

for classification.
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Support vector machine classifier

The SVM is one type of binary supervised learning classifier

that has been widely used in recent years (Ines et al., 2013)

with a high ability for generalization (Vapnik, 2000). Rajpoot

et al. (2015) used AP clustering combined with SVM to study

functional connectivity changes in individuals with epilepsy

and normal subjects. Its basic model is a linear classifier. For

linearly separable data, SVM generates a separating hyperplane

which separates the data with the largest margin. For linearly

inseparable data, SVM can efficiently perform a non-linear one

using kernel function Φ(x) (2), mapping their inputs into high-

dimensional feature spaces.

Φ(x) :Rn → Rnh (2)

By choosing a suitable Φ(x), the SVM constructs an optimal

separating hyperplane in higher-dimensional feature space to

solve the linear-inseparable problem (Cantor-Rivera et al.,

2015). The kernel function mentioned above may be any of

the symmetric functions that satisfies the Mercel conditions

(Dhanalakshmi et al., 2009). We selected the Radial Basis

Function (RBF) in this work since it was the most frequently

used kernel function, and there were two parameters C and

γ , whichmust be preset before training the SVM classifier.

In the experiment, we implemented the scikit-learn, a

machine learning tool package in python, to train the SVM

classifier with parameter C of 1.2 and parameter γ of 5, and

each sample was converted to scikit-learn input data format in

this work.

Results

Five patients had obvious head movement during scanning,

defined as more than a 2mm translation. Two patients refused

to participate in further research and asked to withdraw. This

meant that 32 patients met the stringent inclusion criteria and

were finally included in the study. Among them, 16 patients (five

male, 29.1± 8.63 years) were suffering fromCPS and 16 patients

(11male, 23.5± 5.66 years) from SPS. The detailed demographic

and electroclinical data are summarized in Table 2.

We calculated the classification accuracies from each

validating subset in the leave-one-out loop to evaluate the

effectiveness of our feature extraction method and SVM

classifier. The results were summarized in Table 3. For all the 14

times of training, the validation accuracies varied from 72.39 to

88.73%, of which the mean is 79.87%.

After leave-one-out training, we got 28 FC features whose

overlap rate was ≥12/14 among 14 times training. Figure 3

and Table 4 demonstrated the nodes and edges involved in

these 28 FC features. According to the mean F-score value

of each feature among 14 times training, we marked the FCs

with great mean F-scores (higher than 75% of the highest

mean F-score value among all the features) as a red line

and colored the others in blue. They were mainly located
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FIGURE 4

The nodes and edges involved in the FC features with a high overlap rate (12/14) among training with random sample selection. (A,B) Regions

involved in 28 FC features with overlapping ratios ≥12/14 across 14 training sessions. (C) Edges involved in 28 FC features with overlap ratio

≥12/14 in 14 training sessions.

within and between the parietal, the occipital, the frontal

lobe, and the limbic system. For the temporal lobe and

the insula, there was less different functional connectivity

between SPS and CPS individuals. Specifically, as shown in

Figure 3 and Table 4, the FCs with great mean F-scores were

located between the middle frontal gyrus (G_front_middle),

and the angular gyrus (G_pariet_inf-Angular), and Sulcus

intermedius primus (of Jensen) (S_interm_prim-Jensen);

between the Cuneus (G_cuneus) and the parieto-occipital

sulcus (S_parieto_occipital), and the intraparietal sulcus

(S_intrapariet_and_P_trans); and between the intraparietal

sulcus (S_intrapariet_and_P_trans) and the posterior-ventral

part of the cingulate gyrus (vPCC, G_cingul-Post-ventral); and

between the posterior-ventral part of the cingulate gyrus (vPCC,

G_cingul-Post-ventral) and the middle-posterior part of the

cingulate gyrus and sulcus (pMCC, G_and_S_cingul-Mid-Post).

According to these 28 FC features, we extracted the

corresponding values in the testing dataset which contained 117

FC matrices for individuals with CPS and 114 FC matrices for

individuals with SPS (as shown in the “Testing set” in Table 1).

The test accuracy rate was 78.52%.

To further verify the stability of the results described above,

we also adopted another criterion for sample selection in the

training set. First, we mixed all the samples (FC matrices from

all the time segments and all the subjects in the training set). For

each time of the leave-one-out training procession, we randomly

selected 90% of all the samples as a subset for training and the

rest of 10% for validation. By calculating the F-score of each

feature in the training subset, we took the features with top 1%

F-score values as the input for the following SVM classifier. We

also repeated this process 14 times. The validation accuracies

in each leave-one-out loop are shown in Table 5, which varied

from 78.55 to 87.21%, of which the mean is 82.69%. The final

test accuracy rate reached upto 81.37%.

With random sample selection in leave-one-out training

loop, we got 20 FC features with an overlap rate≥12/14. Figure 4

and Table 6 demonstrated their nodes and edges. They were

mainly located within and between the parietal, the occipital,

and the frontal lobe, and the limbic system, similar to the

results in Figure 3. For the temporal lobe and the insula,

there was less different functional connectivity between SPS

and CPS individuals, either. In Figure 4, we marked the FCs

with great mean F-scores (higher than 75% of the highest

mean F-score value among all the features) as a red line, and

colored the others in blue. Specifically, the FCs with great

mean F-scores were located between the intraparietal sulcus

(S_intrapariet_and_P_trans) and the posterior-ventral part of

the cingulate gyrus (vPCC, G_cingul-Post-ventral) and the

cuneus (G_cuneus), between the angular gyrus (G_pariet_inf-

Angular) and the middle frontal gyrus (G_front_middle)

and pericallosal sulcus (S_pericallosal). Comparing the results

obtained with the two different ways of sample selection, we can
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find that there are many coincident ROIs and edges, as shown in

Figure 5 and Table 6 (marked with ∗).

Discussion

Summary

In our pre-experiment, we found a significant decrease in

functional connectivity in both groups of patients compared

to healthy controls, which was consistent with previous studies

(Ives-Deliperi and Butler, 2021). To date, few studies have

focused on the resting state of SPS and CPS, especially the

analysis of differences in brain functional connectivity between

the two groups.We evaluated subjects’ FC for exploring network

connection markers for TLE with altered consciousness status.

The synchronicity of activities between network nodes was

calculated at the brain network level. A higher mean F-score

value indicated a stronger activity of network nodes and a

greater connectivity with other nodes. The network connection

differences of CPS from SPS were distinguished by SVM. In

this way, dissimilar regions in the functional connectivity of

global networks in SPS and CPS were determined. The following

primary results were made: (1) The SVM classification model

used the optimal feature set of 28 functional connections

calculated from MEG data to distinguish the CPS subjects

from SPS at a mean accuracy of 81.37% (sensitivity =

81.1%; specificity = 81.54%) on test data. (2) Compared with

SPS, individuals with CPS revealed a hyper-connectivity in

several primary regions including intraparietal sulcus, transverse

parietal sulcus of brissaud, middle frontal gyrus, callosal suleus,

ventral posterior cingulate gyrus, cuneus, and inferior parietal

marginal angular gyrus. By comparing the differences in FC

between SPS and CPS, it was possible to explore the pathological

basis of consciousness impairment and cognitive abnormalities.

Relationship between cps network
connections and consciousness

There was no significant relationship between the

occurrence of impaired consciousness in CPS and the

functional connectivity of the epileptic region of origin (Najm,

2018). We did find that CPS and SPS functional connectivity

differences were concentrated in extratemporal lobe regions. It

was mainly distributed between the parietal, occipital, frontal.

and limbic systems. This implied that the occurrence of CPS

was not only associated with structural damages in the temporal

lobe but also with abnormal brain network connectivity in

extratemporal brain regions (Englot et al., 2010). Abnormal

functional connectivity in these brain regions might accelerate

the outward diffusion of temporal lobe discharge (Yoo et al.,

TABLE 6 The nodes and edges involved in the FC features with high

overlap rate (12/14) among training with random sample selection.

Index ROI 1 ROI 2

1* S_intrapariet_and_P_trans G_cingul-Post-ventral

2* S_intrapariet_and_P_trans G_cuneus

3* G_pariet_inf-Angular G_front_middle

4* S_pericallosal G_pariet_inf-Angular

5* S_parieto_occipital S_intrapariet_and_P_trans

6* S_front_inf G_oc-temp_med-

Lingual

7 S_intrapariet_and_P_trans G_occipital_sup

8 G_pariet_inf-Angular G_cuneus

9* G_pariet_inf-Angular G_cingul-Post-ventral

10* G_occipital_middle G_front_middle

11* S_subparietal G_precuneus

12* G_cingul-Post-ventral G_and_S_cingul-Mid-

Post

13* S_intrapariet_and_P_trans S_calcarine

14* S_front_middle G_occipital_middle

15* S_parieto_occipital G_cuneus

16 S_intrapariet_and_P_trans G_precuneus

17* S_interm_prim-Jensen G_front_middle

18 S_postcentral G_cingul-Post-ventral

19* G_cuneus G_and_S_occipital_inf

20* G_pariet_inf-Angular G_and_S_cingul-Mid-

Ant

The pairs are ranked in descending order according to the mean F-score value of each

feature among 14 times training (* after index represents the pair is overlapped in the

results with two different ways of sample selection).

2014; Sirin et al., 2020). This may lead to individuals who

showed up with the loss of consciousness (Li et al., 2020).

Our observations were consistent with the “network

inhibition hypothesis.” If seizures spread beyond the

epileptogenic zone, consciousness may be vulnerable to

impairment Bancaud et al., 1994; So, 1995; Norden and

Blumenfeld, 2002; Blumenfeld et al., 2004; Englot et al., 2009,

2010. Previous studies have shown that the activation state of the

frontoparietal region was associated with loss of consciousness

(Untergehrer et al., 2014). CPS also had a distinct “spatial

shift of slow waves”, that was, after a seizure, slow waves

spread from the frontal cortex to the contralateral parietal and

temporal lobes. However, this phenomenon was not found in

SPS individuals (Yang et al., 2012). Similar results were seen in

neuroimaging. Both SPECT and fMRI detected a reduction in

subcortical cerebral blood oxygen level-dependent signals in

the frontoparietal region in patients with generalized epilepsy

(Gotman et al., 2005; Bai et al., 2010). Similarly, individuals with

other unconscious states, such as coma, anesthesia, and brain

death, showed impaired functional integration of the resembled

cortex (Noirhomme et al., 2010; Crone et al., 2013; Gruenbaum,
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FIGURE 5

The overlapped ROIs and edges in both approaches (A,B) Regions involved in 28 FC features with overlapping ratios ≥12/14 across 14 training

sessions. (C) Edges involved in 28 FC features with overlap ratio ≥12/14 in 14 training sessions. Red line: feature mean functional connections

greater than the remaining 75% are marked with a red line. Blue line: no more than the remaining 75% of the feature mean functional

connections are marked with blue lines.

2021). Therefore, we speculated that in TLE, the presence

of abnormal functional connectivity in the frontoparietal

cortex had led to impairment of consciousness. Aberrant

neuronal discharge in patients with CPS activated significant

network disturbances at a later stage, which in turn led to

frontoparietal network abnormalities that clinically manifested

as impaired consciousness.

Possible causes of automatism in patients
with cps

Increased epilepsy network coherence was a

pathophysiology of epilepsy semiotics (Chauvel and McGonigal,

2014). Semiology depended on the interaction of epileptogenic

focus and dissemination targets (Maillard et al., 2004).

Automatism was considered to be one of the most common

symptoms of CPS. About 75% of individuals with CPS

might present with buccal and tongue movements, including

smacking, swallowing, and spitting, called oral automatisms

(OAAs) (Maldonado et al., 1988; Janati et al., 1990; Kramer

et al., 1997).

Automatisms had been proposed to be associated with

widespread cortical excitation. Several previous stimulation

studies had shown that stimulation of frontal, insular, and

temporal cortex or amygdala regions could induce automatisms

(Maestro et al., 2008). Themechanism by which OAAs arose was

the synchronous propagation of brain waves in the temporal–

insular–parietal lobes, disturbing the cortical masticatory region.

The abnormal cerebral cortex triggered the emergence of

oral movements (Aupy et al., 2018). Similarly, individuals

with preserved verbal responsiveness had lower frequencies of

perfusion in ipsilateral parietal regions during interictal episodes

of automatisms (Park et al., 2018). In our study, patients in

the CPS group exhibited more complex clinical symptoms

in addition to impaired consciousness compared to patients

with SPS. There was a prominent difference in the functional

connectivity in the CPS group. This further demonstrates that

the clinical behavioral differences in patients with CPS were

likely due to alterations in network connectivity between the

limbic system and parietal lobes during the late stages of

neuronal firing.

Limitations

The present study has several limitations. First, since the

number of features was much more than the number of subjects

used in classification, we used the F-score method to measure

the classification ability of each input feature so as to select the

most important edges for making accurate predictions (Guyon

and Elissee, 2003). However, the F-score method did not take
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the mutual information between features into account (Chen

et al., 2006), and it can only be used for two classifications.

Once the number of classifications was more than two, the F-

score method will fail. Second, an insufficient sample size of

subjects was still a factor that cannot be ignored due to the

limitation of the research. Due to the small sample size of

individuals with simple clinical SPS or CPS, to strictly enroll the

criteria, we only absorbed individuals whose timing of onset was

short and the frequency of clinical seizure was low. Thus, there

were only individuals who were up to standard with a single

seizure form.

Conclusions

In this research, we divided the individuals with TLE

into two subtypes according to different clinical symptoms,

SPS and CPS, and constructed an SVM classifier to classify

the functional connectivity corresponding to these two types

of individuals. Finally, a classification accuracy of 78.52%

was achieved when we used the already existing SVM

classifier on the testing set. To further verify the stability

of the results above, we redesigned the data set allocation

method and extracted the features, and finally obtained

81.37% classification accuracy. The final results showed that

the nodes and edges involved in these features extracted by

the above two methods had a high coincidence. Moreover,

the two groups of individuals had significant differences in

the connection between the parietal lobe and other brain

regions. This finding may provide an idea for studying the

pathogenesis of CPS or new thinking that can be used to research

refractory epilepsy.
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